
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed 
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.  

Photos placed in horizontal position  
with even amount of white space 

 between photos and header 

Bill	
  Rider,	
  WCCM,	
  Barcelona	
  July	
  21,	
  2014	
  

log (h ) 

lo
g 

(u
) 

hf hm hc 

coarse	
  

medium	
  

fine	
  

1 Based in part on SAND-2013-2059C 

Verifica(on	
  and	
  Model	
  Selec(on	
  

SAND2014-15361PE



What verification means in 
numerical analysis! 

“For the numerical analyst there are two kinds of truth; the 
truth you can prove and the truth you see when you 
compute.” – Ami Harten 



Code	
  Verifica<on	
  vs.	
  	
  
Solu+on	
  Verifica<on	
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Code Verification: 
•  You have an exact 

solution, so you compute 
exact errors 

•  You are testing your code 
(implementation, 
algorithm) 

•  Hard estimates of 
convergence properties 

•  Metrics are defined by 
numerical analysis 

Solution Verification: 
•  You don’t have an exact 

solution, you estimate 
numerical errors 

•  You test your solution(s) 
•  Soft estimates of 

numerical error 
•  Metrics are defined by 

the analyst – integrated 
quantities, point values, 
functionals of the solution 



The	
  Standard	
  Se4ng	
  For	
  Calcula(on	
  Verifica(on:	
  
Richardson	
  extrapola(on	
  for	
  error	
  es(ma(on	
  
!  We	
  begin	
  with	
  the	
  standard	
  error	
  form,	
  

!  The	
  standard	
  safety	
  factor	
  gives	
  an	
  uncertainty	
  es<mate	
  (the	
  GCI*):	
  

!  This	
  safety	
  factor	
  gives	
  an	
  ostensible	
  95%	
  confidence	
  interval	
  ,	
  
!  ~2	
  std.	
  dev.	
  from	
  CFD	
  “experience”	
  and	
  computa<onal	
  experiments.	
  	
  

!  Other	
  forms	
  will	
  provide	
  different	
  es<mates	
  of	
  Fs.	
  
!  For	
  two	
  grids,	
  no	
  es<mate	
  for	
  	
  	
  	
  	
  is	
  possible,	
  and	
  the	
  uncertainty	
  is	
  

inten<onally	
  “generous”:	
  

 !!
u!=!uh!+!A!h!

p Characteristic length 
scale of mesh cell, “∆x” 

Convergence rate	



Computed solution on 
mesh of char’c size h	



Prefactor	



Mesh converged 
solution, i.e., h    0 

 Unum = Fs δ ;Fs = 1.25δ = u − uf

δ
Unum = Fs uf − uc ;Fs = 3
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* GCI: Grid Convergence Index, i.e., Roache’s approach 



Error	
  bars	
  are	
  subject	
  to	
  interpreta(on	
  

Where	
  should	
  the	
  error	
  bar	
  be	
  placed	
  	
  (i.e.,	
  
centered)?	
  

! We	
  have	
  choices	
  (two	
  examined	
  here):	
  
! Around	
  the	
  finest	
  grid	
  solu<on	
  
! Around	
  the	
  mesh	
  converged	
  solu<on	
  
! The	
  mesh	
  converged	
  solu(on	
  is	
  a	
  
best	
  es(mate	
  and	
  should	
  define	
  error.	
  
! Error	
  on	
  the	
  fine	
  grid	
  “should”	
  be	
  
asymmetric.	
  
! The	
  difference	
  is	
  significant	
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 Unum = Fs δ ;Fs = 1.25δ = u − uf
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There	
  are	
  some	
  poten(al	
  dangers	
  to	
  
conscien(ously	
  avoid.	
  

� 

˜ u  =  uh  + A h p

*P.	
  Roache,	
  Verifica+on	
  and	
  Valida+on	
  in	
  Computa+onal	
  Science	
  and	
  Engineering,	
  Hermosa	
  Publishing	
  (1996).	
  	
  

– Usually,	
  we	
  assume	
  that	
  the	
  calcula<ons	
  
are	
  in	
  the	
  asympto<c	
  range	
  of	
  
convergence.	
  	
  	
  

– With	
  two	
  calcula<ons,	
  we	
  have	
  an	
  under-­‐
determined	
  fit	
  through	
  the	
  results	
  (	
  	
  ).	
  	
  

– With	
  many	
  calcula<ons,	
  the	
  error	
  ansatz	
  
is	
  fully	
  determined	
  or	
  over-­‐determined;	
  
one	
  can	
  perform	
  a	
  regression	
  fit.	
  

• This	
  ansatz	
  is	
  valid	
  for	
  data	
  in	
  
the	
  asympto<c	
  range	
  of	
  
convergence.	
  

2	
  values:	
  approximate	
  fit	
  

3	
  values:	
  
exact	
  fit	
  

∆x	
   2∆x	
  	
  	
   4∆x	
  0

	
  	
  computed	
  results	
  

Characteris<c	
  length	
  
scale	
  of	
  mesh	
  cell,	
  “∆x”	
  

Computed	
  solu<on	
  on	
  
grid	
  of	
  mesh	
  size	
  h	
  

Mesh	
  converged	
  
solu(on,	
  i.e.,	
  h	
  	
  	
  	
  	
  	
  0	
  

Convergence	
  rate	
  Prefactor	
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An	
  example	
  of	
  how	
  verifica(on	
  can	
  go	
  “off	
  the	
  rails”	
  
Preliminary	
  Verifica(on	
  Results	
  for	
  CFD*	
  for	
  a	
  CASL	
  challenge	
  problem	
  
(GTRF)	
  with	
  Fuego	
  and	
  Drekar	
  (∆p),	
  just	
  spa(al	
  resolu(on	
  

Mesh Fuego Drekar 

Coarse 31.8 kPa 26.7 kPa 
Medium 24.6 kPa 23.8 kPa 
Fine 24.4 kPa 22.0 kPa 

∆ p h( ) =17420 +16370h1.234
Drekar 

A “mesh sensitivity” 
 study would have  
us stop here! 

95 % Error Bound 80Pa (Roache, GCI) to 18.6kPa (Stern) 

The Fuego result exemplifies one of the problems with  
the standard setting, 16th order convergence is absurd! 
Preview: Our procedure gives a ∆p=16.1kPa ±13.5kPa. 

# ele. 
664K 
1224K 
1934K 
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Fuego 
∆ p h( ) = 24340 + 26.6h15.85

*CASL: Consortium for the Advanced Simulation of Light Water Reactors, CFD: computational fluid dynamics 
GTRF: Grid-to-rod-fretting 



Brief	
  Digression:	
  Regression,	
  norms	
  	
  
and	
  probability	
  distribu(ons	
  

!  Minimiza<on	
  of	
  the	
  residual	
  for	
  regression	
  
carries	
  implica<ons	
  about	
  op<mality.	
  	
  The	
  fit	
  
is	
  op<mal	
  if	
  the	
  errors	
  are	
  distributed:	
  
!  Gaussian	
  implies	
  L2	
  ,	
  the	
  standard	
  
approach	
  (unweighted)	
  

!  Laplace	
  (double	
  exponen<al)	
  implies	
  L1	
  
(absolute	
  value)	
  	
  

!  Uniform	
  implies	
  Linfinity	
  (maximum)	
  	
  
!  Regression	
  can	
  be	
  done	
  in	
  any	
  norm	
  if	
  the	
  

data	
  is	
  either	
  under-­‐	
  or	
  over-­‐determined	
  and	
  
can	
  include	
  constraints	
  as	
  well.	
  

!  Usual	
  sta(s(cs	
  are	
  highly	
  suscep(ble	
  
to	
  outliers,	
  but	
  median	
  sta(s(cs	
  are	
  not.	
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!  Remember,	
  both	
  the	
  data	
  and	
  the	
  regression	
  can	
  produce	
  outliers.	
  Use robust statistics not standard statistics 
8	
  



We	
  define	
  a	
  robust	
  mul(-­‐regression	
  (RMR)	
  method	
  
to	
  encode	
  expert	
  informa(on,	
  with	
  robust	
  sta(s(cs.	
  

!  Verifica(on	
  uses	
  (nonlinear)	
  regression	
  to	
  compute	
  everything.	
  	
  
Typically,	
  a	
  standard	
  least	
  squares	
  fit	
  to	
  the	
  data	
  is	
  used.	
  

!  Assump(ons	
  are	
  usually	
  not	
  stated,	
  nor	
  necessarily	
  appropriate.	
  
!  We	
  apply	
  the	
  following	
  algorithm	
  to	
  the	
  data	
  (2	
  or	
  more	
  grids):	
  
1.   Define	
  the	
  theore(cal	
  convergence	
  rate,	
  pth,	
  with	
  lower	
  (pL)	
  

and	
  upper	
  (pU)	
  bounds	
  on	
  the	
  expected	
  convergence	
  rate.	
  
2.  Solve	
  the	
  regression	
  problem	
  in	
  mul+ple	
  norms	
  ranging	
  from	
  L1	
  to	
  

Linfinity	
  with	
  the	
  p	
  constrained	
  to	
  be	
  in[pL,	
  pU].	
  	
  	
  
3.  Also	
  solve	
  the	
  linear	
  regression	
  where	
  the	
  convergence	
  rates	
  are	
  

defined	
  as	
  pth,	
  pL	
  and	
  pU. 
4.  From the set of    and p select the median values and the 

median deviation for each:   
5.  Solve for the absolute error in the same manner to obtain: 

 u
 δ = u − u f ;u = median u( )

E =Chf
p;C, p > 0⇒ E12 =C h1

p −h2
p ⇒U =median E( )

A structured principled way to introduce specific expert 
knowledge. Bounds on extrapolated solution could be entered too (such as positivity). 

Produce a set of estimates with defined explicit 
assumptions  regarding statistics of the error, and free 
of the fragility of a single estimate. 

Apply robust statistical techniques to produce results 
with confidence.  Run over subsets of data (jack-knife).  
Produce a bounding estimate using the same 
approach.  Useful when the data is non-monotonic. 

The standard method is fragile and includes implicit 
assumptions regarding statistics, error and 
convergence, which are not included in the analysis. 
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We	
  can	
  demonstrate	
  our	
  method	
  by	
  solving	
  a	
  linear	
  ODE.	
  

!  The	
  equa<on	
  is	
  trivially	
  
solvable.	
  	
  We	
  use	
  a	
  forward	
  
Euler	
  method	
  here.	
  

	
  
!  The	
  es<mate	
  and	
  uncertainty	
  

strongly	
  coincide	
  with	
  the	
  
analy<cal	
  result.	
  

!  The	
  uncertainty	
  “fans	
  out”	
  for	
  ∆t	
  
smaller	
  than	
  the	
  finest	
  <me	
  step	
  
used	
  for	
  computed	
  results.	
  

!  Roache’s	
  GCI	
  approach	
  does	
  not	
  
capture	
  the	
  analy<cal	
  solu<on!	
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Estimates appear  
to be quite  
consistent  
and biased low. 

u(t=2)	
  

u(
t=
2)
	
  

∆t	
  

 !!u= −u→un+1 =un −∆tun

In this case 
we have 12 data 
points and generate 
121 models.  It is well 
behaved, but outliers  
are clearly present. 

!!u t =2( ) =0.135316± !0.000138247,p=1.0219±0.0154

!!u t =2( ) =0.134794± !0.000517851,p=1.03878

Our methodology 
can also provide a 
quantitative 
assessment of the  
asymmetry in 
u(t=2) & p 

“outliers” “outliers” 

“outliers” 

“outliers” 



Solu(on	
  Verifica(on	
  for	
  Drekar	
  gives	
  es(mates	
  are	
  
very	
  close	
  to	
  the	
  three	
  grid	
  es(mates	
  given	
  earlier!	
  

!  The	
  results	
  are	
  convergent,	
  but	
  
at	
  a	
  rate	
  comparable	
  with	
  
expecta<ons	
  for	
  “rough”	
  flows	
  
like	
  turbulence,	
  that	
  is	
  1st	
  order	
  
accurate.	
  

!  Uncertain<es	
  are	
  large.	
  
!  RMR	
  gives	
  reliable	
  results	
  with	
  

or	
  without	
  dropping	
  the	
  non-­‐
convergent	
  data	
  point	
  (671K)	
  
!  The	
  CGI	
  is	
  extremely	
  unreliable	
  

without	
  screening	
  the	
  data.	
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Mesh ∆p (pa) 

671K 23400 

1049K 26781 

2664K 23804 

5832K 22040 

12522K 20745 

GCI (all) 

RMR (all) 

RMR (drop coarse grid) 

GCI (drop coarse grid) 
!!∆p=23250±1635+ Ah

0.5Pa

!!∆p=16450±6960+ Ah
1.05Pa

!!∆p=16500±5435+ Ah
0.53±0.09Pa

!!∆p=16280±7060+ Ah
1.08±0.27Pa

The estimated solution is 
frighteningly close to the  
estimates from the earlier 
Fuego calculations! 

*RMR:Robust multi-regression, CGI: Grid Convergence Index 



Next:	
  Inves<gate	
  Model	
  Selec<on	
  
Procedures	
  
!  Verifica<on	
  is	
  usually	
  done	
  with	
  an	
  assumed	
  error	
  
ansatz	
  
!  Almost	
  always	
  a	
  power	
  law	
  form	
  

!  It	
  would	
  be	
  beneficial	
  to	
  assume	
  less,	
  and	
  define	
  a	
  
beper	
  error	
  model	
  more	
  supported	
  by	
  the	
  data.	
  

!  Sta<s<cal	
  es<ma<on	
  procedures	
  exist	
  for	
  examining	
  
the	
  form	
  of	
  the	
  model	
  that	
  best	
  fits	
  the	
  data	
  

!  Examples:	
  AIC,	
  BIC,	
  LASSO	
  
!  Note,	
  that	
  these	
  methods	
  are	
  well-­‐defined	
  for	
  linear	
  
models,	
  and	
  verifica<on	
  has	
  been	
  shown	
  to	
  generally	
  
require	
  nonlinear	
  models	
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We	
  decided	
  to	
  explore	
  the	
  LASSO	
  
Method	
  in	
  this	
  context	
  
!  LASSO	
  has	
  already	
  been	
  applied	
  to	
  verifica<on	
  as	
  
one	
  of	
  the	
  fits	
  used	
  in	
  the	
  robust	
  verifica<on	
  work	
  

!  In	
  its	
  linear	
  form	
  it	
  is	
  a	
  simple	
  regularized	
  least	
  
squares	
  method	
  

	
  
!  As	
  the	
  Lagrange	
  mul<plier	
  is	
  increased	
  in	
  size	
  the	
  
solu<on	
  becomes	
  increasingly	
  “sparse”.	
  

!  Closely	
  related	
  to	
  	
  
!  Our	
  greatest	
  leap	
  is	
  applying	
  it	
  to	
  the	
  nonlinear	
  
model	
  selec(on	
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min Ax −b
2
+λ x

1

!!!min x 1
!constrained!by!Ax = b

!!!min f x( )−b 2
+λ x

1



Variants	
  of	
  LASSO	
  that	
  may	
  be	
  beper	
  

!  One	
  does	
  not	
  have	
  to	
  do	
  a	
  regularized	
  least	
  squares.	
  
!  The	
  L1	
  norm	
  might	
  be	
  useful	
  

!  …or	
  the	
  Danzig	
  es<mator	
  using	
  the	
  infinity	
  norm.	
  

!  All	
  work	
  the	
  same	
  way,	
  as	
  the	
  Lagrange	
  mul<plier	
  
becomes	
  large	
  most	
  of	
  the	
  coefficients	
  go	
  to	
  zero.	
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min f x( )−b
∞
+λ x

1

min f x( )−b 1
+λ x

1



The	
  L1	
  Norm	
  has	
  some	
  remarkable	
  
proper<es	
  useful	
  for	
  model	
  selec<on	
  

!  Some	
  have	
  said	
  that	
  L1	
  is	
  “magic”	
  
!  Specifically,	
  the	
  L1	
  norm	
  promotes	
  sparsity	
  under	
  
the	
  minimiza<on	
  framework	
  

!  This	
  is	
  used	
  in	
  compressed	
  sensing	
  (and	
  basis	
  
pursuit)	
  

	
  
!  The	
  approach	
  allows	
  us	
  to	
  rank	
  the	
  por<ons	
  of	
  the	
  
model	
  form	
  piece-­‐by-­‐piece	
  by	
  examining	
  the	
  terms	
  
that	
  remain	
  nonzero	
  for	
  a	
  changing	
  Lagrange	
  
mul<plier.	
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!!!min x 1
!constrained!by!Ax = b

min x
1
"constrained"by" Ax −b

2
< ε
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“Any sufficiently  
advanced technology is 

indistinguishable from magic.” 
– Arthur C. Clarke 

 



Simple	
  example	
  with	
  model	
  selec<on	
  

!  I	
  will	
  use	
  the	
  simple	
  ODE	
  problem	
  as	
  the	
  first	
  test.	
  
!  Broaden	
  the	
  poten<al	
  terms	
  in	
  the	
  model	
  to	
  include	
  
other	
  possible	
  terms:	
  	
  

!  The	
  results	
  are	
  unexpected.	
  The	
  trends	
  are	
  clear,	
  but	
  
the	
  plots	
  of	
  the	
  coefficients	
  are	
  not	
  nearly	
  as	
  clean	
  as	
  
the	
  (ideal)	
  linear	
  case.	
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� 

˜ u  =  uh  + A h p

!u!=!uh!+!Ap!h!
p+!A1"h+!A2"h!2+Ae !1−exp beh( )⎡

⎣
⎢

⎤

⎦
⎥+AL!log 1+bLh( )

 !!!min
u A( )−uh ∞

+λ A
1

 !!
!u!=!uh!+!A1!h+!A2!h!2



Let’s	
  look	
  at	
  the	
  performance	
  as	
  
error	
  es<mators	
  term-­‐by-­‐term	
  
!  We	
  use	
  a	
  L1	
  es<mator	
  for	
  each	
  (if	
  you	
  do	
  one	
  fit,	
  I’d	
  
recommend	
  L1	
  instead	
  of	
  L2!)	
  

!  The	
  linear	
  plus	
  quadra<c	
  was	
  chosen	
  (polynomial)	
  

!  Exponen<al	
  

!  Logarithmic	
  

!  Power	
  Law	
  
18	
  

!!utrue = exp −2( ) =0.135335

!!uexp =0.135337−0.454392 1−exp 0.298264h( )⎡⎣ ⎤⎦;r =0.000146

ulog =0.135470−2.130270log 1+0.298264h( );r =0.002867
upower =0.135235−0.148584h1.03656 ;r =0.000640

!!u1,2 =0.135337−0.135337h−0.0211486h
2;r =0.0000609



Example	
  with	
  picking	
  out	
  cross	
  terms	
  
!  We	
  are	
  tes<ng	
  a	
  model	
  with	
  two-­‐dimensional	
  transient	
  
heat	
  conduc<on	
  and	
  chemistry	
  for	
  solute	
  deposi<on	
  in	
  
nuclear	
  reactor	
  cores.	
  	
  The	
  code	
  is	
  poorly	
  documented	
  and	
  
it	
  is	
  not	
  clear	
  how	
  coupled	
  it	
  actually	
  is.	
  

!  We	
  are	
  going	
  to	
  use	
  the	
  LASSO	
  to	
  inves<gate	
  what	
  the	
  
error	
  model	
  should	
  look	
  like	
  

!  If	
  we	
  just	
  use	
  every	
  term	
  over-­‐fitng	
  is	
  a	
  dis<nct	
  
possibility	
  

!  We	
  find	
  that	
  the	
  model	
  that	
  stands	
  out	
  is	
  rather	
  different	
  
than	
  we	
  would	
  have	
  chosen	
  a	
  priori.	
  	
  This	
  model	
  does	
  	
  well,	
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 !!
!u!=!uh!+!Ax

!∆x !px+!A
y
!∆ y !py+!A

t
!∆t !pt+!A

xy
! ∆x∆ y( )!

p
xy+!A

xt
! ∆x∆t( )!

p
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yt
! ∆ y∆t( )!

p
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xyt
! ∆x∆ y∆t( )!

p
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 !!
!u!=!uh!+!Ax

!∆x !px+!A
y
!∆ y !py+!A

t
!∆t !pt+!A

xy
! ∆x∆ y( )!

p
xy+!A

xyt
! ∆x∆ y∆t( )!

p
xyt



Applying	
  this	
  to	
  Sn	
  Neutronics	
  
!  We	
  apply	
  the	
  verifica<on	
  techniques	
  

to	
  the	
  ORNL	
  neutronics	
  code	
  
Denovo,	
  which	
  solves	
  the	
  transport	
  
equa<on	
  using	
  discrete	
  ordinates.	
  

!  The	
  solu<on	
  depends	
  on	
  six	
  
“coordinates”	
  three	
  space,	
  two	
  
angular,	
  and	
  energy.	
  

!  We	
  reduce	
  this	
  to	
  space	
  and	
  angle	
  
while	
  examining	
  their	
  dis<nct	
  
discre<za<on.	
  

!  At	
  this	
  point	
  only	
  very	
  simple	
  
problems	
  have	
  been	
  examined.	
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!!Ω⋅∇ψ x ,Ω,E( )+σ x ,E( )ψ x ,Ω,E( ) =

!! d ′E d ′Ω σ s x , ′Ω ⋅Ω, ′E → E( )ψ x , ′Ω , ′E( )4π∫∫



We	
  need	
  to	
  modify	
  the	
  standard	
  verifica<on	
  setng	
  
to	
  accommodate	
  the	
  discrete	
  ordinates	
  method	
  

!  The	
  basic	
  approach	
  remains,	
  but	
  we	
  have	
  two	
  variables	
  
that	
  convergence	
  cri<cally	
  depends	
  upon,	
  

!  A	
  secondary	
  issue	
  is	
  the	
  theore<cal	
  expecta<ons	
  for	
  the	
  
convergence	
  with	
  respect	
  to	
  the	
  number	
  of	
  quadrature	
  
points	
  where	
  we	
  have	
  chosen	
  a	
  form	
  like	
  Jarrell	
  (2010),	
  

!  We	
  have	
  examined	
  four	
  different	
  spa<al	
  discre<za<ons	
  
of	
  the	
  streaming	
  term:	
  Step	
  characteris<c,	
  linear	
  
discon<nuous,	
  trilinear	
  discon<nous,	
  and	
  diamond	
  
differencing	
  with	
  nega<ve	
  flux	
  fix-­‐up	
  

!  We	
  have	
  examined	
  four	
  different	
  quadratures:	
  level	
  
symmetric,	
  Gauss-­‐Legendre,	
  Quadruple	
  Range,	
  and	
  LDFE.	
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u!=!uh!+!A!h!
p+!B nq +C h n( )r



The	
  integrated	
  scalar	
  flux	
  for	
  the	
  
downscaper	
  problem.	
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Neutronics	
  Results	
  

!  We	
  find	
  liple	
  support	
  for	
  the	
  h-­‐p	
  version	
  of	
  the	
  error	
  
model	
  
!  The	
  third	
  term	
  in	
  the	
  error	
  model	
  drops	
  out	
  
immediately	
  as	
  the	
  size	
  of	
  the	
  Lagrange	
  mul<plier	
  
is	
  increased.	
  

!  We	
  also	
  examine	
  the	
  nature	
  of	
  the	
  error	
  model	
  itself	
  
as	
  before	
  

!  We	
  find	
  the	
  power	
  law	
  in	
  space	
  and	
  the	
  coupled	
  
space-­‐angle	
  power	
  term	
  dominate.	
  

23	
  

 !!
u!=!uh!+!A!h!

p+α 1−exp κh( )⎡
⎣

⎤
⎦
!+B nq+β 1−exp η n( )⎡

⎣
⎤
⎦
+C h n( )r +γ 1−exp ξh n( )⎡

⎣
⎤
⎦



Summary	
  and	
  Future	
  Work	
  
!  The	
  basic	
  idea	
  appears	
  to	
  work	
  well.	
  

! We	
  have	
  concerns	
  about	
  applying	
  this	
  to	
  nonlinear	
  
models	
  where	
  theory	
  is	
  weaker.	
  

!  We	
  can	
  use	
  it	
  to	
  determine	
  the	
  dominant	
  terms	
  in	
  a	
  
proposed	
  error	
  model	
  

!  The	
  exponen<al	
  terms	
  are	
  repeatedly	
  chosen	
  by	
  the	
  
procedure,	
  this	
  needs	
  further	
  examina<on	
  
!  The	
  exponen<al	
  terms	
  are	
  a	
  beper	
  basic	
  error	
  model	
  
!  The	
  LASSO	
  procedure	
  is	
  somehow	
  biased	
  toward	
  
them	
  

!  We	
  will	
  con<nue	
  the	
  explora<on.	
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Who Am I ? 
!   I’m a staff member at Sandia, and I’ve 

been there SNL for 7 1/2 years.  Prior to 
that I was at LANL for 18 years.  I’ve 
worked in computational physics since 
1992. 

!   In addition, I have expertise in 
hydrodynamics (incompressible to shock), 
numerical analysis, interface tracking, 
turbulence modeling, nonlinear coupled 
physics modeling, nuclear engineering… 

!   I’ve written two books and lots of papers 
on these, and other topics. 


