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= As the penetration of PV increases on the distribution system,
there is rising concern about the interaction between PV
variability and the system voltage regulation equipment.

= Before interconnecting PV, these grid impacts should be
investigated in detail, and an efficient method of
interconnection screening is needed.

= The impact of PV variability on voltage regulation equipment
is separated into two categories:

= The short-term variability can occur faster than the voltage regulation
equipment, such as on-load tap changer (OLTC), can react, which
causes extreme transient voltages during the PV ramp.

= The long-term variability with frequent fluctuations in PV output can
increase the number of total tap changes, leading to quicker

degradation of equipment.
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Background on Voltage Regulators e ".
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= Load Tap Changers (LTCs) and Voltage
Regulators (VREGS)
= Mechanical device for modifying the voltage by

changing the tap of a transformer while
maintaining current flow
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= Generally capable of changing voltage upto  vres _ _ _ _
+10% through incremental tap positions. Setpeint
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= Changes taps to keep the output voltage at the
VREG setpoint within a certain bandwidth

= Time delay (generally 30 to 60 seconds) from the
voltage going out of band until the control action
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= Tap changes create wear and tear on the
device



Background on QSTS Pemdeileealt
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= PV outputis highly variable and the potential interaction with
control systems may not be adequately analyzed with
traditional snapshot tools and methods

= (Quasi-static time series (QSTS) power flow analysis

= Captures time-dependent aspects of power flow, including the
interaction between the daily changes in load and PV output

= Simulation performed in OpenDSS

= Modelling voltage regulatlon equment in QSTS
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Short-Term PV Variability o
Extreme Ramp Analysis “

= Extreme ramps in PV output can cause the voltage to go out
of band before the end of the delay time when the tap
change returns the voltage to normal range

= Delay is part of distribution system design to reduce the
number of unnecessary tap changes
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Extreme Voltages During Ramp oYt
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PV Ramp Up
During Delay Before Control Action
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= Detect any issues from PV ramps with QSTS simulation of the
PV output profile for the year for all PV ramps




PV Ramp Up Analysis it
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= New method for simulating issues from extreme PV ramps
= Only simulate the worst case ramp, top 0.1% of 1-minute ramps
= Do not need to even simulate the whole ramp, just the top and

bottom
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Long-Term PV Variability Wi,

Tap Change Analysis

= Voltage regulators were
designed for slow daily
variability in load, not the
high variability from PV

= High penetrations of PV on
the feeder can increase the
number of tap changes, and
degradation of the
equipment
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LTC Taps: 585 Changes
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Complexity of Modeling Tap Change@f%%ﬁm

= High resolution data with appropriate local load and solar
variability

= Modelling regulator controls

= Location of PV on the feeder

= |nteraction between smart inverters and regulator load drop
compensator control

LTC Operations: Base Case and With PV
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PV Impact to Tap Changes Wi,
Variation by Time of Year
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LTC Operations by Month
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PV Impact to Tap Changes 00}
Variation by Location

= Percent increase in tap operations depending on the
interconnection location along the length of the main 3-phase
trunk
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B. A. Mather, "Quasi-static time-series test feeder for PV integration analysis on distribution
systems," in IEEE Power and Energy Society General Meeting, 2012. 13



Conventional Simulation Method ...
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= The number of tap changes is simulated using QSTS

= Must have accurate high resolution data, and simulate long
time periods to account for seasonal changes

= A l-second resolution QSTS simulation for a 1 year period
takes about 24 hours of computation

= To improve the interconnection process, a faster method is
required

= Simple criteria like the ability of PV to force a tap change does
not capture the full picture




New way to Simulate Tap Position e ™"
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= Regulator tap position
can be determined as a
function of PV output
and feeder load
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= Using this function and
the annual load and PV
profiles, the tap can be
determined for every
time point in the year
along with the total
number of tap changes
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= Cannot just use the tap position function because regulator
controls are also dependent on their previous state

= Whether a tap change actually occurs is due to the delay time
and the control logic
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Using Voltage

Simulate Tap Position
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= Determine heuristically testing combinations of load and PV values

= Calculate using power transfer distribution factors (PTDF’s)

and keeping downstream voltage within band

load and PV output
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= Model the high-side voltage of the regulator as a funct
= Analyze the tap position through time, modeling all delays
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= Two methods are proposed for screening potential PV systems
for adverse impacts of PV variability on the distribution system
without using time-series simulations.

= First, a technique to accurately characterize extreme feeder
voltages due to high PV ramp rates is demonstrated using voltage

regulation equipment locking and expected extreme PV ramping
scenarios.

= Second, a method is described to determine the potential impact
of a PV system on regulator tap changes using a voltage function
to model the tap position throughout an entire year.

= Each of these methods aids in decreasing the complexity and
length of time involved in screening potential PV

interconnections. o




Sandia
ﬂ" National
h Laboratories
| Georgia nsfiute
J o Technalogy

Questions?




