
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Extreme-scale viability of collective
communication for resilient task
scheduling and work stealing

Jeremiah Wilke, Hemanth Kolla, John Floren, Keita
Teranishi, Janine Bennett and Nicole Slattengren

Sandia National Laboratories, Livermore, CA

FTXS-14, Atlanta, GA

June 23, 2014

SAND2014-15375PE

Asynchronous Many-Task (AMT) programming models
show promise in addressing resiliency challenges

 Show promise at sustaining
performance despite node
degradation and failures

 Work stealing enables load
balancing

 Failed tasks can be re-executed

Task-Directed Acyclic Graph (DAG)

Nodes are tasks
Edges are data

Recovery (beyond checkpoint/restart) compared
to MPI is challenging

 Enormous distributed coherency
problem

 Care is required to identify lost
tasks due to work-stealing and
asynchrony

 Any task and data can be found
on any node

Task-Directed Acyclic Graph (DAG)

Nodes are tasks
Edges are data

A holistic solution requires a number of fault-
tolerant components

 Distributed Hash Table (DHT): Store task descriptors/data pointers

 Collection/task queue: Maintain state & work assignments

 Resilient Transport Layer

 Fault-aware collectives: terminate cleanly with no result

 Fault-tolerant collectives: heartbeat via overlay network to
rigorously agree on which nodes are alive

Node 0Node 0

Task
queue
Task

queue

DHT

Workers

Node 1Node 1

Task
queue
Task

queue

DHT

Workers

Node nNode n

Task
queue
Task

queue

DHT

Workers

Transport Layer

Related work

 Distributed Hash Table (DHT): Linda, Intel CnC, FOX, MATRIX

 Collection/task queue: Scioto, DAGuE, Legion, Uintah, Charm++

 Transport Layer: MPI-ULFM, FT-MPI, Hursey et. al “A log-scaling
fault tolerant agreement algorithm for a fault tolerant MPI”

Node 0Node 0

Task
queue
Task

queue

DHT

Workers

Node 1Node 1

Task
queue
Task

queue

DHT

Workers

Node nNode n

Task
queue
Task

queue

DHT

Workers

Transport Layer

An example of a dense Conjugate Gradient (CG)
task-graph

 Coarse-grained DAG + data parallelism
 Squares denote data (matrix/vector/scalar).
 Circles denote compute kernels.
 Data parallelism (matrix/vector) => large task parallelism.
 Each node (circle) in the coarse-grained DAG becomes a task collection.

Code example: Setting up runtime

void dharma_runtime::init()

{

msg_api_ = new message_api(…);

task_dht_ = new dht(…);

mdata_dht_ = new metadata_dht(…);

data_dht_ = new data_dht(…);

backup_ = new nvram_backup(…);

int max_steals = 5;

int eager_tasks = 100;

queue_ = new task_queue(…, max_steals, eager_tasks);

msg_api_->init();

}

Code example: Creating tasks

dharma_runtime* rt = new dharma_runtime;

rt->init(); //initialize the runtime

task_collection::ptr coll = new collection(rt,…, new generator(…));

rt->register_collection(coll);

………………………………………………

………………………………………………

void generator::generate_tasks()

{

for (int i=0; i < overdecompose_; ++i){

task::ptr t = new task(…);

t->dependencies.push_back(new dependency(…)); //declare task deps

append_task(t); //adds the task to the collection

}

}

Code example: Unrolling DAG

main

{

dharma_runtime* rt = new dharma_runtime;

rt->init(); //initialize the runtime

cg_unroller starter(0,…); //start iteration 0

starter.unroll(rt);

………………………………………………

}

void cg_unroller::unroll(dharma_runtime *rt)

{

task_collection::ptr coll_Alpha_dp = new allreduce_collection(rt,…);

task_collection::ptr coll_Alpha = new collection(rt,…);

………………………………………………

Code example: Unrolling DAG (contd…)

………………………………………………

task_collection::ptr coll_p = new collection(rt,…);

if (!end){

coll_Beta->set_unroller(new cg_unroller(iter_+1,config_));

}

else {

coll_p->set_final_collection();

}

rt->register_collection(coll_Alpha_dp);

………………………………………………

rt->register_collection(coll_p);

} //end cg_unroller

Work-flow diagram

Generate tasks Index

Vote = 0
Failed = {...}

Vote = 1
Failed = n/a

Done

Vote = 1
Failed = n/a

Vote = 0
Failed = {...}

Max failed
steals

ScheduleRun

Finalize

Dependencies
and tasks
resolved

Restart

All failed
tasks

reissued

Why do you need an index phase?

 Tasks within a collection are
generated locally.

 Every worker needs to agree on a
unique label for each task i.e. tasks
need to be globally indexed.

 The unique global index is required
for:
 scheduling a task remotely.

 work stealing.

 regenerating incomplete tasks due to a
failure.

 This indexing is via an fault-aware
all_gather collective.

Generate tasks Index

Vote = 0
Failed = {...}

Vote = 1
Failed = n/a

Done

Vote = 1
Failed = n/a

Vote = 0
Failed = {...}

Max failed
steals

ScheduleRun

Finalize

Dependencies
and tasks
resolved

Restart

All failed
tasks

reissued

Why do you need a schedule phase?

 Each task needs to resolve its
dependencies.

 The global dependency name is
mapped to an actual physical
location and address.

 The optimal location to run the task
might be a remote node depending
on:
 data affinity (most input data resides

on remote node).
 load balancing (remote node has data

backup copies and is idle).

 These decisions are made during
the schedule phase.

Generate tasks Index

Vote = 0
Failed = {...}

Vote = 1
Failed = n/a

Done

Vote = 1
Failed = n/a

Vote = 0
Failed = {...}

Max failed
steals

ScheduleRun

Finalize

Dependencies
and tasks
resolved

Restart

All failed
tasks

reissued

Why do you need a finalize phase?

 When a worker exhausts local work:
 it needs to determine if all work is

depleted (e.g. successive steal attempts
fail).

 it needs to agree with everyone else if
all work is depleted.

 it needs to determine if any work was
lost (due to failure).

 If any tasks remain incomplete due
to failure, they can be detected and
regenerated only in this phase.

 The finalize phase ensures that a
collection is exhausted collectively
by all participating workers.

Generate tasks Index

Vote = 0
Failed = {...}

Vote = 1
Failed = n/a

Done

Vote = 1
Failed = n/a

Vote = 0
Failed = {...}

Max failed
steals

ScheduleRun

Finalize

Dependencies
and tasks
resolved

Restart

All failed
tasks

reissued

 Every node keeps task status array (bits) to
confirm the global status of individual tasks.

 Naive approach:
 each worker maintains/updates a copy of task

array.

 all_reduce the global (large) array.

 not scalable (later results show).

 Alternative approach:
 distribute the task status array.

 completion of each task reported to designated
node that is tracking its status.

 multiple nodes can track status for a single task –
redundancy.

 when your portion of task array shows all “done”
vote to finalize.

-- ---- --donedone donedone

-- --donedone donedone-- --

donedone donedone-- ---- --

donedone donedonedonedone donedonedonedone donedone

all_reduce

donedone ---- ---- donedone

donedone --donedone ---- donedone

donedone donedonedonedone donedone-- donedone

donedone donedonedonedone donedonedonedone donedone

vote

donedone donedonedonedone donedonedonedone donedone

Finalize phase – global agreement on task status
array

Dynamic data lookup with DHT: Tasks activated
by callbacks when dependencies exist

DHT

A(0,0)
Node 0

0xABC0F0

A(0,1)
Does not exit

A(1,3)
Node 1

0x835A00

Task callback

Task
A(0,0) x A(0,1)

join_counter = 2 Get A(0,0)
metadata

A(0,0)
exists

Activate callback
join_counter = 1
Task not ready

Get A(0,1)
metadata

A(0,1)
does not

exist

DHT

A(0,0)
Node 0

0xABC0F0

A(0,1)
Does not exit

A(1,3)
Node 1

0x835A00

Task callback

Task
A(0,0) x A(0,1)
join_counter=1

Task
Compute block A(0,1) DHT

Transport
Layer

Put data on Node 1
A(0,1)

0xFAFAFA

Metadata put to
Node 0

Received metadata
A(0,1)

0xFAFAFA

Put

Activate callback
join_counter = 0

Task ready

Fault-aware collectives

All-reduce All-gather

= Send Message + Ping

• Round partners are pinged (either timeout or
RDMA NACK) to ensure alive

• If failure detected, every round of collective must
still be executed (sending 0 byte fake messages)

• Only fault-aware – processes can exit with different
error status, but guaranteed to finish and not
deadlock waiting on dead nodes

Send/recv Protocol
1. Source sends RDMA header
2. Dest recvs RDMA header, executes

RDMA get
3. Completion ack delivered to

sender/receiver

RDMA get assumed resilient! Requires
network layer support

Fault-tolerant collectives: Resilient voting
algorithm

0

1 2

3 4 5 6

0

1 2

3 4 5 6

0

1

2
3 4

5 6

• Basically same as algorithms from Hursey and Graham
• Votes passed up tree and merged on root
• Much simpler to assume root never fails – ways around it
• After failures detected, tree reconnects and votes reissued
• Can be used immediately after any fault-aware collective to vote on

completion – makes any fault-aware collective fault-tolerant

= Send Message + Ping

Run
heartbeat
collective

Fault
amelioration

No new
failures

Failures
detected

DHT

Notify proc
A failed

Task Queue

Notify proc
A failed

Proc A
Proc B

Replica for A

Get
requests X

Reissue
requests

Proc A Proc B

Steals
requests X

Reissue
requests

Heartbeat connects to DHT and task queue to
respond to failures

• Collectives are self-diagnosing; DHT, task queue, data backup
managers need something to provide notifications of failures

• Fault-tolerant voting algorithm serves as “heartbeat” overlay
network for detecting failures

Transparent NVRAM fault tolerance with DHT

Recovery operations occur in background, no application awareness

DHT

"A(0,0)"
Node 0

0xA34FA

"A(0,1)"
Node 1

0x5FEDA

"A(0,0) nvram"
Node 0

0xEEAEA

"A(0,1) nvram"
0x5079FA

NVRAM
Node 1

OK

X

Recovery
manager

NVRAM Get
0x5079FA

DHT

"A(0,0)"
Node 0

0xA34FA

"A(0,1)"
Node 0

0x1234A

"A(0,0) nvram"
Node 0

0xEEAEA

"A(0,1) nvram"
0x1234A

Recovery
manager

Put new
"A(0,1)"
0x4321F

Put new
"A(0,1) nvram"

0x1234A

Node 1
Failed

Why develop with a simulator? And what type of
simulation are we doing?

 Coarse-grained simulation explores
system-level (load balancing,
effects of failures)

 Think about overall structure
without implementing every detail

 Rapidly iterate experiments (don’t
need to wait in queue)

 Co-design for speculative hardware

 Total control over when/where
failures happen

SST Macroscale stack diagram

 SST is an on-line simulator
 Compile applications directly into

SST libraries to simulate
MPI/pthreads/etc

 SST can link into runtime systems at
two different levels: directly or
indirectly as GASNet backend

 Illustrated for existing runtime
systems like Legion and UPC

Library APIs

Application

MPI SHMEM pThread

Library Implementations

MPI SHMEM pThread

SST OS

Node Hardware

NIC Memory CPU

Network

Communication
Kernels

Memmove
Kernels

Compute
Kernels

Legion UPC

GASNet

PAMIuGNI

Cray
Hardware

IBM
Hardware

SST
MSG API

Transport Layer Wrapper

Legion UPC

GASNet

PAMIuGNI

Cray
Hardware

IBM
Hardware

SST
MSG API

Compile-and-go simulation

Linkage intercepts main and
spawns user-space thread to
simulate process

Linkage intercepts BLAS calls and estimates
compute time without actually performing
work

Linkage intercepts MPI
calls and simulates
send/recv time via
congestion models

What are you giving up (or not) with simulation?

 NOT emulation – coarse-grained simulation

 No real computation, tasks just simulate time passing

 Coarse-grained network models (approximate treatment of
congestion)

 Full runtime is executing – tasks are not actually run, but all
task/data management is executing for real

Library APIs

Application

MPI SHMEM pThread

Library Implementations

MPI SHMEM pThread

SST OS

Node Hardware

NIC Memory CPU

Network

Communication
Kernels

Memmove
Kernels

Compute
Kernels

Using SST we can ask co-design questions

 Is it okay to drive task framework via collectives?
 MTBF vs time to complete collective

 Scalability of collective

 What topology/hardware best supports programming model?

Experiment Settings

Parameter Cuurent EXA1 EXA2

BW for Switch 30GB 450GB/s 450GB/s

Network Hop Latency 100ns 100ns 100ns

Injection BW 10GB 100GB/s 400GB/s

Injection Latency s 0.4s 0.02s

27

 Need duplications for each local task-status array

Results: All-reduce on too expensive for finalizing

 20

 40

 60

 80

 100

 120

 140

 10000
 20000

 30000
 40000

 50000
 60000

 70000

t (m s)

nproc

3D Torus

100 tasks/proc
400 tasks/proc

1600 tasks/proc

 0

 20

 40

 60

 80

 100

 120

 140

 10000
 20000

 30000
 40000

 50000
 60000

 70000

t (m s)

nproc

Fat oct-tree

100 tasks/proc
400 tasks/proc

1600 tasks/proc

Consider example:
200 GF node (100 cores @ 2 GHZ)
Coarse-grainedtasks 10 ms each
Collection 1600 (12Mbytes) tasks completes in 160 ms

 Communication cost same order of magnitude as computation
 An alternate “task-homes” algorithm should be used for finalization

BW for Switch 30GB

Network Hop Latency 100ns

Injection BW 10GB

Injection Latency s

Results: All-gather is sufficiently fast for indexing

 Need duplications for each local task-status array

29

 1 2 3 4 5 6

 20000
 40000

 60000
 80000

 100000
 120000

t (m s)

nproc

All-gather Performance

3D torus
Fat oct-tree

BW for Switch 30GB

Network Hop Latency 100ns

Injection BW 10GB

Injection Latency s

Results: All-gather is sufficiently fast for indexing

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 20000
 40000

 60000
 80000

 100000
 120000

t (m s)

nproc

All-gather Performance

EXA1 3D torus
EXA1 fat oct-tree

EXA2 3D torus
EXA2 fat oct-tree

Parameter EXA1 EXA2

BW for Switch 450GB/s 450GB/s

Network Hop Latency 100ns 100ns

Injection BW 100GB/s 400GB/s

Injection Latency 0.4s 0.02s

Conclusions

 Is asynchronous Go or No-Go?

 What are all components to realize that?

 Distributed coherency problem (+ node failure)

 Resilient collective (we believe) is the most important
infrastructure to implement resilient task-collection.

 MPI+X resilience is more matured than resilience for AMT is
still issue.

31

Current and future work

 Using SST perform scalability, performance and
resilience for a variety of representative mini-
applications (with and without faults)

 Baseline comparisons against MPI + checkpoint-restart

 A holistic fault-tolerant AMT runtime system on a
capability-class machine

