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Asynchronous Many-Task (AMT) programming models 
show promise in addressing resiliency challenges

 Show promise at sustaining 
performance despite node 
degradation and failures

 Work stealing enables load 
balancing

 Failed tasks can be re-executed
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Recovery (beyond checkpoint/restart) compared 
to MPI is challenging

 Enormous distributed coherency 
problem

 Care is required to identify lost 
tasks due to work-stealing and 
asynchrony

 Any task and data can be found 
on any node

Task-Directed Acyclic Graph (DAG)

Nodes are tasks
Edges are data



A holistic solution requires a number of fault-
tolerant components

 Distributed Hash Table (DHT): Store task descriptors/data pointers

 Collection/task queue: Maintain state & work assignments

 Resilient Transport Layer

 Fault-aware collectives: terminate cleanly with no result 

 Fault-tolerant collectives: heartbeat via overlay network to 
rigorously agree on which nodes are alive
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Related work

 Distributed Hash Table (DHT): Linda, Intel CnC, FOX, MATRIX

 Collection/task queue: Scioto, DAGuE, Legion, Uintah, Charm++

 Transport Layer: MPI-ULFM, FT-MPI, Hursey et. al “A log-scaling 
fault tolerant agreement algorithm for a fault tolerant MPI”
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An example of a dense Conjugate Gradient (CG) 
task-graph

 Coarse-grained DAG + data parallelism
 Squares denote data (matrix/vector/scalar).
 Circles denote compute kernels. 
 Data parallelism (matrix/vector) => large task parallelism.
 Each node (circle) in the coarse-grained DAG becomes a task collection.



Code example: Setting up runtime

void dharma_runtime::init()

{

msg_api_   = new message_api(…);

task_dht_  = new dht(…);

mdata_dht_ = new metadata_dht(…);

data_dht_  = new data_dht(…);

backup_    = new nvram_backup(…);

int max_steals = 5;

int eager_tasks = 100;  

queue_  = new task_queue(…, max_steals, eager_tasks);

msg_api_->init();

}



Code example: Creating tasks

dharma_runtime* rt = new dharma_runtime;

rt->init(); //initialize the runtime

task_collection::ptr coll = new collection(rt,…, new generator(…));

rt->register_collection(coll);

………………………………………………

………………………………………………

void generator::generate_tasks()

{

for (int i=0; i < overdecompose_; ++i){

task::ptr t = new task(…);

t->dependencies.push_back(new dependency(…)); //declare task deps

append_task(t);  //adds the task to the collection

}

}



Code example: Unrolling DAG

main

{

dharma_runtime* rt = new dharma_runtime;

rt->init(); //initialize the runtime

cg_unroller starter(0,…); //start iteration 0

starter.unroll(rt);

………………………………………………

}

void cg_unroller::unroll(dharma_runtime *rt)

{

task_collection::ptr coll_Alpha_dp = new allreduce_collection(rt,…);

task_collection::ptr coll_Alpha = new collection(rt,…);

………………………………………………



Code example: Unrolling DAG (contd…)

………………………………………………

task_collection::ptr coll_p = new collection(rt,…);

if (!end){

coll_Beta->set_unroller(new cg_unroller(iter_+1,config_));

}

else {

coll_p->set_final_collection();

}

rt->register_collection(coll_Alpha_dp);

………………………………………………

rt->register_collection(coll_p);

}  //end cg_unroller



Work-flow diagram
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Why do you need an index phase?

 Tasks within a collection are 
generated locally.

 Every worker needs to agree on a 
unique label for each task i.e. tasks 
need to be globally indexed.

 The unique global index is required 
for:
 scheduling a task remotely.

 work stealing.

 regenerating incomplete tasks due to a 
failure.

 This indexing is via an fault-aware 
all_gather collective.
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Why do you need a schedule phase?

 Each task needs to resolve its 
dependencies.

 The global dependency name is 
mapped to an actual physical 
location and address.

 The optimal location to run the task 
might be a remote node depending 
on:
 data affinity (most input data resides 

on remote node).
 load balancing (remote node has data 

backup copies and is idle).

 These decisions are made during 
the schedule phase.
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Why do you need a finalize phase?

 When a worker exhausts local work:
 it needs to determine if all work is 

depleted (e.g. successive steal attempts 
fail).

 it needs to agree with everyone else if 
all work is depleted.

 it needs to determine if any work was 
lost (due to failure).

 If any tasks remain incomplete due 
to failure, they can be detected and 
regenerated only in this phase.

 The finalize phase ensures that a 
collection is exhausted collectively 
by all participating workers.
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 Every node keeps task status array (bits) to 
confirm the global status of individual tasks.

 Naive approach:
 each worker maintains/updates a copy of  task 

array.

 all_reduce the global (large) array.

 not scalable (later results show). 

 Alternative approach:
 distribute the task status array. 

 completion of each task reported to designated 
node that is tracking its status.

 multiple nodes can track status for a single task –
redundancy. 

 when your portion of task array shows all “done” 
vote to finalize. 
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Dynamic data lookup with DHT: Tasks activated 
by callbacks when dependencies exist
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Fault-aware collectives

All-reduce All-gather

= Send Message + Ping

• Round partners are pinged (either timeout or 
RDMA NACK) to ensure alive 

• If failure detected, every round of collective must 
still be executed (sending 0 byte fake messages)

• Only fault-aware – processes can exit with different 
error status, but guaranteed to finish and not 
deadlock waiting on dead nodes

Send/recv Protocol
1. Source sends RDMA header
2. Dest recvs RDMA header, executes 

RDMA get
3. Completion ack delivered to 

sender/receiver

RDMA get assumed resilient! Requires 
network layer support



Fault-tolerant collectives:  Resilient voting 
algorithm
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• Basically same as algorithms from Hursey and Graham 
• Votes passed up tree and merged on root
• Much simpler to assume root never fails – ways around it
• After failures detected, tree reconnects and votes reissued
• Can be used immediately after any fault-aware collective to vote on 

completion – makes any fault-aware collective fault-tolerant

= Send Message + Ping
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• Collectives are self-diagnosing; DHT, task queue, data backup 
managers need something to provide notifications of failures

• Fault-tolerant voting algorithm serves as “heartbeat” overlay 
network for detecting failures



Transparent NVRAM fault tolerance with DHT

Recovery operations occur in background, no application awareness
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Why develop with a simulator? And what type of 
simulation are we doing?

 Coarse-grained simulation explores 
system-level (load balancing, 
effects of failures)

 Think about overall structure 
without implementing every detail

 Rapidly iterate experiments (don’t 
need to wait in queue)

 Co-design for speculative hardware

 Total control over when/where 
failures happen



SST Macroscale stack diagram

 SST is an on-line simulator
 Compile applications directly into 

SST libraries to simulate 
MPI/pthreads/etc

 SST can link into runtime systems at 
two different levels: directly or 
indirectly as GASNet backend

 Illustrated for existing runtime 
systems like Legion and UPC
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Compile-and-go simulation 

Linkage intercepts main and 
spawns user-space thread to 
simulate process 

Linkage intercepts BLAS calls and estimates 
compute time without actually performing 
work

Linkage intercepts MPI 
calls and simulates 
send/recv time via 
congestion models



What are you giving up (or not) with simulation?

 NOT emulation – coarse-grained simulation

 No real computation, tasks just simulate time passing

 Coarse-grained network models (approximate treatment of 
congestion)

 Full runtime is executing – tasks are not actually run, but all 
task/data management is executing for real 
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Using SST we can ask co-design questions 

 Is it okay to drive task framework via collectives?
 MTBF vs time to complete collective

 Scalability of collective

 What topology/hardware best supports programming model?



Experiment Settings

Parameter Cuurent EXA1 EXA2

BW for Switch 30GB 450GB/s 450GB/s

Network Hop Latency 100ns 100ns 100ns

Injection BW 10GB 100GB/s 400GB/s

Injection Latency s 0.4s 0.02s
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 Need duplications for each local task-status array 



Results: All-reduce on too expensive for finalizing 
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Results: All-gather is sufficiently fast for indexing

 Need duplications for each local task-status array 

29

 1  2  3  4  5  6

 20000
 40000

 60000
 80000

 100000
 120000

t ( m s )

nproc

All-gather Performance

3D torus
Fat oct-tree

BW for Switch 30GB

Network Hop Latency 100ns

Injection BW 10GB

Injection Latency s



Results: All-gather is sufficiently fast for indexing
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Conclusions

 Is asynchronous Go or No-Go?

 What are all components to realize that?

 Distributed coherency problem (+ node failure)

 Resilient collective (we believe) is the most important 
infrastructure to implement resilient task-collection.

 MPI+X resilience is more matured than resilience for AMT is 
still issue.
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Current and future work

 Using SST perform scalability, performance and 
resilience for a variety of representative mini-
applications (with and without faults)

 Baseline comparisons against MPI + checkpoint-restart

 A holistic fault-tolerant AMT runtime system on a 
capability-class machine


