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Boltzmann Equation and the 
Direct Simulation Monte Carlo Method 

molecules move molecules collide 
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The objective of DSMC is to simulate complicated gas flows using  

only collision mechanics of simulated molecules 

Graeme Bird 

(1963, 1994) 

Ludwig 

Boltzmann 

James Clerk 

Maxwell 
molecular motion and  

force-induced acceleration 

pairwise molecular collisions  

(molecular chaos) 



DSMC vs. Boltzmann Equation 

• Instead of solving Newton’s laws of motion (Molecular Dynamics), DSMC 
replaces explicit intermolecular forces with stochastic collisions 

• It has been shown that DSMC is equivalent to solving the Boltzmann 
equation (Nambu 1980, Babovsky 1989, Wagner 1992) 

• DSMC has been shown to reproduce exact known solutions (Chapman-
Enskog, Moment Hierarchy) of the Boltzmann equation (Gallis et al. 2004, 
2006) for non-equilibrium flows 

• In fact, DSMC is superior to solving the Boltzmann equation 

• DSMC can model complicated processes (e.g., polyatomic molecules, chemically 
reacting flows, ionized flows) for which Boltzmann-type transport equations are 
not even known (Struchtrup 2005) 

• DSMC includes fluctuations, which have been shown to be physically realistic 
(Garcia 1990) but which are absent from the Boltzmann equation 

• DSMC has tremendous potential 

• 1000x speedup is desired to address problems of interest 

 



Evolution of DSMC Procedures  

 Since the original DSMC algorithm (1963), there have been no major changes to it 

 Advanced molecular interactions, physical phenomena have been added 

 The DSMC algorithm has been criticized (unfairly) as being computationally inefficient 

 Numerous alternative algorithms or procedures have been proposed that try to address 
this concern 

 Alternative methods come with undeniable virtues but accompanied vices. 

 There is no standardized test suite to allow comparative evaluations of new methods, 
which has led to a proliferation of new methods 

 More than 50 years since its introduction, DSMC is still the predominant algorithm 

 



Alternative Procedures  

 Plume flows 
 Hybrid schemes (NS-DSMC) 

 Non-reacting flows 
 Discrete velocity schemes, moment methods, higher-order CFD  

 Low signal/noise flows (MEMS) 
 PDE-like, numerical solutions of the Boltzmann equation  

 Noise reduction schemes  

 Simplified molecular interactions (BGK/ES-BGK) 

 High-density flows 
 Near-neighbor collisions 

 Free-molecular flows 
 Analytical solutions 



How can we evaluate new techniques & 
procedures? 

 There is a very large number of alternative procedures with an 
ever-growing number of variants 

 Although there are particular applications where some variants 
may be preferable, it is unclear how to evaluate 
 Generality 

 Accuracy 

 Efficiency  

 

 Accuracy  Comparison with analytical solutions 

 Efficiency  Comparison with DSMC convergence rate 

 



Chapman-Enskog (CE) Theory 

 Chapman and Enskog analyzed Boltzmann collision term 

 Perturbation expansion using Sonine polynomials 

 Near equilibrium, appropriate in continuum limit 

 Determined velocity distribution and transport properties 

 Thermal conductivity K, viscosity m, mass self-diffusivity D 

 Prandtl number Pr from “infinite-to-first” ratios K∞/K1, m∞/m1 

 Distribution “shape”: Sonine polynomial coeffs. ak/a1, bk/b1 

 Values for all Inverse-Power-Law (IPL) interactions 

 Maxwell and hard-sphere are special cases 
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Extracting CE Parameters from DSMC 

eff

V

x
m

 
  

 

eff

T

x
Kq

 
  

 

2 B
m

k
c

m

T


DSMC moments of velocity distribution function 
 Temperature T, velocity V  

 Heat flux q, shear stress  

 Higher-order moments 

DSMC values for VSS molecules (variable-soft-sphere) 

 Thermal conductivity and viscosity: Keff and meff 

 Sonine-polynomial coefficients: ak/a1 and bk/b1 

 Applicable for arbitrary KnL, Knq, Kn 



Fourier and Couette Flow 
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Investigate transport in gas between parallel plates 

 Fourier flow: heat conduction in stationary gas 

 Couette flow: momentum transport in isothermal shear flow 
 
Apply DSMC to Fourier flow and Couette flow 

 Heat flux, shear stress: one-dimensional, steady 
Compare DSMC to analytical “normal solutions” 

 Normal: outside Knudsen layers 
 Solutions: Chapman-Enskog (CE), Moment-Hierarchy (MH) 

Verify DSMC accuracy at arbitrary heat flux, shear stress 
 Thermal conductivity, viscosity; velocity distribution 
 

 



Temperature and Velocity Profiles 

Low heat flux and shear stress: Knq = 0.006, Kn = 0.003 

 Argon-like: initial T = 273.15 K, p = 266.644 Pa, l = 24 mm 

 Walls: L = 1 mm = 42l, DT = 70 K, DV = 100 m/s 

 Nc = 120, Dt = 7 ns, Dx = 2.5 mm, ~109 samples/cell, 32 runs 

Small velocity slips, temperature jumps, Knudsen layers 



DSMC Reproduces Infinite-Approximation  
Chapman-Enskog Transport Coefficients 

Thermal conductivity (left) and viscosity (right) away from walls 

• Maxwell and hard-sphere results bound most gases 

• Agreement with Chapman-Enskog theory verifies DSMC 
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DSMC Reproduces Infinite-Approximation  
Chapman-Enskog Velocity Distribution 

Sonine polynomial coefficients for temperature (left) & velocity (right) gradients 

• Hard-sphere values are shown, other interactions have similar agreement 

• Higher-order (k > 5) coefficients (not shown) also have similar agreement 

Gallis M. A., Torczynski J. R., Rader D. J., “Molecular Gas Dynamics Observations of Chapman-Enskog 

Behavior and Departures Therefrom in Nonequilibrium Gases”, Physical Review E, 69, 042201, 2004. 



Maxwell Sonine-Coefficient Profiles 

DSMC and CE Maxwell coefficients ak/a1 and bk/b1 

 Low heat flux, low shear stress: Knq = 0.006, Kn = 0.003 

 Good agreement in central region: normal solution 

 Knudsen layers easily observed: ~10% of domain 



Moment-Hierarchy Method 

 

Moment-Hierarchy (MH) normal solution 

 MH solution extends CE solution to finite Knq and Knt  

 Maxwell molecules: collision term quadratic in moments 

 

Compare DSMC to MH for Maxwell molecules 

 Dependence of Sonine coefficients on Knq known 

Apply DSMC for Maxwell molecules 

 

 
Gallis M. A., Torczynski J. R., Rader D. J., Tij M., Santos A., “Normal Solutions of the Boltzmann Equation  

for Highly Nonequilibrium Fourier and Couette Flow”, Phys. Fluids, 18, 017104, 2006.  

 

Andres Santos 



Maxwell Normalized Sonine Coefficients 

DSMC and MH Maxwell normal solutions for ak/a1 and bk/b1 

 Four DSMC simulations: DT = 70, 200, 300, 400 K 

 MH: VSS-Maxwell (solid) and IPL-Maxwell (dashed) differ 

 DSMC and MH VSS-Maxwell normal solutions agree  



ES-BGK Kinetic Model 

ES-BGK collision term is generalization of BGK collision term 

 Replaces Maxwellian with Ellipsoidal-Statistical distribution 

 Prandtl number is specified independently (say, ~2/3)  

 Drives distribution to equilibrium (Andries et al., 2000) 

ES-BGK can presumably simulate a broad range of flows 

 Can match thermal conductivity and viscosity simultaneously 

 
 

 

Gallis M. A., Torczynski J. R., “Investigation of the ellipsoidal-statistical Bhatnagar-Gross-Krook kinetic model applied 

to gas-phase transport of heat and tangential momentum between parallel walls”, Phys. Fluids, 23(3), 030601, 2011. 

 

 

Ellipsoidal-Statistical Bhatnagar-Gross-Krook 

Holway (1963, 1965, 1966); Cercignani (1967, 1988) 

Lowell 

Holway 

Carlo 

Cercignani 



Distribution Shape: Maxwell 

Sonine polynomial coefficients for Maxwell interaction 

 Chapman-Enskog (continuum) values for k ≥ 2 are all zero 

 Boltzmann closely matches CE values away from walls 

 Systematic differences in Knudsen layers (transition regime) 

 ES-BGK differs strongly from CE values away from walls 

 Discrepancy is largest for k = 2 

ES-BGK distribution shape is not accurate in continuum and transition regimes 



Distribution Shape: Hard-Sphere 

Sonine polynomial coefficients for hard-sphere interaction 

 Chapman-Enskog (continuum) values for k ≥ 2 are nonzero 

 Systematic differences in Knudsen layers (transition regime) 

 ES-BGK differs strongly from CE values away from walls 

 ES-BGK hard-sphere & Maxwell values hardly differ but should 

Variation of ES-BGK distribution shape with molecular interaction is not accurate 



Distribution Shape: Maxwell 

 ES-BGK shape is inaccurate at large flux or stress 

 Chapman-Enskog (CE) values for k ≥ 2 are all zero 

 Appropriate only in limit of zero heat flux & shear stress 

 Moment-Hierarchy (MH) values for k ≥ 2 are nonzero 

 Appropriate for arbitrary nonzero heat flux & shear stress 



Fickian Mass Diffusion 

Investigate transport in gas between parallel plates 

 Fickian flow: mass diffusion in stationary isothermal gas 

 Identical molecules are passively tagged either “1” or “2” 

 Reflection sets tag to “1” at left wall and “2” at right wall 

Compare Boltzmann, ES-BGK results 

 Number density, velocity, and mass self-diffusivity profiles 

 Maxwell and hard-sphere molecular interactions 

 Continuum cases and Chapman-Enskog theory 
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Mass Self-Diffusivity 

ES-BGK is not accurate for mass diffusion 

 Normalize simulation values by Chapman-Enskog values 

 Boltzmann agrees well with CE values away from walls 

 ES-BGK differs from CE values even away from walls 

 Slightly low for Maxwell, quite high for hard-sphere 



Evaluating Computational Efficiency 

 Computational efficiency is more than CPU time. 

 CPU time to achieve a particular level of accuracy 

 Convergence rate 

 Parallel efficiency (hardly ever addressed) 

 

 Comparing low-order moments (density, temperature) is usually an 

insensitive measure of comparison. 

 

 



DSMC Numerical Error 

Traditional DSMC rule-of-thumb guidelines: 

 Take enough samples to drive statistical error down to “acceptable” level 

 Keep time step smaller than ~1/4 mean collision time 

 Keep cell size smaller than ~1/3 mean free path 

 Use a minimum of ~20 particles per cell 

 

These guidelines give 2% error, which is similar to the uncertainty in 

measured transport properties for most gases 

 

 DSMC is subject to the same constraints as other numerical methods. 

 DSMC is correct to the limit of vanishing discretization. 

 

 



DSMC Numerical Error 

Four parameters control DSMC error:  

Statistical error (1) 

  Samples per cell (Sc)  

Discretization error (3) 

• Particles per cell (Nc) 

• Cell size (Δx) 

• Time step (Δt) 

molecules move molecules collide 



Statistical and Particle-Number Errors 

Not enough particles 

to capture physics 

Error related to sample size 

• Statistical error   

• Cell sample size Sc = Nc×Nt 

• Nc = particles per cell; Nt = time steps 

Strategies for overcoming statistical error 

• Use large number of samples  

• For steady flows, use time and/or 

ensemble averaging 

• Computational expense ~ Sc 

 

Error related to local number of particles 

• Error  1/Nc 

• Systematic – persists even as Sc 

 

Limited number of 

samples per time step 



DSMC Convergence 

• Curves are best fits 

• Error bars represent 95% confidence intervals 

• Quadratic convergence for Δx, Δt 

• First-order convergence O(1/Nc), as Nc  ∞ 

• Higher-order for long time steps 

• For Nc = 7 and Dt/to = 0.493, convergence rate 

appears linear in Dx/lo 

 

 



Functional Form of Error 

Functional form that represents DSMC data 

•  Ad hoc series expansion in Dx, Dt, and 1/Nc  

•  Perform least-squares fitting of entire data set 

 

 

 

 
Cross terms show convergence behavior is complex 

 
 
 
 
 
 

Rader D. J., Gallis M. A., Torczynski J. R., Wagner W., “DSMC Convergence Behavior of the  

Hard-Sphere-Gas Thermal Conductivity for Fourier Heat Flow”, Phys. Fluids, 18, 077102, 2006.  

 



Infinite-Particle Convergence 

 Finite-particle error removed: 

values “extrapolated” to Nc →  

 63 extrapolated data points 

 Error bars: fitting uncertainty 

 Quadratic convergence in time step 

and cell size 

 Qualitative agreement with  

Green-Kubo theory,  

but slopes are different 

 Lines are best fits of data 



Improving DSMC 
Nearest-Neighbor Procedures 

 Transient Adaptive Sub-Cells (Bird 2000) 

 Stochastically determines the nearest neighbor 

 Creates Cartesian sub-cell structure for each collision phase 

 Number of simulators in each sub-cell is ~ 1-2 

 Relatively inexpensive for large N: O(N) 

 

 Virtual Sub-Cells (LeBeau 2003) 

 Deterministically determines the nearest neighbor 

 More accurate* 

 More expensive than TASC for large N: O(N2)  

 

DSMC07 = Sophisticated DSMC 

DSMC94 = Established DSMC  

 
*A stress-tensor anisotropy is introduced in reduced-dimensionality simulations 
 

Bird G. A., Gallis M. A., Torczynski J. R., Rader D. J., “Accuracy and efficiency of the sophisticated 

Direct Simulation Monte Carlo algorithm”, Phys. Fluids, 21, 017103, 2009. 

 



Hard-Sphere & Maxwell  
Transport Coefficient Profiles 

 DSMC07 and CE thermal conductivity and viscosity 

 Low heat flux, low shear stress: Knq = 0.006, Kn = 0.003 

 Agreement in central region: normal solution 



Hard-Sphere & Maxwell  
Sonine-Coefficient Profiles 

• DSMC07 and CE hard-sphere Sonine polynomial coefficients ak/a1 and bk/b1 

• Good agreement in central region: normal solution 

• Demonstrates accuracy of molecular velocity distribution 



Maxwell Normal Sonine Coefficients 

• DSMC07 and MH Maxwell normal solutions for ak/a1 and bk/b1 

• Four DSMC07 simulations: DT = 70, 200, 300, 400 K 

• MH: VSS-Maxwell (solid) and IPL-Maxwell (dashed) differ 

• DSMC07 and MH VSS-Maxwell normal solutions agree  



DSMC-VSC Functional Form of Error 

Best-fit correlation function for sophisticated DSMC with Dt = Dto 

 

 

 

 

 

 

DSMC limiting convergence differs from Green-Kubo (GK) behavior 

 Weak quadratic convergence in cell size (Dt/to  0, Nc  ) 

 Linear convergence in 1/Nc for Nc   30 simulators/cell  

 Linear convergence in time step (Dx/l  0, Nc  ) 

 

 
 
Gallis  M.  A., Torczynski J. R., Rader D. J., Bird G. A, “Convergence behavior of a new DSMC algorithm”, 
J. Comput. Phys. 228 , 4532-4548, 2009. 
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Convergence Behavior for Nc = 10  
Effect of Cell Size 

• For finite number of simulators, the algorithm 

• Is insensitive to spatial resolution 

• Has error below 2% for all cases as long as Δt/to ≤ 0.2 



Convergence Behavior for Nc = 15 & 30  
Effect of Cell Size 

For a finite number of simulators, the algorithm 

• Is insensitive to spatial resolution. 

DSMC07 error is lower than DSMC94 only when  

•Δt/to ≤ 0.1 (Nc=15), Δt/to ≤ 0.05 (Nc=30). 

Nc=15 Nc=30 



Convergence Behavior for Nc = 30  
Selection Limit 10 & No Limit 

• Significant performance improvement with smaller computational cost can be 

achieved when a random subset of simulators is used. 

• A limit of 30 should be adequate for most applications, as suggested by Bird. 



Convergence Behavior for Nc = 15  
Trajectory dependent selection 

Simulators with high velocities have 

more simulators available as 

collision partners, whereas 

simulators with low velocities have 

to collide with their nearest neighbor. 

 

To minimize the time-step error in the 

VSC scheme, a near-neighbor 

collision partner is selected from 

within a sphere centered on the 

simulator with a radius proportional 

to the distance traveled by the 

simulator during the latest advection 

phase. 

 

Gallis, M. A. Torczynski J. R., “Effect of collision-partner selection schemes on the accuracy and efficiency  

of the direct simulation Monte Carlo method”, International Journal for Numerical Methods in Fluids,  

Vol. 67, No. 8, pp.1057-1072, 2011. 



Parallel Efficiency: The Unfair Advantage 

• The advantages of DSMC come at a cost  

• DSMC is computationally efficient but computationally intense  

• Its successful application to real problems depends heavily on its parallel 

performance 

 

• 1000x speedup required for some problems of interest 

• Monte Carlo methods usually have good parallel performance  

• The workload depends mainly on the simulators within a cell 

• Relatively less need to communicate information between cells 

• Trivial to parallelize in velocity space 
 

The necessary speedup can be achieved without any loss of accuracy  

or convergence characteristics through parallel computing  

 

= 



Top 5 Supercomputers (2014) 

Rank Site System Cores 
Rmax  

(TFlop/s) 

Rpeak 

(TFlop/s) 

1 
National Super Computer Center 

in Guangzhou 

Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, 
Intel Xeon E5-2692 12C 2.200GHz,  
TH Express-2, Intel Xeon Phi 31S1P 

3,120,000 33,862.7 54,902.4 

2 
DOE/SC/Oak Ridge National 

Laboratory 

Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, 
Cray Gemini interconnect, NVIDIA K20x 

560,640 17,590.0 27,112.5 

3 DOE/NNSA/LLNL 
Sequoia - BlueGene/Q, Power BQC 16C 1.60 
GHz, Custom 

1,572,864 17,173.2 20,132.7 

4 
RIKEN Advanced Institute for 

Computational Science (AICS) 

K computer, SPARC64 VIIIfx 2.0GHz, Tofu 
interconnect 

705,024 10,510.0 11,280.4 

5 
DOE/SC/Argonne National 

Laboratory 

Mira - BlueGene/Q, Power BQC 16C 1.60GHz, 
Custom 

786,432 8,586.6 10,066.3 



Programming for Next Generation  
and Exascale Machines 

• Millions of nodes likely 

• Reduced memory per node 

• Parallelism within node: 

• Multi-core: 16 and growing 

• Many-core: Intel Xeon Phi, 240 threads 

• GPUs: NVIDIA/AMD, 1000 warps 

• Example: 

• LLNL BG/Q: 96K nodes, 16 cores/node + 4 MPI tasks/core 

Programming model: MPI + X 

• Goal is to decouple the science  

     code from the hardware details  

Necessary elements 

• Adaptive gridding 

• In-situ visualization 

• Efficient communications 

• Load balancing 

 



Aiming for MPI+X via Kokkos 

• What is Kokkos: 

• Programming model in development at Sandia 

• C++ template library 

• Open-source 

• Stand-alone 

• Goal: write application kernels only once, and run them efficiently on a 
wide variety of hardware platforms 

• Two major components: 

• Data access abstraction via Kokkos arrays optimal layout & access 
pattern for each device: GPU, Xeon Phi, etc. 

• Parallel dispatch of small chunks of work auto-mapped onto back-end 
languages: CUDA, OpenMP, etc. 

 

  



Developing an Exascale DSMC Code 

SPARTA = Stochastic PArallel Rarefied-gas Time-accurate Analyzer 

 
General features 

• 2D or 3D, serial or parallel 

• Cartesian, hierarchical grid 

• Oct-tree (up to 16 levels in 64-bit cell ID) 

• Multilevel, general NxMxL instead of 2x2x2 

• Triangulated surfaces cut/split the grid cells 

• 3D via Schwartzentruber algorithm 

• 2D via Weiler/Atherton algorithm 

• Formulated so can use as kernel in 3D algorithm 

• C++, but really object-oriented C 

• Designed to be easy to extend 

• New collision/chemistry models, boundary conditions, etc. 



Adaptive Gridding 

 

 

 

• Create/adapt grid in situ, rather than pre-process & read in 

• Examples: Generate around surface to user-specified resolution, 

 adapt grid based on flow properties 

• Algorithms should be efficient if they require only local communications 

 

 

 

 

 

 

 

 

 

• Another setup task: label cells as outside/inside  

• Simple if pre-processing, in situ easier for large problems 



Simulation of Complicated Shapes 

Grid generation (107 cells) completed in 0.3 seconds on 16 processors 

Geometry comprises multiple “water-tight” bodies 



In-Situ Visualization 

Not a replacement for interactive viz, but ... 

Quite useful for debugging & quick analysis 

At end of simulation (or during), instant movie 

 

Render a JPG snapshot every N time steps: 

• Each processor starts with blank image (1024x1024) 

• Processor draws its cells/surfaces/molecules with depth-per-pixel 

• Merge pairs of images, keep the pixel in front, recurse 

• Draw is parallel, merge is logarithmic (like MPI Allreduce) 

 

Images are ray-traced quality 



Load Balancing 

Balance across processors, static or dynamic 

Granularity = grid cell with its molecules 

Geometric method: recursive coordinate bisection (RCB) 

Weighted by cell count or molecules or CPU 

 

                                         RCB is fast 

                                         Bigger cost is data move 

  Example: 

        1B cells on1024 BG/Q nodes 

  Worst case: move all cells 

  Balance time = 15 s: 

  (RCB=2, move=12, ghosts=1) 



Efficient Communication 

 One processor = compact clump of cells via load balancing 

 Ghost region = nearby cells within user-defined cutoff 

 Store surface information for ghost cells to complete move 

 

 

 

 

 

 

 Efficiently distributes grid information across processors 

 With sufficient cutoff, only one communication per step 

 Multiple passes if needed (or can bound molecule move) 

 Communication with modest count of neighbor processors 



SPARTA Benchmarking 

2 test cases: 

• Free-molecular  

• Stress test for communication 

• 3D regular grid, 104-1011 (0.1 trillion) grid cells 

• 10 molecules/cell, 105-1012 (1 trillion) molecules 

• Collisional  

• About 2x slower (sorting, collisions) 

• Same grid cell & molecule counts 

• Effect of threading 

• 4 threads/core = 2x speed 



SPARTA Benchmarking 

16 cores/node 

 1 task/core 

16 cores/node 

 4 tasks/core 

• Weak scaling indicates, 10% peak performance reduction from 1 to 106 cores 

• 2 tasks/core gives 1.5x speedup, 4 tasks/core gives 2x speedup 

• A total of 1 trillion simulators can be simulated on one third of the BG/Q 

• Maximum number of tasks is 2.6 million 

16 cores/node 

 2 tasks/core 



SPARTA Benchmarking (FM) 

16 cores/node, 1 task/core 16 cores/node, 4 tasks/core 

• Free-molecular (FM) calculations stress communications  

• 2x speedup compared to collisional 

 



Richtmyer-Meshkov Instability (RMI) 

Applications include Inertial Confinement Fusion (ICF),  

stellar evolution models, interaction of shocks with flames 

 

RMI combines multiple compressible phenomena 

• Shock interaction, refraction, reflection, transmission 

• Hydrodynamic instability, including: 

• Nonlinear growth  

• Subsequent transition to turbulence 

• Range of Mach numbers 

• Chemical reactions (combustion) 

ICF target compression 



RMI in He/Ar Mixture: Mach 1.2 Shock 
He=1.2 

Ar 

Non-dimensional amplitude for an initially 

small amplitude perturbation compared to 

Richtmyer’s model for early time evolution 



RMI in Air-SF6 Mixture: Mach = 1.2 Shock 

Non-dimensional amplitude for an 

initially small amplitude perturbation 

compared to theoretical/empirical models 

    DSMC         Experiment  Navier-Stokes 



Conclusions 

DSMC yields exquisite agreement with 
analytical results, where available 

 Chapman-Enskog, Moment-Hierarchy theory 

 Discretization & sampling errors understood 

DSMC scales extremely well & can take full 
advantage of massively parallel platforms 

 Can simulate unprecedented flow regimes 

 Hydrodynamic instabilities, lower altitudes 



Thank you! 

Graeme Bird 



DSMC15  

DSMC15 Workshop, Hawaii, September 2015 

Be there. 

Aloha! 


