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Boltzmann Equation and the ) i,
Direct Simulation Monte Carlo Method
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The objective of DSMC is to simulate complicated gas flows using
only collision mechanics of simulated molecules
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DSMC vs. Boltzmann Equation ) e,

* Instead of solving Newton’s laws of motion (Molecular Dynamics), DSMC
replaces explicit intermolecular forces with stochastic collisions

* |t has been shown that DSMC is equivalent to solving the Boltzmann
equation (Nambu 1980, Babovsky 1989, Wagner 1992)

 DSMC has been shown to reproduce exact known solutions (Chapman-
Enskog, Moment Hierarchy) of the Boltzmann equation (Gallis et al. 2004,
2006) for non-equilibrium flows

* Infact, DSMC is superior to solving the Boltzmann equation

* DSMC can model complicated processes (e.g., polyatomic molecules, chemically
reacting flows, ionized flows) for which Boltzmann-type transport equations are
not even known (Struchtrup 2005)

 DSMC includes fluctuations, which have been shown to be physically realistic
(Garcia 1990) but which are absent from the Boltzmann equation

e DSMC has tremendous potential
e 1000x speedup is desired to address problems of interest
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Evolution of DSMC Procedures i) fmat

= Since the original DSMC algorithm (1963), there have been no major changes to it
= Advanced molecular interactions, physical phenomena have been added
= The DSMC algorithm has been criticized (unfairly) as being computationally inefficient

= Numerous alternative algorithms or procedures have been proposed that try to address
this concern

= Alternative methods come with undeniable virtues but accompanied vices.

= There is no standardized test suite to allow comparative evaluations of new methods,
which has led to a proliferation of new methods

=  More than 50 years since its introduction, DSMC is still the predominant algorithm
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Alternative Procedures i) st

= Plume flows
= Hybrid schemes (NS-DSMC)
= Non-reacting flows
= Discrete velocity schemes, moment methods, higher-order CFD
= Low signal/noise flows (MEMS)
= PDE-like, numerical solutions of the Boltzmann equation
= Noise reduction schemes
= Simplified molecular interactions (BGK/ES-BGK)
= High-density flows
= Near-neighbor collisions
= Free-molecular flows
= Analytical solutions



How can we evaluate new techniques & )i
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procedures?

There is a very large number of alternative procedures with an
ever-growing number of variants

Although there are particular applications where some variants
may be preferable, it is unclear how to evaluate
= Generality
= Accuracy
= Efficiency

Accuracy =» Comparison with analytical solutions

Efficiency =» Comparison with DSMC convergence rate




Chapman-Enskog (CE) Theory ) e
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= Chapman and Enskog analyzed Boltzmann collision term

= Perturbation expansion using Sonine polynomials

= Near equilibrium, appropriate in continuum limit
= Determined velocity distribution and transport properties

= Thermal conductivity K, viscosity 1, mass self-diffusivity D

= Prandtl number Pr from “infinite-to-first” ratios K._./K,, t../1;

= Distribution “shape”: Sonine polynomial coeffs. a,/a,, b,/b,

= Values for all Inverse-Power-Law (IPL) interactions

= Maxwell and hard-sphere are special cases




Extracting CE Parameters from DSMC ) o
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DSMC moments of velocity distribution function
= Temperature T, velocity V
= Heat flux q, shear stress t
= Higher-order moments

DSMC values for VSS molecules (variable-soft-sphere)

= Thermal conductivity and viscosity: K 4 and L1
= Sonine-polynomial coefficients: a,/a, and b, /b,
= Applicable for arbitrary Kn;, Kn, Kn_




Fourier and Couette Flow i) st

Fourier Flow Couette Flow
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Investigate transport in gas between parallel plates
= Fourier flow: heat conduction in stationary gas
= Couette flow: momentum transport in isothermal shear flow

Apply DSMC to Fourier flow and Couette flow

= Heat flux, shear stress: one-dimensional, steady
Compare DSMC to analytical “normal solutions”

= Normal: outside Knudsen layers

= Solutions: Chapman-Enskog (CE), Moment-Hierarchy (MH)
Verify DSMC accuracy at arbitrary heat flux, shear stress

= Thermal conductivity, viscosity; velocity distribution



Temperature and Velocity Profiles
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Low heat flux and shear stress: Kn, = 0.006, Kn_= 0.003
= Argon-like: initial T=273.15K, p = 266.644 Pa, A = 24 um
= Walls:L=1mm =42A, AT=70K, AV =100 m/s
= N_=120, At=7ns, Ax=2.5 um, ~10° samples/cell, 32 runs
Small velocity slips, temperature jumps, Knudsen layers
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DSMC Reproduces Infinite-Approximation e
Chapman-Enskog Transport Coefficients
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Thermal conductivity (left) and viscosity (right) away from walls
« Maxwell and hard-sphere results bound most gases
» Agreement with Chapman-Enskog theory verifies DSMC




DSMC Reproduces Infinite-Approximation
Chapman-Enskog Velocity Distribution
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Sonine polynomial coefficients for temperature (left) & velocity (right) gradients
» Hard-sphere values are shown, other interactions have similar agreement
* Higher-order (k > 5) coefficients (not shown) also have similar agreement

Gallis M. A., Torczynski J. R., Rader D. J., “Molecular Gas Dynamics Observations of Chapman-Enskog
Behavior and Departures Therefrom in Nonequilibrium Gases”, Physical Review E, 69, 042201, 2004.
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Maxwell Sonine-Coefficient Profiles rh) s
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DSMC and CE Maxwell coefficients a,/a, and b, /b,
= Low heat flux, low shear stress: an = 0.006, Kn_=0.003
= Good agreement in central region: normal solution
= Knudsen layers easily observed: ~10% of domain




Moment-Hierarchy Method ) e
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Moment-Hierarchy (MH) normal solution
= MH solution extends CE solution to finite Kn, and Kn,
= Maxwell molecules: collision term quadratic in moments

Compare DSMC to MH for Maxwell molecules
= Dependence of Sonine coefficients on Kn, known
Apply DSMC for Maxwell molecules

Gallis M. A., Torczynski J. R., Rader D. J., Tij M., Santos A., “Normal Solutions of the Boltzmann Equation
for Highly Nonequilibrium Fourier and Couette Flow”, Phys. Fluids, 18, 017104, 2006.



Maxwell Normalized Sonine Coefficients )t
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DSMC and MH Maxwell normal solutions for a,/a, and b,/b,
= Four DSMC simulations: AT = 70, 200, 300, 400 K
= MH: VSS-Maxwell (solid) and IPL-Maxwell (dashed) differ
= DSMC and MH VSS-Maxwell normal solutions agree




ES-BGK Kinetic Model W=
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Ellipsoidal-Statistical Bhatnagar-Gross-Krook Ky = nkBTCp/VES Uyg = nk,T Pr/vES

Holway (1963, 1965, 1966); Cercignani (1967, 1988) Cp _ (5/2)(k3/m) PrEs — Pr
ES-BGK collision term is generalization of BGK collision term

» Replaces Maxwellian with Ellipsoidal-Statistical distribution

= Prandtl number is specified independently (say, ~2/3)

= Drives distribution to equilibrium (Andries et al., 2000)
ES-BGK can presumably simulate a broad range of flows

= Can match thermal conductivity and viscosity simultaneously

Gallis M. A., Torczynski J. R., “Investigation of the ellipsoidal-statistical Bhatnagar-Gross-Krook kinetic model applied
to gas-phase transport of heat and tangential momentum between parallel walls”, Phys. Fluids, 23(3), 030601, 2011.



Distribution Shape: Maxwell )
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Sonine polynomial coefficients for Maxwell interaction
= Chapman-Enskog (continuum) values for k = 2 are all zero
= Boltzmann closely matches CE values away from walls
= Systematic differences in Knudsen layers (transition regime)
» ES-BGK differs strongly from CE values away from walls
= Discrepancy is largest for k = 2

ES-BGK distribution shape is not accurate in continuum and transition regimes
-



Distribution Shape: Hard-Sphere ) .

0.20 = 0.20
o Argon 266 644 Pa 273 15 K 1 mm, 70 K 100 m/s Xe} Argon, 266 644 Pa, 273 15 K, 1 mm, 70 K, 100 m/s 1
o k=2 Hard-Sphere x k=2 Hard-Sphere 1
© Keo] I Mo )
==== k=3 Green: Chapman-Enskog o ==== k=3 Green: Chapman-Enskog

'.g ——- k=4 Blue: Boltzmann - [ ——- k=4 Blue: Boltzmann 1
© 015 f —-— k5 Red: ES-BGK © 0.15 Red: ES-BGK T
o o )
et -OE 4
o b5 :
2 3 ]
£ 0.10 % 0.10 i
3 3 |
(@) LID A ]
| ey I
g 0.05 g 0.05 .
o 8 ]
5 s
g & 0.00 e = ~
o 0.00 ] : T =

| I }
o ‘ o) /
C - .E 4
‘— 4 c 4
5 | 5
U) _0.05 1 1 1 A 1 A (D _0'05 " 1 " 1 i 1 . 1 2

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Normalized Position x/L Normalized Position x/L

Sonine polynomial coefficients for hard-sphere interaction
= Chapman-Enskog (continuum) values for k = 2 are nonzero
= Systematic differences in Knudsen layers (transition regime)
» ES-BGK differs strongly from CE values away from walls
= ES-BGK hard-sphere & Maxwell values hardly differ but should
Variation of ES-BGK distribution shape with molecular interaction is not accurate
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» ES-BGK shape is inaccurate at large flux or stress
= Chapman-Enskog (CE) values for k = 2 are all zero
= Appropriate only in limit of zero heat flux & shear stress
=  Moment-Hierarchy (MH) values for k = 2 are nonzero
= Appropriate for arbitrary nonzero heat flux & shear stress



Fickian Mass Diffusion h) i,

Fickian Flow
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Investigate transport in gas between parallel plates
= Fickian flow: mass diffusion in stationary isothermal gas
= ldentical molecules are passively tagged either “1” or “2”
= Reflection sets tag to “1” at left wall and “2” at right wall
Compare Boltzmann, ES-BGK results
= Number density, velocity, and mass self-diffusivity profiles
= Maxwell and hard-sphere molecular interactions
= Continuum cases and Chapman-Enskog theory



Mass Self-Diffusivity ) e
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ES-BGK is not accurate for mass diffusion
= Normalize simulation values by Chapman-Enskog values
= Boltzmann agrees well with CE values away from walls
= ES-BGK differs from CE values even away from walls
= Slightly low for Maxwell, quite high for hard-sphere




Evaluating Computational Efficiency

= Computational efficiency is more than CPU time.
= CPU time to achieve a particular level of accuracy
= Convergence rate
= Parallel efficiency (hardly ever addressed)

= Comparing low-order moments (density, temperature) is usually an
Insensitive measure of comparison.
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DSMC Numerical Error i) st

Traditional DSMC rule-of-thumb guidelines:
= Take enough samples to drive statistical error down to “acceptable” level
= Keep time step smaller than ~1/4 mean collision time
= Keep cell size smaller than ~1/3 mean free path
= Use a minimum of ~20 particles per cell

These guidelines give 2% error, which is similar to the uncertainty in
measured transport properties for most gases

= DSMC is subject to the same constraints as other numerical methods.

= DSMC is correct to the limit of vanishing discretization.




DSMC Numerical Error i) N
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Four parameters control DSMC error:
Statistical error (1)

Samples per cell (S¢)
Discretization error (3)

« Particles per cell (N¢)

* Cell size (Ax)

* Time step (At)
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Statistical and Particle-Number Errors h) s,

Error related to sample size
- Statistical error
» Cell sample size Sc = N¢ X Nt
* N¢ = particles per cell; Nt = time steps
Strategies for overcoming statistical error
» Use large number of samples

 For steady flows, use time and/or
ensemble averaging

« Computational expense ~ S¢

Error related to local number of particles
* Error o« 1/N¢
» Systematic — persists even as S¢>©

Limited number of
samples per time step
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DSMC Convergence
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Error bars represent 95% confidence intervals

Quadratic convergence for Ax, At

First-order convergence O(1/N¢), as Ng > o

Higher-order for long time steps

For N. = 7 and At/t, = 0.493, convergence rate

appears linear in Ax/A




Functional Form of Error i) N

Functional form that represents DSMC data
» Ad hoc series expansion in Ax, At, and 1/Nc

» Perform least-squares fitting of entire data set

K ~ ~ ~ ~ ~
% =1.0000 + 0.0286A¢* + 0.0411Ax* — 0.0016Ax° - 0.023At*AX* +
N 22
ST 1 [1.220% - 0.26A%7 +.0.97AF7 + .. ]+0.9520 4.

Cross terms show convergence behavior is complex

Rader D. J., Gallis M. A., Torczynski J. R., Wagner W., “DSMC Convergence Behavior of the
Hard-Sphere-Gas Thermal Conductivity for Fourier Heat Flow”, Phys. Fluids, 18, 077102, 2006.
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Infinite-Particle Convergence LUf
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Improving DSMC
Nearest-Neighbor Procedures

= Transient Adaptive Sub-Cells (Bird 2000)
= Stochastically determines the nearest neighbor
= Creates Cartesian sub-cell structure for each collision phase
= Number of simulators in each sub-cell is ~ 1-2
= Relatively inexpensive for large N: O(N)
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= Virtual Sub-Cells (LeBeau 2003)
= Deterministically determines the nearest neighbor
= More accurate”
= More expensive than TASC for large N: O(N?)

DSMCO7 = Sophisticated DSMC
DSMC94 = Established DSMC

10—2 L | L L I L | L
0 50 100
Number of Simulators per Cell

"A stress-tensor anisotropy is introduced in reduced-dimensionality simulations

Bird G. A., Gallis M. A., Torczynski J. R., Rader D. J., “Accuracy and efficiency of the sophisticated
Direct Simulation Monte Carlo algorithm”, Phys. Fluids, 21, 017103, 2009.




Hard-Sphere & Maxwell
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=  DSMCO7 and CE thermal conductivity and viscosity
" Low heat flux, low shear stress: Kn, = 0.006, Kn_ = 0.003
= Agreement in central region: normal solution
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Hard-Sphere & Maxwell

Sonine-Coefficient Profiles
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« DSMCO07 and CE hard-sphere Sonine polynomial coefficients a,/a, and b,/b,
» Good agreement in central region: normal solution

« Demonstrates accuracy of molecular velocity distribution
I —————



Maxwell Normal Sonine Coefficients rh) teiem
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« DSMCO07 and MH Maxwell normal solutions for a,/a, and b,/b,
« Four DSMCO7 simulations: AT = 70, 200, 300, 400 K
* MH: VSS-Maxwell (solid) and IPL-Maxwell (dashed) differ
« DSMCO07 and MH VSS-Maxwell normal solutions agree




DSMC-VSC Functional Form of Error W=

Best-fit correlation function for sophisticated DSMC with At = At
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DSMC limiting convergence differs from Green-Kubo (GK) behavior
= \Weak quadratic convergence in cell size (At/t, — 0, N, — o)
= Linear convergence in 1/N.for N. > 30 simulators/cell
= Linear convergence in time step (Ax/A — 0, N, — )

Gallis M. A., Torczynski J. R., Rader D. J., Bird G. A, “Convergence behavior of a new DSMC algorithm”,
J. Comput. Phys. 228, 4532-4548, 2009.




Convergence Behavior for N_ = 10
Effect of Cell Size
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Convergence Behavior for N, =15 & 30 ) s
Effect of Cell Size
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For a finite number of simulators, the algorithm
*|s insensitive to spatial resolution.

DSMCO7 error is lower than DSMC94 only when
« At/lt, = 0.1 (Nc=15), At/t, < 0.05 (Nc=30).



Convergence Behavior for N, = 30 )
Selection Limit 10 & No Limit
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« Significant performance improvement with smaller computational cost can be
achieved when a random subset of simulators is used.
« Alimit of 30 should be adequate for most applications, as suggested by Bird.
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Convergence Behavior for N, = 15 =)
Trajectory dependent selection
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Gallis, M. A. Torczynski J. R., “Effect of collision-partner selection schemes on the accuracy and efficiency
of the direct simulation Monte Carlo method”, International Journal for Numerical Methods in Fluids,
Vol. 67, No. 8, pp.1057-1072, 2011.



Parallel Efficiency: The Unfair Advantage ) i

 The advantages of DSMC come at a cost
« DSMC is computationally efficient but computationally intense

 Its successful application to real problems depends heavily on its parallel
performance

» 1000x speedup required for some problems of interest

« Monte Carlo methods usually have good parallel performance
« The workload depends mainly on the simulators within a cell
* Relatively less need to communicate information between cells
« Trivial to parallelize in velocity space

The necessary speedup can be achieved without any loss of accuracy
or convergence characteristics through parallel computing




Top 5 Supercomputers (2014)




Programming for Next Generation 3
and Exascale Machines

Laboratories

Millions of nodes likely
Reduced memory per node
Parallelism within node:
* Multi-core: 16 and growing
* Many-core: Intel Xeon Phi, 240 threads
« GPUs: NVIDIA/AMD, 1000 warps
Example:
« LLNL BG/Q: 96K nodes, 16 cores/node + 4 MPI tasks/core
Programming model: MPI + X
» Goalis to decouple the science
code from the hardware details
Necessary elements
» Adaptive gridding
* In-situ visualization
« Efficient communications
» Load balancing




Aiming for MPI+X via Kokkos ) .

*  What is Kokkos:
* Programming model in development at Sandia
e C++ template library
* Open-source

e Stand-alone

* Goal: write application kernels only once, and run them efficiently on a
wide variety of hardware platforms

* Two major components:

* Data access abstraction via Kokkos arrays optimal layout & access
pattern for each device: GPU, Xeon Phi, etc.

e Parallel dispatch of small chunks of work auto-mapped onto back-end
languages: CUDA, OpenMP, etc.




Developing an Exascale DSMC Code ) 5.

SPARTA = Stochastic PArallel Rarefied-gas Time-accurate Analyzer

General features
« 2D or 3D, serial or parallel
« Cartesian, hierarchical grid

« QOct-tree (up to 16 levels in 64-bit cell ID)

« Multilevel, general NxMXxL instead of 2x2x2
« Triangulated surfaces cut/split the grid cells

« 3D via Schwartzentruber algorithm

« 2D via Weiler/Atherton algorithm

* Formulated so can use as kernel in 3D algorithm
« C++, but really object-oriented C

« Designed to be easy to extend

* New collision/chemistry models, boundary conditions, etc.




Adaptive Gridding ) e

Create/adapt grid in situ, rather than pre-process & read in
Examples: Generate around surface to user-specified resolution,
adapt grid based on flow properties

Algorithms should be efficient if they require only local communications

: )
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» Another setup task: label cells as outside/inside
« Simple if pre-processing, in situ easier for large problems




Simulation of Complicated Shapes

Grid generation (107 cells) completed in 0.3 seconds on 16 processors

Geometry comprises multiple “water-tight” bodies
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In-Situ Visualization i) N

Not a replacement for interactive viz, but ...
Quite useful for debugging & quick analysis
At end of simulation (or during), instant movie

Render a JPG snapshot every N time steps:

« Each processor starts with blank image (1024x1024)
» Processor draws its cells/surfaces/molecules with depth-per-pixel
» Merge pairs of images, keep the pixel in front, recurse

» Draw is parallel, merge is logarithmic (like MPI Allreduce)

Images are ray-traced quality




Load Balancing

Balance across processors, static or dynamic
Granularity = grid cell with its molecules

Geometric method: recursive coordinate bisection (RCB)
Weighted by cell count or molecules or CPU

RCB is fast

Bigger cost is data move
Example:

1B cells on1024 BG/Q nodes
Worst case: move all cells
= Balance time = 15 s:

(RCB=2, move=12, ghosts=1)
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Efficient Communication ) i

= One processor = compact clump of cells via load balancing
= Ghost region = nearby cells within user-defined cutoff
= Store surface information for ghost cells to complete move

= Efficiently distributes grid information across processors

= With sufficient cutoff, only one communication per step

= Multiple passes if needed (or can bound molecule move)
= Communication with modest count of neighbor processors




SPARTA Benchmarking ) e,

2 test cases:
* Free-molecular
» Stress test for communication
« 3D regular grid, 104-10 (0.1 trillion) grid cells
« 10 molecules/cell, 10°-10%2 (1 trillion) molecules
« Collisional
» About 2x slower (sorting, collisions)
« Same grid cell & molecule counts
» Effect of threading
« 4 threads/core = 2x speed




Million particle moves/sec/node

SPARTA Benchmarking
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Number of Particles

Weak scaling indicates, 10% peak performance reduction from 1 to 10° cores
2 tasks/core gives 1.5x speedup, 4 tasks/core gives 2x speedup

A total of 1 trillion simulators can be simulated on one third of the BG/Q
Maximum number of tasks is 2.6 million




SPARTA Benchmarking (FM) L
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* Free-molecular (FM) calculations stress communications
« 2Xx speedup compared to collisional
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Richtmyer-Meshkov Instability (RMI) ) e,

Initial Configuration Refraction Regime Early Time Late Time
Light Gas Reflected Shock

Applications include Inertial Confinement Fusion (ICF),
stellar evolution models, interaction of shocks with flames

Incident Shock

ICF target compression

RMI combines multiple compressible phenomena

« Shock interaction, refraction, reflection, transmission
« Hydrodynamic instability, including:

* Nonlinear growth

« Subsequent transition to turbulence

« Range of Mach numbers

« Chemical reactions (combustion)



RMI in He/Ar Mixture: Mach 1.2 Shock ) i,

He=1.2
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RMI in Air-SFs Mixture: Mach = 1.2 Shock [ &=,

DSMC Experiment Navier-Stokes
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Conclusions

DSMC yields exquisite agreement with
analytical results, where available
= Chapman-Enskog, Moment-Hierarchy theory
= Discretization & sampling errors understood

DSMC scales extremely well & can take full
advantage of massively parallel platforms
= Cansimulate unprecedented flow regimes
= Hydrodynamic instabilities, lower altitudes
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Thank you! h) =,

Graeme Bird




DSMC15 W=

Be there.
Aloha!




