SAND2014- 15375P

Extreme-scale viability of collective
communication for resilient task
scheduling and work stealing

- "‘*"Ml’!l“
“.&fd'f'ﬁﬁ --_

- s

N
ll | | 2 Jeremiah Wilke, Hemanth Kolla, John Floren, Keita
'l _,;; | A v H(ﬂl [l Teranishi, Janine Bennett and Nicole Slattengren

| Sandia National Laboratories, Livermore, CA

) FTXS-14, Atlanta, GA

Sandia

National June 23, 2014
Laboratories

Exceptional
service
in the

national

i , T WA) =)
e 5 ENERGY ALY /,1*

Adeministration

. Sandia National Laboratori multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
interest Corporation, for the U.S. D p rtme t of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Asynchronous Many-Task (AMT) programming models) e,
show promise in addressing resiliency challenges

Laboratories

Task-Directed Acyclic Graph (DAG)
= Show promise at sustaining

performance despite node
degradation and failures

= Work stealing enables load
balancing

= Failed tasks can be re-executed Nodes are tasks
Edges are data

Recovery (beyond checkpoint/restart) compared)
to MPI is challenging

Task-Directed Acyclic Graph (DAG)

= Enormous distributed coherency
problem

= Care is required to identify lost
tasks due to work-stealing and
asynchrony

Nodes are tasks

= Any task and data can be found ge. are data
on any node

A holistic solution requires a number of fault-) i
tolerant components

Laboratories

= Distributed Hash Table (DHT): Store task descriptors/data pointers
= Collection/task queue: Maintain state & work assignments
= Resilient Transport Layer

= Fault-aware collectives: terminate cleanly with no result

= Fault-tolerant collectives: heartbeat via overlay network to
rigorously agree on which nodes are alive

Node O Node 1 Node n
queue
DHT speo0 e

Task
queue
DHT
1 W.ork.ers.

Task
queue
DHT
1 W.ork.ers.
I I Transport Layer I

Sandia
|I1 National
Laboratories

Related work

= Distributed Hash Table (DHT): Linda, Intel CnC, FOX, MATRIX
= Collection/task queue: Scioto, DAGUE, Legion, Uintah, Charm++

= Transport Layer: MPI-ULFM, FT-MPI, Hursey et. al “A log-scaling
fault tolerant agreement algorithm for a fault tolerant MP1”

Node O Node 1 Node n

1 .or.ers. \ .or'ers' 1 t
I I Transport Layer I

An example of a dense Conjugate Gradient (CG) s,
task-graph

Laboratories

X0

X1

P1

= Coarse-grained DAG + data parallelism

= Squares denote data (matrix/ /scalar).
= (Circles denote compute kernels.
= Data parallelism (matrix/) => large task parallelism.

= Each node (circle) in the coarse-grained DAG becomes a task collection.

Code example: Setting up runtime

void dharma_runtime::init()

{

msg_api_ = new message_api(..);
task_dht_ = new dht(..);
mdata_dht_ = new metadata_dht(..);
data_dht_ = new data_dht(..);
backup_ = new nvram_backup(..);
int max_steals = 5;

int eager_tasks = 100;

queue_ = new task_queue(.., max_steals, eager_tasks);

msg_api_->init();

}

Sandia
National _
Laboratories

Sandia
Code example: Creating tasks L

dharma_runtime* rt = new dharma_runtime;

rt->init(); //initialize the runtime

task_collection::ptr coll = new collection(rt,.., new generator(..));
rt->register_collection(coll);

void generator::generate_tasks()

{
for (int i=0; i < overdecompose_; ++i){
task::ptr t = new task(..);

t->dependencies.push_back(new dependency(..)); //declare task deps
append_task(t); //adds the task to the collection

Sandia
Code example: Unrolling DAG L

main
{ repeat
T
dharma_runtime* rt = new dharma_runtime; ak’_pIApk
rt->init(); //initialize the runtime Xkt+1 = Xi + QkPr

. . Tpt1 = T — 0 APy
cg_unroller starter(0,..); rt iteration
8- er(®,..); //start iteration 6 if 7441 1s sufficiently small then exit loop

starter.unroll(rt); 5ﬂ-=’€;“*+1
.. LT
} Pr+1 = Tit1 + OkPr
k=k+1

end repeat

void cg_unroller::unroll(dharma_runtime *rt)

{

task_collection::ptr coll Alpha _dp = new allreduce collection(rt,..);
task_collection::ptr coll Alpha = new collection(rt,..);

Code example: Unrolling DAG (contd...)) i,

task_collection::ptr coll p = new collection(rt,..);

if (lend){
coll Beta->set_unroller(new cg _unroller(iter_+1,config));

}

else {
coll_p->set_final_collection();

rt->register_collection(coll Alpha_dp);
rt->register_collection(coll p);
} //end cg _unroller

Sandia
Work-flow diagram) e,

Generate tasks

D) i ;

Why do you need an index phase?

Tasks within a collection are
generated locally.

Every worker needs to agree on a
unique label for each task i.e. tasks
need to be globally indexed.

The unique global index is required
for:

scheduling a task remotely.
work stealing.

= regenerating incomplete tasks due to a
failure.
This indexing is via an fault-aware

all_gather collective.

Sandia
National
Laboratories

Vote =0
Failed = {...}

Generate tasks

Dependencies
and tasks
resolved

Vote = 1
Failed = n/a

Schedule

All failed
tasks

Max failed
Vote =0 reissued

steals /
Failed = {...}

Vote = 1
Failed = n/a

Why do you need a schedule phase?

Each task needs to resolve its
dependencies.

The global dependency name is
mapped to an actual physical
location and address.

The optimal location to run the task
might be a remote node depending
on:

= data affinity (most input data resides
on remote node).

= |oad balancing (remote node has data
backup copies and is idle).
These decisions are made during
the schedule phase.

Generate tasks

Max failed

Sandia
National
Laboratories

Vote =0
Failed = {...}

Vote = 1
Dependencies Failed = n/a
and tasks

resolved

Schedule

All failed
tasks
reissued

steals Vote =0
Failed = {...}

Vote = 1
Failed = n/a

Why do you need a finalize phase? m

= \When a worker exhausts local work:

Vote =0

Sandia
National
Laboratories

" jt needs to determine if all work is Failed = {...}
depleted (e.g. successive steal attempts
" it needs to agree with everyone else if Vote = 1
. Dependencies Failed = n/a
all work is depleted. R ok)

resolved

" it needs to determine if any work was
lost (due to failure).

= |f any tasks remain incomplete due waxfaied

Schedule

All failed
tasks

steals Vote =0 reissued

to failure, they can be detected and Failed = {..}
regenerated only in this phase.

= The finalize phase ensures that a
collection is exhausted collectively
by all participating workers.

Vote = 1
Failed = n/a

Finalize phase — global agreement on task status

Sandia
|I1 National
Laboratories

array
[done [done | - [- | - | - |
= Every node keeps task status array (bits) to [-] - [donefdone| - | - |
confirm the global status of individual tasks. [-] - [-] - | done] done |
= Naive approach: ﬂ all_reduce
= each worker maintains/updates a copy of task [done | done [done | done | done | done |
array.
= all_reduce the global (large) array.
= not scalable (later results show). | Taone] [=T -] [done] -]
= Alternative approach: T Taome] [dene | -] [done] -]
= distribute the task status array. - [done| [done | done| [done [done]
n completior-l of eac.h tzf\sk reported to designated done [done] [done [done| [done | done |
node that is tracking its status.
= multiple nodes can track status for a single task — ﬂ vote
redundancy.
= when your portion of task array shows all “done” [done | done | [done | done | [done | done |

vote to finalize.

Dynamic data lookup with DHT: Tasks activated ()&
by callbacks when dependencies exist

Activate callback
join_counter = 1
Task Task not ready
A(0,0) x A(0,1)
join_counter = 2

Get A(0,0)
metadata

A(0,0) A(0,0)
exists Node O
Get A(0,1) OxABCOFO
metadata A(0,1) Task callback
Does not exit
A(0,1)
does not A(1,3)
exist Node 1
0x835A00

Task
A(0,0) x A(0,1)
join_counter=1

Put A(0,1)

DHT

Activate callback
join_counter =0
Task ready

A(0,0)
Node 0
OxABCOFO

| Task callback
Does not exit

A(1,3)
Node 1

Recelved metadata
A(0,1)
OxFAFAFA

Transport
Layer

Task
Compute block A(0,1)

Put data on Node 1
A(0,1)

OxFAFAFA

Metadata put to

0x835A00

Node 0

Sandia
National _
Laboratories

Fault-aware collectives

Sandia
"1 National

Laboratories

All-reduce

Round 0 ,b @ @ @ Round 0 O’b’b’b’b’b’b’bq
Round 1 %@/ @ Round 1 OW

Round 2 Q@ Round2 O O O O

All-gather

—_— = S5end Message + Ping

* Round partners are pinged (either timeout or
RDMA NACK) to ensure alive

* If failure detected, every round of collective must
still be executed (sending O byte fake messages)

* Only fault-aware — processes can exit with different
error status, but guaranteed to finish and not
deadlock waiting on dead nodes

Send/recv Protocol
1. Source sends RDMA header
2. Dest recvs RDMA header, executes
RDMA get
3. Completion ack delivered to
sender/receiver

RDMA get assumed resilient! Requires
network layer support

Fault-tolerant collectives: Resilient voting)
algorithm

Laboratories

®» =Send Message + Ping

e Basically same as algorithms from Hursey and Graham

* Votes passed up tree and merged on root

e Much simpler to assume root never fails — ways around it

» After failures detected, tree reconnects and votes reissued

* (Can be used immediately after any fault-aware collective to vote on
completion — makes any fault-aware collective fault-tolerant

Heartbeat connects to DHT and task queue to) e,
respond to failures

Laboratories

e Collectives are self-diagnosing; DHT, task queue, data backup
managers need something to provide notifications of failures

e Fault-tolerant voting algorithm serves as “heartbeat” overlay
network for detecting failures

Run '
heartbeat

collective

No new
failures

Failures
detected

Notify proc
) . Afailed Task Queue
\ amelioration /

Steals Reissue
requests requests

Notify proc
A failed

Reissue

Transparent NVRAM fault tolerance with DHT) e,

Recovery operations occur in background, no application awareness

N 1
F‘;‘ﬂ‘; g "A(0,0)" "A(0,0)"
Node 0 Node O
O0xA34FA OxA34FA
IIA(O,1)II IIA(O,1)II
Node 1 Node O
Ox5FEDA 0x1234A
"A(0,0) nvram" "A(0,0) nvram"
Node 0 Node O
OxEEAEA P OxEEAEA
ut new Put new
"A(0,1) nvram" "A(0,1) nvram" | "A(0,1)" "A(0,1) nvram"
0x5079FA 0x1234A 0x4321F 0x1234A

Recovery
manager
NVRA
0x5079FA
NVRAM
Node 1

Recovery
manager

Why develop with a simulator? And what type of ()
simulation are we doing?

Application . . .
v = Coarse-grained simulation explores

e e system-level (load balancing,
DGR Support effects of failures)

= Think about overall structure
without implementing every detail

= Rapidly iterate experiments (don’t
need to wait in queue)

Coarse-Grain
Simulation

o = Co-design for speculative hardware
e Cycle-Accurate :
il S WSSl = Total control over when/where

»
»

CrtIJde ROLIJgh Causei and Verylgood Exlact fa i I u res h a p pe n

guess idea effect estimates hardware model

pdi o,

Sandia
|I1 National

Laboratories

SST Macroscale stack diagram

Application) m SSTis an on-line simulator

(—% Compile applications directly into

Library Implementafions SST libraries to simulate
MPI/pthreads/etc

SST can link into runtime systems at
two different levels: directly or

Node Hardware

éa indirectly as GASNet backend
@ = |llustrated for existing runtime

Network systems like Legion and UPC

Legion \(UPC > Legion UPC
Transport Layer Wrapper > < >
GASNet

< Sl X MSG AP >

SST
Cray IBM
Hardware Hardware

MSG API

Cray IBM
Hardware Hardware

Compile-and-go simulation) S

Laboratories
Linkage intercepts main and
/ Spawns user-space thread to
int USER_MAIN(int argc, char skargv) Simulate process

MPI_Init(&argc, &argv);

for (int iter=0:; iter < niter: ++iter){

MPI_Isend(left_block, nelems_left_block, MPI_DOUBLE, Linkage intercepts MPI
row_send_partner, row_tag, MPI_COMM_WORLD, &reqs[0]); || d . |

MPI_Isend(right_block, nelems_right_block, MPI_DOUBLE, calls and simulates
col_send_partner, col_tag, MPI_COMM_WORLD, &reqs[1]); send/recv time via

MPI_Irecv(next_left_block, nelems_left_block, MPI_DOUBLE, .
row_recv_partner, row_tag, MPI_COMM_WORLD, &reqs[2]); Conge5t|0n mOdeIS

MPI_Irecv(next_right_block, nelems_right_block, MPI_DOUBLE,
col_recv_partner, col_tag, MPI_COMM_WORLD, &reqs([3]);

do_dgemm('T', 'T', nrows, ncols, nlink, 1.0, left_block, nrows,

right_block, ncols, @, product_block, nrows);
X \

Linkage intercepts BLAS calls and estimates
MPI_Finalize(); compute time without actually performing
work

}

What are you giving up (or not) with simulation? @ =

= NOT emulation — coarse-grained simulation
= No real computation, tasks just simulate time passing

= Coarse-grained network models (approximate treatment of
congestion)

= Full runtime is executing — tasks are not actually run, but all
task/data management is executing for real

Application
Application 1
Librai APls

Library Implementations

Hardware Software
Design Support

Evaluation

Node Hardware i i >
: Network :

Sandia
Using SST we can ask co-design questions L

= |s it okay to drive task framework via collectives?
= MTBF vs time to complete collective
= Scalability of collective

= What topology/hardware best supports programming model?

Experiment Settings

Parameter

BW for Switch
Network Hop Latency
Injection BW

Injection Latency

= Need duplications for each local task-status array

Cuurent
30GB
100ns
10GB

1.0us

EXA1
450GB/s
100ns
100GB/s
0.4pus

Sandia
r.h National
Laboratories

EXA2
450GB/s
100ns
400GB/s
0.02us

National

Sandia
Results: All-reduce on too expensive for finalizing ..

Consider example: BW for Switch 20e8

200 GF node (100 cores @ 2 GHZ) Network Hop Latency 100ns

Coarse-grainedtasks 10 ms each Injection BW 10GB

Collection 1600 (12Mbytes) tasks completes in 160 ms Injection Latency ~ 1.0ps
t(ms t(ms

) —
o o o o

0ch
iz

P D oo
o o o

00}
102
iz
10¢

=) f— = —_

S (o2l e S (o2l

s [Y e Y e] =1 [Y e Y e]
OOO OOO
INPIRY [CPTETY

s DN N W ~ W N W

=3 NN AN - o 2N 2N -1

= L LB = L LB
EEE EEE

w OO0 @ O OO

S g S .

S m « e S m « e

90idu
SnIoJ @

90/du
0000

00007
891100 Je

00005
00005

00009
00009

00L

= Communication cost same order df magnitude as computation
= An alternate “task-homes” algorithm should be used for finalization

0000L

Results: All-gather is sufficiently fast for indexing ™ e,
t(ms)

—_ | o) (&) ~ [y] SO
BW for Switch 30GB
o Network Hop Latency 100ns
o -
§ Injection BW 10GB
-1
= o Injection Latency 1.0us
= o
S S O =
o — g
- s= |g
D P e
(=) —
= S e m | <R
= 3 O
S <.
D o
= =
S -
S =S
D
D
=
g —
S
~
g —
S

= Need duplications for each local task-status array

29
-

Results: All-gather is sufficiently fast for indexing

Parameter EXA1l EXA2
BW for Switch 450GB/s 450GB/s
Network Hop Latency 100ns 100ns
Injection BW 100GB/s 400GB/s
Injection Latency 0.4us 0.02us
o)
S § 8§ § = 8 8 3 &

m rm
S SmEm
S RS 33
QPO —
—; —;
S SO8 O
S P N = R =
S =S8 =g |
D D =]
D w»Dw QD
oD —
— X o ®© | 154
o @
S 3
(@ =] o
[3
S o
o =
()
<D
=)
(e
o
(e
o

00002}

Sandia
National _
Laboratories

Sandia
Conclusions i) Natona

= |s asynchronous Go or No-Go?

= What are all components to realize that?

= Distributed coherency problem (+ node failure)

= Resilient collective (we believe) is the most important
infrastructure to implement resilient task-collection.

= MPI+X resilience is more matured than resilience for AMT is
still issue.

National

Sandia
Current and future work i) tna

= Using SST perform scalability, performance and
resilience for a variety of representative mini-
applications (with and without faults)

= Baseline comparisons against MPI + checkpoint-restart

= A holistic fault-tolerant AMT runtime system on a
capability-class machine

