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(R i, Introduction

Grain Boundary Effects
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(Shen et al. 1998) (Smith et al. 1995, Meyers and Chawla 1998)




@) & Length-scale aware models
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[Counts et al, 2007, 2008]

kernel-based, non-local “integration” of DF
with augmented kinematics.

dislocation “lumping,” dislocation transfer, and
dislocation / GB back-stress.
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= CP-FEM Simulations




@) & Previous work on sim-exp. comparison

Limited success has been achieved in modeling polycrystal
deformation behavior due to unknown subsurface grains

Zr 702 polycrystal (Heripre et al, 2007) OFHC Cu polycrystal (Musienko et al, 2007)
(2.5 % strain) (5 % strain)
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[ .. Experimental setup

« Tantalum oligocrystals with mostly columnar 2D grain
structure eliminate unknown subsurface grain
morphology.

* In-situ load frame developed at Sandia

* HR-DIC (surface strain fields) and EBSD (crystal
orientations) measurements at load inside SEM
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() e, CP-FEM simulations
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@&, Strain field predictions: specimen 1

H-DIC measurements CP-FEM redictions
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Measured and predicted strain fields agree reasonably well.




@) . Texture predictions

Specimen 1 (6.8%) Specimen 2 (19.2%) Specimen 3 (10.0%)
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IPF contour plots indicate very good agreement between model and experiment.




@&,  Strain field and texture predictions

Exp. (DIC) Sim. (CP-FEM)
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(@) i, Limitations of the current model

[-111] [-111]

00 01 [001)

Large deviation observed near grain boundary!
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= Grain Boundary Analysis




@, Grain Boundary — Dislocation Interactions

Grain boundary slip transmissivity: N
Criteria for predicting the activated slip system across the boundary

Livingstone and Chalmers (1957) T G T
NU.=(nl.-nj)><(sl.-sj)+(nj-si)x(sl.-nj) \

Luster and Morris (1995)
N, :(nl. -nj)x(sl. -sj)

______________________________________

Shen et al. (1988) n : slip plane normals

=(L-L)YX(s.-s. s . slip directions
Ny = (L)X s05)) L : intersection line between GB and slip plane normal

[ 0<N<I J

No transmission Complete transmissio
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@)=, Grain Boundary Transmissivity

For 24 slip systems, 24 x 24 =576 N values!

s Maximum N (Shen et al., 1988)

% Schmid factor (Bieler et al., 2014)

% Slip activity (Current work)

m= 2(2[ ; 27’ ]g’ ] Y. : slip activity obtained from CP-FEM

Advantages
- Considers effects of local strain field (no assumptions for uniaxial loading)
- Considers effects of crystal rotation (not using initial crystal orientations)
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@) .. Tantalum oligocrystals
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@) &=, Disorientation analysis
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sorientation analysis
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@) & Slip activities
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HE=. Transmissivity vs. exp. measurements




@) .. Transmissivity Calculations

Initial Deformed (4.3%

)
] S
g. = 0.430 ~ . ".‘

J Avg. =0.329
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NPN. ’
TN
Avg. = 0.428 Avg. = 0.427

=
Shen, Wagoner and Clark (SWC) Model

Tantalum oligocrystal specimen 1
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@) .. Transmissivity Calculations

Schmid factor based Slip activity based
calculations calculations

Av—

Avg. = 0.268 [ “’.
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Avg. =0.234 \' { Avg.

Avg. = 0.274

Shen, Wagoner and Clark (SWC) Model

22



Q= Summary

= CP-FEM predictions of Ta oligocrystals showed good agreement with
measured surface strain fields (HR-DIC) and deformed textures (EBSD).

=GB transmissivity, m, characterizes geometries for the slip transfer.

= No clear correlation between GB disorienation and transmissivity is
observed.

= Contributions from crystal rotations and slip activities does not change m
significantly with applied strain.

23



Sandia
National
Laboratories

THANK YOU !

Email: hnlim@sandia.gov




