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Cumulative Distribution Functions of Critical Failure Velocity from Test (black) and Simulation (red)
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What verification means in .
numerical analysis!

“For the numerical analyst there are two kinds of truth; the
truth you can prove and the truth you see when you
compute.” — Ami Harten
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Code Verification vs. )
Solution Verification

Code Verification: Solution Verification:

* You have an exact * You don’t have an exact
solution, so you compute solution, you estimate
exact errors numerical errors

* You are testing your code + You test your solution(s)
(implementation, . Soft estimates of
algorithm) numerical error

* Hard estimates of  Metrics are defined by
convergence properties the analyst — integrated

* Metrics are defined by guantities, point values,
numerical analysis functionals of the solution




The Standard Setting For Calculation Verification:

Richardson extrapolation for error estimation

= We begin with the standard error form,
Prefactor| [Convergence rate |
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Mesh converged| -~. oD | Characteristic length
[solution, i.e., h—>(J_N\l:L': uh +@ £ scale of mesh cell, “Ax”

Computed solution on
mesh of char’c size i

= The standard safety factor gives an uncertainty estimate (the GC/*):

S=ii—u, U, =F|8|;F. =125

= This safety factor gives an ostensible 95% confidence interval,
= ~2 std. dev. from CFD “experience” and computational experiments.

= Other forms will provide different estimates of F..

= For two grids, no estimate for O is possible, and the uncertainty is
intentionally “generous”: U =Flu —ul;F =3
s f c S

num

* GCI: Grid Convergence Index, i.e., Roache’s approach




Error bars are subject to interpretation

")

u—1u
f

U, =F|8

Where should the error bar be placed (i.e.,
centered)?

=\We have choices (two examined here):
=sAround the finest grid solution
sAround the mesh converged solution
*The mesh converged solution is a
best estimate and should define error.
"Error on the fine grid “should” be
asymmetric.
*The difference is significant
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u =
best num
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There are some potential dangers to ) i,
Laboratories
conscientiously avoid.

Prefactor _Convergence rate
Mesh converged A :’p), Characteristic length
solution, i.e., h—0 scale of mesh cell, “Ax

Computed solution on
e This ansatz is valid for data in grid of mesh size h
the asymptotic range of
convergence.

— Usually, we assume that the calculations
are in the asymptotic range of
convergence.

— With two calculations, we have an under-
determined fit through the results ( ).

— With many calculations, the error ansatz
is fully determined or over-determined;
one can perform a regression fit.

*P. Roache, Verification and Validation in Computational Science and Engineering, Hermosa Publishing (1996).



An example of how verification can go “off the rails” (i) i
Preliminary Verification Results for CFD* for a CASL challenge problem
(GTRF) with Fuego and Drekar (Ap), just spatial resolution

Mesh Fuego Drekar

i Qg Coarse | 31.8 kPa 26.7 kPa
Medium | 24.6 kPa 23.8 kPa
1934K NN 244 kPa | 22.0kP
Fuego

A p(h)= 24340 +26.

95 % Error Bound 80Pa (Roache, GCI) to 18.6kPa (Stern)
Drekar
A p(h)=17420 +16370h"*"

A “mesh sensitivity”
study would have
us stop here!

The Fuego result exemplifies one of the problems with
the standard setting, 16" order convergence is absurd!
Preview: Our procedure gives a Ap=16.1kPa *13.5kPa.




Brief Digression: Regression, norms
and probability distributions
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" Minimization of the residual for regression

carries implications about optimality. The fit_~
is optimal if the errors are distributed: ,

= Gaussian implies L,, the standard
approach (unweighted)

|
40

L, Regression
Laplace PDF

0.06 -

0.04 -

= Laplace (double exponential) implies L, —
(absolute value)

= Uniform implies L;. ¢, (Maximum) T
= Regression can be done in any norm ifm Linf_RegreSSion
data is either under- or over-determined and \ Jniform PDF
can include constraints as well. ’

04r

Use robust statistics not standard statistics




We define a robust multi-regression (RMR) methOd@ﬁgggﬁa,
to encode expert information, with robust statistics.
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The standard method is fragile and includes implicit
assumptions regarding statistics, error and
convergence, which are not included in the analysis.
= We apply the following algorithm to the data (2 or more grids):
¥ A structured principled way to introduce specific expert
kﬂOWlEdge. Bounds on extrapolated solution could be entered too (such as positivity).

Produce a set of estimates with defined explicit
assumptions regarding statistics of the error, and free

of the fragility of a single estimate.

ol Apply robust statistical techniques to produce results
with confidence. Run over subsets of data (jack-knife).

| Produce a bounding estimate using the same
approach. Useful when the data is non-monotonic.




We can demonstrate our method by solving a linear ODE.

The equation is trivially

solvable. We use a forward

Euler method here.
U=—u—u""=u"-Atu"

The estimate and uncertainty
strongly coincide with the
analytical result.

u(t=2)=0.135316+ 0.000138247,p=1.0219£0.0154

= The uncertainty “fans out” for At
smaller than the finest time step
used for computed results.

= Roache’s GCl approach does not
capture the analytical solution!

u(t=2)=0.134794+ 0.000517851,p=1.03878
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Estimates appear
«- to be quite
- consistent

30 -

; and biased low.

20 -

- “outliens” “outliers’

I T 1 1
0.1351 0.1352 0.1353 0.1354 0.1355 0.1356

u(t=2)

Our methodology
can also provide a
quantitative
assessment of the

In this case
we have 12 data
points and generate N
121 models. It is well \
behaved, but outliers )
are clearly present.

At




Solution Verification for Drekar gives estimates are (g i,
very close to the three grid estimates given earlier!
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Mesh Ap (pa) = The results are convergent, but
at a rate comparable with

1049K 26781 expectations for “rough” flows
1 1 st

664K 23804 like turbulence, that is 15t order
accurate.

5832K 22040 o

= Uncertainties are large.
12522K 20745

= RMR gives reliable results with

RMR (all) or without dropping the non-
Ap=[16500£5435t+ Ah*>***”Pa  convergent data point (671K)
RMR (drop coarse grid) = The CGl is extremely unreliable
Ap=[16280£70601+ Ah"*****"Pqa without screening the data.
GCl (all) . The estimated solution is
Ap=[23250%£1635H Ah " Pa frighteningly close to the
GCI (drop coarse grid) estimates from the earlier

Ap=[16450+6960+ Ah"*Pa Fuego calculations!



Next: Investigate Model Selection )
Procedures

= Verification is usually done with an assumed error
ansatz

= Almost always a power law form

= |t would be beneficial to assume less, and define a
better error model more supported by the data.

= Statistical estimation procedures exist for examining
the form of the model that best fits the data

= Examples: AIC, BIC, LASSO

= Note, that these methods are well-defined for linear
models, and verification has been shown to generally
require nonlinear models




We decided to explore the LASSO )
Method in this context

= LASSO has already been applied to verification as
one of the fits used in the robust verification work

" |nits linear form it is a simple regularized least

squares method
min ‘Ax—bH2 +/1HXH1

= As the Lagrange multiplier is increased in size the
solution becomes increasingly “sparse”.

= Closely related to min‘ ‘X‘ L constrained by Ax=Db
= QOur greatest leap is applying it to the nonlinear

model selection min‘ ‘f(x)— bl| + A‘ ‘xH
2 1




Variants of LASSO that may be better @

" One does not have to do a regularized least squares.
= The L1 norm might be useful

mian(x)—b
= _..or the Danzig estimator using the infinity norm.
mian(x)—b +/1Hx

= All work the same way, as the Lagrange multiplier
becomes large most of the coefficients go to zero.

+/1Hx
1 1

1




The L1 Norm has some remarkable

a
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properties useful for model selection

Some have said that L1 is “magic”

Specifically, the L1 norm promotes sparsity under
the minimization framework

This is used in compressed sensing (and basis

pursuit) - 1hin ‘x L constrained by Ax=Db

min‘ X|, constrained by HAX—bH2 <E
The approach allows us to rank the portions of the
model form piece-by-piece by examining the terms

that remain nonzero for a changing Lagrange
multiplier.




“Any sufficiently
advanced technology is
indistinguishable from magic.”
— Arthur C. Clarke



Simple example with model selectiofY#-

= | will use the simple ODE problem as the first test.

= Broaden the potential terms in the model to include
other possible terms: &t =u, + A h P

i=u, +A hP+A h+ A h*+ Al 1-exp(s )]+ A log(i+b,h)

"= The results are unexpected. The trends are clear, but

the plots of the coefficients are not nearly as clean as
the (ideal) linear cas

Inhqﬁ(A)—uh

A

i=u +A h+ A h’




Let’s look at the performance as s,
error estimators term-by-term

= We use a L1 estimator for each (if you do one fit, I'd
recommend L1 instead of L2!)
u,.. =exp(-2)=0.135335

* The linear plus quadratic was chosen (polynomial)
u, =0.135337-0.135337h—0.0211486h°;r =0.0000609

= Exponential
u,,,=0.135337-0.454392] 1—exp(0.298264h) |;r =0.000146

e

= Logarithmic
u, :0.135470—2.1302701og(1+0.298264h) .+ =0.002867

1

= Power law u =0.135235-0.148584h""*;r=0.000640




Example with picking out cross term$?&:.
= We are testing a model with two-dimensional transient
heat conduction and chemistry for solute deposition in
nuclear reactor cores. The code is poorly documented and
it is not clear how coupled it actually is.

= We are going to use the LASSO to investigate what the

error model should look like

= u, + A Ax Pey Ay Ay py+ A At an Axy (AxAy) ny_l_ A (AxAt) p’“+ Ayt (AyAt) pyt+ Axyt (AxAyAt) P

" |f we just use every term over-fitting is a distinct
possibility

= We find that the model that stands out is rather different

than we would have chosen a priori. This model does well,
d=u, +A Ax"+ A Ay + A D" A (axay) T A (axayar)




Applying this to Sn Neutronics @&

= We apply the verification techniques
to the ORNL neutronics code
Denovo, which solves the transport
equation using discrete ordinates.

Q-VI/I(X,Q,E)+G(X,E)I/I(X,Q,E) =

[dE'| d@o (x,Q-QEF —E)y(xQ F)
= The solution depends on six
“coordinates” three space, two
angular, and energy.

= We reduce this to space and angle
while examining their distinct — _—
discretization. \ ”\ \\
= At this point only very simple .

Eroblems have been examined.



We need to modify the standard verification setting(g) s,
to accommodate the discrete ordinates method
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= The basic approach remains, but we have two variables
that convergence crltlca Iy depends upon,

=u, +Ah"+B/n +C(h/n)

= A secondary issue is the theoretical expectations for the
convergence with respect to the number of quadrature
points where we have chosen a form like Jarrell (2010),

= We have examined four different spatial discretizations
of the streaming term: Step characteristic, linear
discontinuous, trilinear discontinous, and diamond
differencing with negative flux fix-up

= We have examined four different quadratures: level
symmetric, Gauss-Legendre, Quadruple Range, and LDFE.
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Neutronics Results

= We find little support for the h-p version of the error
model

" The third term in the error model drops out
immediately as the size of the Lagrange multiplier
is increased.

= \We also examine the nature of the error model itself
as before

&:uh+Ahp

-1—05[1—exp(1<h)} +B/n’ +ﬁ[1—exp(n/n)}+

C(h/n)r

+y[1—exp(§h/n)}

= We find the power law in space and the coupled
space-angle power term dominate.




Summary and Future Work

"= The basic idea appears to work well.

Laboratories

= We have concerns about applying this to nonlinear

models where theory is weaker.

= \We can use it to determine the dominant terms in a

proposed error model

" The exponential terms are repeatedly chosen by the

procedure, this needs further examination

" The exponential terms are a better basic error model

= The LASSO procedure is somehow biased toward

them
= We will continue the exploration.




Who AmI? rh) i

= |I'm a staff member at Sandia, and I've
been there SNL for 7 1/2 years. Prior to
that | was at LANL for 18 years. I've
worked in computational physics since
1992.

= |n addition, | have expertise in
hydrodynamics (incompressible to shock),
numerical analysis, interface tracking,
turbulence modeling, nonlinear coupled
physics modeling, nuclear engineering...

= |'ve written two books and lots of papers
on these, and other topics.




