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Physical Mechanisms ) e,

= Multi-physics problem
= Thermal

= Mechanical Heat Pellet

" Fluid Cathode
= Electrochemical
= Modeling goals ' ) L ] é ] ¢ ] ‘

= Optimize volume, | |

insulation, Heat Pellet

manufacturing
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mechanical

thermal electrochemical

porous flow
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= Heat equation
oT
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= Source term Q applies to heat pellet, paper

= Level set tracking of burn fronts

= Constant propagation speed

= Heat released over a narrow region near
burn-front position
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Model: Mechanical Deformation

=  Solid constitutive model

inelastic volumetric and isochoric deformation of the MgO skeleton
before, during, and after activation

Isotropic, thermal-elastic-plasticity
Plasticity governs activation deformation
Kinematic split of deformations

F = F°FPEF!

Rule of mixtures for phase decomposition
T — (T —Ty/2)

X:

&

Ko (T
Kirchoff stress: x( )

= Mz (T)dev (QS) +

1=

= Conservation of momentum: V-0 =10

=  Coupled to porous-flow through effective stress: g = Q —+ pé
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Models: Porous flow

= Electrolyte and gas form two immiscible phases upon mel

ot v (/Ow i
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= Saturation and capillary pressure related to
DOFs (wetting and non-wetting pressures)
through model relations

n

S =S5(pc); Pe=DPn— Pu
= Coupling to other physics important!
¢ =d(d);  pi = pi(T)
Si = Si(pe,d); K =K(d)

K - (VPw — pu )) + Oy %104
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= Thermal and Mechanical
= GFEM method

= Porous Flow

= Upwinded version of Darcy flux (Forsyth)

flurx U —
R == L N KB =P KR - P > 0
LI AN i Kpp(Pr—Pp) <0

KIJ:_/ VN]kaJdQ

= Vertex Quadriture

= Discontinuous Saturations
" pressure—pressure formulation




Demonstration: Themo-mechanical )
deformation
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= Electrolyte melting causes separator deformation
= Height vs. diameter change

= Missing effective stress
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Demonstration: Thermo-porous flow LUf

= Two-pressure porous-flow formulation enables stable
solution of flow from the separator to the cathode and
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Demonstration: Thermo-poro-mechanical =
coupling
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= Thermo-poro-mechanical single-cell simulation with full
coupling:
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Conclusions & Future Work L f

= Proof of concept simulation

= Experimental determination of material properties
= Calibration of solid model via experiments

= Electrochemical modeling

= Acknowledgements:
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Models: Electrochemistry

= Reactions, especially for the cathode, are stoichiometrically complicated
Cathode :FeSo & LisFeoSy & Liog (Feq1 4S9 + Fe1_yS = LisFeSy & LisS + Fe
Anode :Li135i4 & LiySiy & 4Si

= (Cantera’s “Electrode Object” deploys multiple sub-grid models
= Infinite capacity

= Multi-plateau Shrinking Core Model

=  Multiple plateaus can
react simultaneously

. .. )
Finite capacity = Diffusional losses with
transport

= Newman reaction extend

=  Primary electrochemical coupling is the temperature 2

= Cantera’s thermodynamics all temperature-dependen \‘
_ 15
"—Open Circuiﬁ

=  Future: Use deformed geometry to affect porosity
. . . ® 0.001 Alcm?|
in electrochemical calculations iy

* 0.005 Afcm?|
* 0,01 Alem?
* 0.02 Alem?
L SSeiven |

Volts: FeS2 vs. LiSi

0 . i n
0 0.5 1 15 2 2.5 3 35
Extent relative to FeS2 (LixFesz)




Demonstration: Thermo-electrochemical
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Thermal-Mechanical Behavior of the Solid e,
Skeleton
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Free Energy Kinematic Split of the Deformation
Density Gradient: Thermal, Elastic, and Plastic
— Ko |T] Parts
Po¢:Mx[T](I1e—3)+ A (J62_1_210gJ6) F:FerFQ
Kirchoff Stress Cold/Hot Statc? !’hase
Decomposition
O kalT] s if T<Ty,—T,/2 x=0,
= 2p0b—- = i, [T]dev[b J:-1)1
T = 2m0b gy = pa[Tldev[b] + == ) elseif T > T+ Tw/2, Y =1,
Isochoric (Radial) Yield elso v= 1= (TT— Tw/2)
2 . u *
b = /T — A$I_31 _B. (I_31> Yy Hy e Volumetric Yield
¢K — % — YP:E — H&xezw
Plastic Flow Rules
. _ _ Net Yield Surface is the Phase
L[b°] = FC' 'F' = -2 (Aisoniso + Avolnvol) b° Volume Fraction Weighted Sum
Mgy = VT o =21 0= (1=x) (65 +65) + x (6 + of)
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Model: Mechanical Deformation ) feima

Strain Change after Melting
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