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Summary: Consistency is a key component of ) 2
reliable predictions in strongly coupled systems o

« Bulk thermal and electrical transport:
 Critical for hydrodynamic simulations
« Widely used Drude & Ziman formulations have multiple components
» Errors can arise if these are not all computed in the same basis

« X-ray Thomson Scattering:
« Has become a popular diagnostic for warm dense matter
« Widely used models take a piecemeal approach to Chihara separation

« X-ray emission and absorption from dense plasmas:
« Important for both hydrodynamics and diagnostics

* Models tend to be either detailed with ad-hoc plasma effects or rough but
consistent; neither appears adequate for, e.g., recent LCLS data

Opinion: internal consistency should be emphasized in model development
and comparisons with experimental data performed wherever possible.




Transport: Ziman and Drude approaches have ) i,
B} Laboratories
multiple components

Extended Ziman Drude

Electronic components:
Z; is the (ill-defined*) number of conduction electrons

) is the Fermi function, dependent on u

do(p,0) . _ . . .
o(p.6) is the differential scattering cross section _
do lonic component:

S(k) is the static ion-ion structure factor,
which plays a major role in strongly coupled systems

In principle (and sometimes in practice**), these
components can be taken from independent sources.




Measurements of Drude components indicate that  (rh) i
compensating errors can give false agreement

2.0 1
B E— Apparently reasonable
Q1 ~ = 1. I + agreement between
n — " ] e 4 s siae . T
7 TS R T e— Purgatorio conductivities
i \Ya) — and experiments* was
05 1 * expt belied by detailed
— Purgatorio measurements
0.0 e —— o
1.E+05 1.E+06 1.E+07 1.E+08
Ae (J/kg)
1.5 — 70 7
_ * expt 60 ; '._‘
— — Purgatorio 1 :
E: ~ 0 — '
= 1.0 Tj‘ *%H mg > 1 """ Z continuum
0 :— N 40 E Zf
) S — N _ ree
=2 — %%Lg%% 8 30 E * expt.
0.5 g 20 - gr
i _______——_ 10 é = =N He
0.0 R e T 0 - L A B A T T
1.E+05 1.E+06 1.E+07 1.E+08 1.E+05 1.E+06 1.E+07 1.E+08
Ae (J/kg) Ae (J/kg)

A consistent model at least has the advantage of accounting for the interplay
between the components (e.g. increasing v,, can increase t,; and decrease Z))




Consistency between S(k) and o(k) via ) e
the electron-ion potential also appears important
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NPA S(k), bare Coloumb o(k)
NPA S(k) and o(k) from V,;

QMD/OFMD simulation
Phys. Plas. 19, 102709 (2012).

The Neutral Pseudo-Atom models of Starrett & Saumon?, Perrot &
Dharma-Wardana?, and Faussurier? provide everything required for consistency.

1. C.
2. F.
3.G.

tarrett and D. Saumon, High Energy Density Phys. 10, 35 (2014).
errot and M.W.C. Dharma-Wardana, Phys. Rev. E 52, 5352 (1995).
Faussurier, C. Blancard, P. Cossé, and P. Renaudin, Phys. Plasmas 17, 052707 (2010).
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XRTS: The Chihara approach splits the x-ray ) e,
Thomson scattering signal into three components
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Note dependence on ill-defined Z*

S. (k.w) = Z, f da'S..(w — @')Ss(k,w") O k,w) + |n (k) + n.(k)|*Sii (k,w)
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) Core electrons Free electrons Elastic component

————— core (PWFFA)

core [2]
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l Widely used models treat
each of these components
independently and
parameterize strongly
coupled systems with Z*.
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The NPA model presented in Souza et al.,’ (cf. W.R. Johnson? and
B. Mattern & G. Seidler3) appears to provide the most consistent treatment so far.

1. A. Souza, D. Perkins, C. Starrett, D. Saumon, and S. Hansen. Phys Rev. E 89, 023108 (2014).
2. W.R. Johnson, J. Nilsen, and K.T. Cheng, Phys. Rev. E 86, 036410 (2012).
3. B.A. Mattern and G.T. Seidler, Phys. Plasmas 20, 022706 (2013). 6



What happens to the scattering signal as bound

electrons become pressure ionized?

135° scattering from cold, isolated carbon:
Valence 2p state is bound

0.02

scatterred intensity

000 ——— .l . .

0.01 -+

—15, isolated
— 15 isolated

—_—12p, isolated

8400

8500

8600 2700 8800 8500
scattered photon energy (eV)

S000

Sandia
r.h National
Laboratories

Scattering from cold carbon at 2 g/cc:
2p is pressure ionized (but not to a plane wave!)
1s and 2s scattering signals are modified
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See poster of L. Johnson investigating the effect of continuum-wave
distortion on free-free scattering signals.




X-ray emission and absorption models require ) e,
extensive detail, completeness, and consistency

Laboratories

X-ray spectra can be measured with exquisite accuracy, revealing highly detailed
electronic structure “supported” by extensive unresolved transitions. Reliably
modeling such multi-scale structures is a significant computational challenge.
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At high densities, shielding by and collisions with free electrons lead to density broadening,
pressure ionization, and an explosion of statistically accessible multiply excited states.




Recent experiments on LCLS brought about a
controversy on lonization Potential Depression (IPD)
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Fig. 1 from Ciricosta, Vinko, Chung et al.,
PRL 109 065002 (2012).
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At least four different explanations have been
advanced, each of which claims to account for the
entire discrepancy between EK and SP:

1.

B. Crowley, “Continuum Lowering — A New
Perspective,” HEDP (2014).

Son, Thiele, Jurek et al., “Quantum-Mechanical
Calculation of lonization-Potential Lowering in
Dense Plasmas,” PRX (2014).

Vinko, Ciricosta, & Wark, “Density functional
theory calculations of continuum lowering in
strongly coupled plasmas,” Nature Comm.
(2014).

Iglesias, “A plea for a reexamination of

ionization potential depression measurements,”
HEDP (2014).

As yet, no model with the fine detail required to produce a credible spectrum for
comparison with data has a consistent treatment of density and kinetic effects [4].




Summary: Consistency is a key component of ) 2
reliable predictions in strongly coupled systems o

« Bulk thermal and electrical transport:
 Critical for hydrodynamic simulations
«  Widely used Ziman formulation depends on DOS, do/dQ, and S(k)
» Errors can arise if these are not all computed in the same basis

« X-ray Thomson Scattering:
« Has become a popular diagnostic for warm dense matter
« Widely used models take a piecemeal approach to Chihara separation

« X-ray emission and absorption from dense plasmas:
« Important for both hydrodynamics and diagnostics

* Models tend to be either detailed with ad-hoc plasma effects or rough but
consistent; neither appears adequate for, e.g., recent LCLS data

Opinion: model development should emphasize internal consistency
and seek comparisons with experimental data wherever possible — QMD can help here.
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Ionic component: the structure factor S(g) ) i,
has a large effect on n in strongly coupled systems
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------ Debye-Hiickel 3 ZOZi 0 o€ 0
| ‘// ----------------------------- S(q) is the Fourier transform of the ion-

ion correlation function g(r), which gives
the probability of encountering an ion at
a given radius.
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S(g) varies with the ion-ion coupling
parameter ;= Z*/TR,,:

For solids, S(g) has well-defined
Bragg peaks. As the temperature

I';; =1000 (solid)
/\ /\ increases, the peaks broaden due to
lattice vibrations (phonons).
/\ /\ A (p )

- In the ideal gas limit, where ions are
weakly coupled, S(g) — 1.
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“Young, Corey, and De\ihtt, BRA 44, 6508 (1991).




