
July	
 10,	
 2014	

Sandia	
 Na(onal	
 Laboratories	
 is	
 a	
 mul(
 program	
 laboratory	
 managed	
 and	
 operated	
 by	
 Sandia	
 Corpora(on,	
 a	

wholly	
 owned	
 subsidiary	
 of	
 Lockheed	
 Mar(n	
 Corpora(on,	
 for	
 the	
 U.S.	
 Department	
 of	
 Energy's	
 Na(onal	

Nuclear	
 Security	
 Administra(on	
 under	
 contract	
 DE-­‐AC04-­‐94AL85000.	
 	

.	

What is worth reproducing in
computational science?

Bill	
 Rider	

Computational Shock and Multiphysics, Department	

Sandia	
 Na5onal	
 Laboratories	

SAND2014-?????C

SAND2014-15354PE

2

“The road to hell is paved
with good intentions.”

Outline
! We are already deluged with publications and now

even more data will be available.
" Is this necessarily a good thing?
" Might a “pull” model work better than a “push”?

! What sort of things will this precipitate?
! What has already happened? Lessons from the

history of computational science.
! Has applied math already withdrawn in some

ways? Why might I say this?

What is the point and purpose of publishing?
It is worth examining and being quite intentional

! What is the point of the literature itself?
" Is everyone clear about this? does the educational
system actually transmit the essence of the
reasoning?

" We are expected to do it, for status, promotion.
" To expose ourselves to peer review
" To communicate! to teach! and to learn!

! What is the point of attending or presenting at
meetings?
" Current thinking is troubling to say the least.
" “To give a talk”
" or is it to “communicate, speak and listen”

As examples, I’ll focus several of my
own papers.
#  The volume tracking paper is highly cited –

998 via Google Scholar
"  because of the tests it introduced).
"  The tests (i.e., V&V) are important and in

one case became a bit of a tug-of-war
with the editor and reviewers.

# Releasing code was achieved in one case, but
has become increasingly problematic to
virtually unthinkable.
"  The environment at the Lab is becoming

less favorable towards (full) openness
although it varies with the source of your
support.

"  Some sponsors push or require
openness, while others ignore it, while
others object to it.

"  It may be impossible due to “security”
Rider & Kothe, J. Comp. Phys., 141, 1998 (RK1998).

Why did we write
“Reconstructing Volume Tracking” ?

! Volume tracking is an important methodology at LANL for
computing multimaterial flows in the Eulerian frame.

! We wrote the paper because the standard way of coding
up a volume of fluid method was so hard to debug.
" We thought we had a better way to put the method together
using computational geometry (i.e., a “toolbox”)

! Once the method was coded it needed to be tested:
" Existing methods for testing these methods were poor
" We came up with some new tests borrowed from the high-
resolution methods community (combining the work of
several researchers

$  Dukowicz’s vortex,
$  Smolarkiewicz’s deformation field and
$  Leveque’s time reversal)

The paper’s origin actually had a lot to do
with how these methods were programmed.

 qf(i,j) = (fo(i,j) .gt. smf .and. fo(i,j) .lt. one-smf)!
 smf = cvof!
!
c compute list of cells with interfaces!
!
 ni = 0!
 Do j = 1, NY!
 Do i = 1, NX+1!

! If (ul(i,j) .gt. zero) Then!
! If (qf(i-1,j)) Then!
! ni = ni + 1!
! list(ni,1) = i!
! list(ni,2) = j!
! Else!
! fx(i,j) = fo(i-1,j) * ul(i,j) * dt / dx!
! End If!
! Else!
! If (qf(i,j)) Then!
! ni = ni + 1!
! list(ni,1) = i!
! list(ni,2) = j!
! Else!
! fx(i,j) = fo(i,j) * ul(i,j) * dt / dx!
! End If!
! End If!

 End Do!
 End Do!
!
c compute fluxes!
!
 Do n = 1, ni!

!i = list(n,1)!
!j = list(n,2)!

 If (ul(i,j) .gt. zero) Then!
 x0 = - bb(i-1,j) / aa(i-1,j)!
 x1 = (one - bb(i-1,j)) / aa(i-1,j)!
 y0 = bb(i-1,j)!
 y1 = aa(i-1,j) + bb(i-1,j)!
 vf = dt * ul(i,j) / dx!
 vf1 = one - vf!
 y1u = aa(i-1,j) * vf1 + bb(i-1,j)!
 !

!j = list(n,2)!
 If (ul(i,j) .gt. zero) Then!
 x0 = - bb(i-1,j) / aa(i-1,j)!
 x1 = (one - bb(i-1,j)) / aa(i-1,j)!
 y0 = bb(i-1,j)!
 y1 = aa(i-1,j) + bb(i-1,j)!
 vf = dt * ul(i,j) / dx!
 vf1 = one - vf!
 y1u = aa(i-1,j) * vf1 + bb(i-1,j)!
 If (type(i-1,j) .eq. 0) Then!

! fx(i,j) = vf * fo(i-1,j)!
 Else If (type(i-1,j) .eq. 1) Then!
 If (x0 .gt. vf1) Then!
 If (x0 .lt. one) Then!
 If (x1 .gt. vf1) Then!
 fx(i,j) = half * (x0 + x1) - vf1!
 Else!
 fx(i,j) = half * (x0 - vf1) * y1u!
 End If!
 Else!
 If (x1 .gt. vf1) Then!
 fx(i,j) = half * (y1*(1-x1) + one + x1) - vf1!
 Else!
 fx(i,j) = half * ((1 - vf1)*(y1 + y1u))!
 End If!
 End If!
 Else!
 fx(i,j) = zero!
 End If!
 Else If (type(i-1,j) .eq. 2) Then!
 If (x0 .gt. vf1) Then!
 If (x0 .lt. one) Then!
 If (x1 .gt. vf1) Then!
 fx(i,j) = half * (x0 + x1) - vf1!
 Else!
 fx(i,j) = half * (x0 - vf1) * y1u!
 End If!
 Else!
 If (x1 .gt. vf1) Then!
 fx(i,j) = half * (y1*(1-x1) + one + x1) - vf1!
 Else!
 fx(i,j) = half * ((1 - vf1)*(y1 + y1u))!
 End If!
 !

Horrible computer code in F77 redacted due to
legal concerns of my current (and former)
employers. Probably because of the impact of
the recent America Invents Act (patent law).

Notes:
1.  The code has high cyclomatic complexity
2.  The code is not extensible
3.  The code is almost impossible to debug (see

#1)

Basic VOF Algorithm

3

4 2

1

Initial
Data

Reconstruct
interface, using
conservation of
mass

Evolve Interface, using
conservation form

New
Time
Data

9

Using Computational Geometry to Construct
a VOF or Volume Tracking Method

u6t

12

3
v6t

u6t

1

23

4

n

21

4

3
n

T

T F

An intersection is
forced on this line

n

T

F F

An intersection
is forced on
this line

Fluxes A = 1
2

xvyv+1 − xv+1yv()
v=1

n
∑

A = π
6

rv + rv+1() rvzv+1 − rv+1zv()
v=1

n
∑

We presented a serious rethink of the
programming approach to these methods

 Subroutine INTERSECT (a1, rho1, a2, rho2, xi, yi, notparallel)!
!
c***!
c!
c Filename: intersect.f!
c!
c Author: !Bill Rider!
c ! !Scientific Computing Group!
c ! !Los Alamos National Laboratory!
c ! !MS B256!
c ! !Los Alamos, NM 87545!
c ! !(505) 665-4162!
c ! !E-mail: wjr@lanl.gov!
c ! !WWW: http://www.c3.lanl.gov/~wjr/wjr.html!
c!
c Date Created: August 24, 1995!
c Last Modified: August 24, 1995!
c !
c Purpose: !
c Given two lines the point of intersection is returned.!
c!
c File Contents:!
c The subroutine INTERSECT!
c!
c Description:!
c The user inputs two lines and the finds their common point. It!
c checks to see if the lines are parallel. The lines have the !
c following form and the linear system is solved for xi and yi.!
c!
c a1(1) xi + a1(2) yi = rho1!
c a2(1) xi + a2(2) yi = rho2!
c!
c Interface (Input): !
c a1, a2!Real Array: The x and y constants for the equation of !
c ! !the lines!
c rho1, rho2 !Real: line constants!
c!
c Interface (Output):!
c xri, yzi !Real: the normals (constants) for the coordinate !
c notparallel !Logical: true if the line is not parallel!
c!
c Routines Used:!
c none!
c!
c Status and Warnings:!
c None!
c!
c***!
c start of subroutine INTERSECT!
!
 Implicit None!
!
c.... include files!

!
 Include "param.h"!
!
c.... call list variables!
!
 Logical notparallel!
 Real a1(1:2)!
 Real a2(1:2)!
 Real rho1!
 Real rho2!
 Real xi!
 Real yi!
!
c.... local variables!
!
 Real smdet! !! small number for parallel line !

! ! ! !! detection!
 Real det ! ! !! determinant of the linear system !
!
c---!
!
 smdet = Max (eps, smallvof * Abs(a1(1) * a2(2)), !
 & smallvof * Abs(a2(1) * a1(2)))!
!
c.... first compute the determinant of the linear system!
!
 det = a1(1) * a2(2) - a2(1) * a1(2)!
!
c.... if the determinant is approximately zero, the linear system is!
c.... not solvable and we have parallel (approximately) lines.!
 !
 If (Abs(det) .gt. smdet) Then!
!
c...... nominal (nonparallel) case!
!
 xi = (rho1 * a2(2) - rho2 * a1(2)) / det!
 yi = (rho2 * a1(1) - rho1 * a2(1)) / det!
 notparallel = .true.!
 Else!
!
c...... set the flag to show that parallel lines have been found!
!
 notparallel = .false.!
 End If!
!
c---!
!
 Return!
 End !
!
c end of subroutine INTERSECT!
c><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>!

“Beautiful” F77 computer code redacted due to
 legal concerns of my current and former
employers.

Notes:
1.  The code has low cyclomatic complexity
2.  The code is extensible
3.  The code is simple to debug (see #1)

We even included the code… with serious
restrictions imposed by LANL

 Subroutine INTERSECT (a1, rho1, a2, rho2, xi, yi, notparallel)!
 Implicit None!
 Include "param.h"!
 Logical notparallel!
 Real a1(1:2)!
 Real a2(1:2)!
 Real rho1!
 Real rho2!
 Real xi!
 Real yi!
 Real smdet ! !! small number for parallel line !

! ! ! !! detection!
 Real det! ! !! determinant of the linear system !
 smdet = Max (eps, smallvof * Abs(a1(1) * a2(2)), !
 & smallvof * Abs(a2(1) * a1(2)))!
c.... first compute the determinant of the linear system!
 det = a1(1) * a2(2) - a2(1) * a1(2)!
c.... if the determinant is approximately zero, the linear system is!
c.... not solvable and we have parallel (approximately) lines.!
 If (Abs(det) .gt. smdet) Then!
c...... nominal (nonparallel) case!
 xi = (rho1 * a2(2) - rho2 * a1(2)) / det!
 yi = (rho2 * a1(1) - rho1 * a2(1)) / det!
 notparallel = .true.!
 Else!
c...... set the flag to show that parallel lines have been found!
!
 notparallel = .false.!
 End If!
 Return!
 End !

I fought making the code
this ugly to no avail.

As a condition of making
the code available, I had
to strip out most of the
comments and formatting.
this is just computational
geometry!

This is just 1997, not
the post-9/11/2001 World
-or-
post economic crisis
World either!

What does that original part of the algorithm
look like after the research?

c---!
!
c.... Loop over x/r edges - and test flow direction!
!
 Do j = 1, nyz!
 Do i = 1, nxr+1!
!

! If (active(i,j) .or. active(i-1,j)) Then!
!

! smallvel = softzero * (xrc(i) - xrc(i-1)) / dt!
!
c.......... Test the flow direction on this edge!
!
 If (velxr(i,j) .gt. smallvel) Then!
!

! velmod = velxr(i,j) * dt !
 & / (one + aremap * gradvelxr(i-1,j))!
!
 Call FLUX_VOL_XR (i, j, velmod, xr, yz)!
!
c............ Test to see if the upwind cell is mixed, if so use the!
c............ full PLIC_ treatment!
!
 If (mixed(i-1,j)) Then!
 fluxvofxr(i,j) = VOL_FLUX (xr, yz, 4, avof(1,i-1,j),!
 & avof(2,i-1,j), rhovof(i-1,j),!
 & axi)!
 Else!
!
c.............. otherwise compute the flux with a standard upwind !
c.............. approximation!
!

! fluxvofxr(i,j) = vofin(i-1,j) * POLY_VOL(xr, yz, 4, axi)!
 End If!
 !
c............ divergence correction!
!
 fluxvofxr(i,j) = fluxvofxr(i,j) !
 & * (one + adiv * divvel(i-1,j)) !
!
 Else If (velxr(i,j) .lt. -smallvel) Then!
!

! velmod = velxr(i,j) * dt !
 & / (one + aremap * gradvelxr(i,j))!
!
 Call FLUX_VOL_XR (i, j, velmod, xr, yz)!
!
c............ Test to see if the upwind cell is mixed, if so use the!
c............ full PLIC_ treatment!

 If (mixed(i,j)) Then!
 fluxvofxr(i,j) = - VOL_FLUX (xr, yz, 4, avof(1,i,j),!
 & avof(2,i,j), rhovof(i,j), !
 & axi)!
 Else!
!
c.............. otherwise compute the flux with a standard upwind !
c.............. approximation!
!
 fluxvofxr(i,j) = - vofin(i,j) * POLY_VOL(xr, yz, 4, axi)!
 End If!
 !
c............ divergence correction!
!
 fluxvofxr(i,j) = fluxvofxr(i,j) !
 & * (one + adiv * divvel(i,j)) !
 !
 Else!
 fluxvofxr(i,j) = zero!
 End If!
 !

! End If!
 End Do!
 End Do!
!
c---!
!
 Return !
 End!
c end of subroutine FLUX_PLIC_XR!
c><><><><><><><><><><><><><><><><><><><><><><><><><><>!

13

Unclassified Controlled Information (UCI)

Sandia-owned = Sandia Proprietary

U-­‐NNPI	

Legal	

Records	

Procure-­‐
ment	

Ac(ons	

Confiden(al	

Financial/	

LM	
 Corre-­‐
spondence	

Employ-­‐
ment	

Related	

Records	

U.S. Government-owned

SGI	

Exemp5on	
 4.	
 Commercial/Proprietary	

Exemp5on	
 3.	
 Statutory	
 Exemp5on	

Other	
 U.S.	

Gov’t	
 Agency	
 Technology	

Transfer	

Such	
 as:	

•  IP	
 license	

agreements	

•  Protected	

CRADA	

Informa(on	

•  Certain	

intellectual	

property	

Such	
 as:	

• Dept.	
 of	

Defense	

• Dept.	
 of	

Homeland	

Security	

• Dept.	
 of	

Transport-­‐
a(on	

Exemp5on	
 5.	
 Privileged	
 Informa5on	

Exemp5on	
 6.	
 Personal	
 Privacy	

Exemp5on	
 7.	
 	
 Law	
 Enforcement	

First, determine if your information is:

Even	
 if	
 its	
 not	
 classified	
 it	
 falls	
 into	
 this	
 Labyrinth.	

Exemp(on	
 9.	
 Wells	

Then, based on content, what type of proprietary information it is:

OUO	
 UCNI	

Exemp(on	
 8.	
 Financial	
 Ins(tu(ons	

Exemp(on	
 2.	
 Circumven(on	
 of	
 Statute	

Exemp(on	
 1.	
 Na(onal	
 Security	
 	
 	
 	

	
 	
 	
 	
 	
 	
 Informa(on	

PII Personally Identifiable Information (PII) can apply to both
U.S. government-owned and Sandia-owned information

AT	

Then, based on content/sponsor, what type of information it is:

FO
IA

 e
xe

m
pt

io
ns

 m
os

t c
om

m
on

ly

us
ed

 a
t S

an
di

a
ar

e
3-

7

More problems: Classified vs Export Control

! Penalty for releasing classified information
" Up to 10 years, and unspecified fines
" The classification guidance is technical and voluminous
" Well-defined, well understood, well administered

! Penalty for violating export control
" Up to 20 years imprisonment and $1,000,000
" The guidance is non-technical and virtually non-
existent

" Ill to poorly defined, but very large threats to the people
administering the system

The number of classified documents is growing

John Von Neumann

CFD was developed by many great minds

Peter Lax

Robert Richtmyer

Teller, Metropolis, Ulam – Monte Carlo
Methods and the H-Bomb

Bethe and Feynman – the first
calculations using Von
Neumann’s method at Los
Alamos in 1944

Courant, Friedrichs, Lewy – 1928
paper

Godunov

Harlow – the
name CFD
and Los
Alamos often
conjures

Landshoff & Rosenbluth

Lord Rayleigh & G. I.
Taylor

The origin of hydrodynamic calculations
! The first hydro calculation was reported in a

Los Alamos report on June 20, 1944 – lead
author Hans Bethe
" Feynmann was the calculational lead
" They used two methods to compute shocks,
but only one of them worked (the shock
fitting). The other finite difference method
failed catastrophically!

! The first codes were 1-D and Lagrangian,
shocks were tracked (no viscosity, finite
differences failed completely till 1948).

! Von Neumann developed a simple finite
difference method at Aberdeen and
published a report on March 20, 1944. Ulam

The artificial viscosity paper by Von Neumann
and Richtmyer, J. Appl. Phys. 1950

LA-671 a precursor to the Von Neumann-
Richtmyer paper. By Richtmyer (only!)

Classified till 8/26/93. In
the period right after WWII
almost all Lab reports were
classified.

The details and conception of
artificial viscosity is different,
and it is called a fictitious
viscosity instead. It is less a
“pressure” and closer to an
additional viscous term. The
form more closely follows the
true entropy generation term
from thermodynamics.

Richtmyer published a second
report five months later in 1948
(March to August) reporting on
numerical experiments.

He uses both the term “fictitious”
and “mock” to describe the term,
But not “artificial”. All of these are
unfortunate in their connotation.

!!
∂u
∂t

+ ∂
∂m

p+q() =0→ ∂u
∂t

+ ∂
∂m

p+ µ ∂u
∂x

⎛
⎝⎜

⎞
⎠⎟
=0

!!
T∆S = µ ∂u

∂x
⎛
⎝⎜

⎞
⎠⎟

2

→ µ∝ ∆x()2 ∂u
∂x

!!
T∆S = − 1

6G
1
c2

∆V
V

⎛
⎝⎜

⎞
⎠⎟

3

→

21

“V&V takes the fun out of
computational simulation”
– Tim Trucano

Definitions: Verification and Validation

! ASC(I): Advanced Simulation and Computing Program
" Verification % Verification is the process of determining that a

computational software implementation correctly represents a
model of a physical process.

" Validation % Validation is the process of determining the degree
to which a computer model is an accurate representation of the
real world from the perspective of the intended model
applications.

! Close to the DMSO, ASME and AIAA definitions.

! Alternative for computational science and engineering:
" Verification = Accumulating evidence that the equations are

solved correctly.
" Validation = Accumulating evidence that the equations are

correct for the intended application

Definitions Continued:

! Calibration = “The process of adjusting numerical or
physical modeling parameters in the computational model
for the purpose of improving agreement with experimental
data.” (AIAA Guide)

! Code = everything that goes into producing the final
numbers, unless I’m speaking about “Code Verification,”
in which case I mean the particular software.

! Comments:
" Calibration is not validation, especially for predictive

applications.
" Validation is defined to be be dependent on the intended

application.
" In the sense of “solution accuracy,” verification is

dependent on the intended application.

Definitions Continued:

! Calibration = “The process of adjusting numerical or
physical modeling parameters in the computational model
for the purpose of improving agreement with experimental
data.” (AIAA Guide)

! Comments:
" Calibration is not validation, especially for predictive

applications.
" Validation is defined to be be dependent on the intended

application.

“An expert is someone who
knows some of the worst
mistakes that can be made in
his subject, and how to avoid
them.”

- Werner Heisenberg

So, What is the path forward?

! Publishing should serve it’s proper role in the conduct of
science – communication

! Complete documentation of computational should
include code used to demonstrate algorithms or compute
results

! Numerous challenges exist with respect to policy largely
dependent on the source of support and your employer
(or customer/funding agency)
" Intellectual property law and security concerns provide
distinct barriers.

! Any policy should be thought through with regard to
unintended consequences.
" Could this become a wedge issue between communities of
scientists that have worked well in the past?

Putting the current milieu into perspective

There must be no barriers to freedom of inquiry ...
There is no place for dogma in science. The scientist is
free, and must be free to ask any question, to doubt
any assertion, to seek for any evidence, to correct any
errors – J. Robert Oppenheimer

During the Manhattan Project in
WWII Oppenheimer and Gen. Leslie
Groves fought about scientific
openness at Los Alamos where
Groves wanted compartmentalization
of information. Oppenheimer
ultimately prevailed.

Who is winning today?

A final (and happier, but cautionary) note!

“… what were the causes of the flowering of applied
mathematics in America after World War II? Perhaps the
most important factor was the war itself, which
demonstrated to all the crucial importance of science and
technology for such projects as radar, the proximity fuse,
code breaking, submarine hunting, and the atomic bomb.
Mathematicians, working along with physicists, chemists,
and engineers, made substantial and in some cases
decisive contributions; without these developments, the
United States might have lost the war ”

From THE FLOWERING OF APPLIED MATHEMATICS IN
AMERICA, by Peter Lax, SIAM Review, December 1989

Who Am I ?

!  I’m a staff member at Sandia, and I’ve
been there SNL for 7 1/2 years. Prior to
that I was at LANL for 18 years. I’ve
worked in computational physics since
1992.

!  In addition, I have expertise in
hydrodynamics (incompressible to
shock), numerical analysis, interface
tracking, turbulence modeling, nonlinear
coupled physics modeling, nuclear
engineering…

!  I’ve written two books and lots of papers
on these, and other topics.

