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- classical density functional theory
* nanoparticle/polymer assembly

— hard

sphere systems

— polymer-nanoparticle attractions

* electrical double layers

— hard sphere systems
— electroosmotic flow
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Basics

classical statistical mechanics for a fluid
goal is to calculate the free energy:

F for a canonical system (fixed V,T,n)
Q for a grand canonical system (fixed V,T,u)

many-body system: can’t calculate F or Q2 exactly

DFT: an approximate theory based on a variational principle
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Foundation of DFT

po(r) = <Z o(r — rz)> equilbrium density
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*suppose have open system, temp T, volume V, chem potential n
-can show Q is a functional of py, £2{pg(1)]

* Theorem: can show that p,(r) is uniquely given by V,_,(r) (and vice versa)
-then also, F'|p(r)] is a unique functional of p(r)

.grand potential energy:

Qlp(r)] = Flp(r)] + / drp(x) [Viws () — 1
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Foundation of DFT, contd

Variational principle: can show
Qlp(r) # po(r)] > Qpo(r)] =N

0Q[p(r)]
dp(r)

which implies:
PO

Equivalently, since  Q[p(r)] = Flp(r)] + / drp(r) [Vewt (r) — 1]

we have + Vegt(r) — =0

Issue: we don’t know the form of F. Approximate it.
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Relation to Electronic Structure DFT

[ p(r)]:V(r)—=p(r)

External Density

field profile
e €¢
e 09 @€ .0: Electronic Structure
e®® ¢ _ (Closed system with N-electrons)
o

Fluid Structure
(Often open system
with fixed chemical
potential)
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Basic Structure of a Fluids-DF T

*model for the fluid
«expression for Helmholtz free energy

 can contain multiple additive terms

*e.g. excluded volume, van der Waals, Coulomb, etc.
*minimize grand free energy

FVop(r) — =0 —> integral equations to solve for p(r)

Example: ideal gas

BFp] = [ drp(r) (X' p(w)) 1)
p(r) = A% exp[—B(Vear (r) — p)] Boltzmann dist.

Bh2 de Broglie wavelength, not important
A=1/5 (absorb into efw)
m™m
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Hard Sphere Fluids

7 o @

/ *mixture of hard spheres state of the art: “White Bear”
/ ‘ @, «can have different sizes functional, Roth et al, 2002
/| *near a hard wall

Ne @

/ ® excess Helmholtz free energy

/

Fha lpa(0)] =T [ dr o, (0]

ning —nyi - Ny
1— ns

nz + (1 —n3z)?In(1 — n3)
36mn3(1 — ng)?

+ (n‘;’ — 3ngnys - nvg)

¢ =-—ngln(l—n3)+

(a)

weighted densities R B

=3 [ g 1),

W (1) = 6(Ra = It))  wiP(r) = 0(Ra — |r])

Rosenteld functional

P.(2)Pes

(2) (2)
(0) (p) — Wo_(T) (1) (py _ Yo ()
wo ' (r) AT R? wa ' (T) A7 R, S
T (Vl) W(()4V2)(r) ;
o) = 20(Ra —lrl) e T = SR = T )
o z/o, Laboratories




Implementation: Tramonto

http://software.sandia.gov/tramonto

3D parallel fluids-DFT code
primarily developed by: Laura Frink, Andy Salinger, Mike Heroux

code strategies:

solve by collocation on 3D Cartesian mesh, real space
*precalculate integration stencils (e.g. for delta funcs)
*Poisson’s eq: finite elements
*solvers:
sinexact Newton’s methods
suse analytic Jacobian
suses Trilinos
*Picard iteration
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Models/Physics in Tramonto

basic elements: *hard-sphere fluids
*spherical fluid particles -3 different versions of FMT
ssurfaces

*mean-field attractive interactions
Lennard-Jones, exponential, Yukawa

bonded molecules
2 classes of functionals: CMS; iSAFT
@

spolymers, linear or branched

ANANANANANAN

*charged systems
«diffusive transport
arbitrary surface geometries

@ 1.44c

@ 1o

8-2-8 Chain
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What can fluids-DFT do?

«forces between particles
*phase behavior
*solvation free energies

simplicit solvent
scomplex geometries
scomplex chain architectures
scompare to simulation (e.g., MD; MC)

(Vv

0.01—
1

force (KT/d?)
2
)

polymer melt

0.03

Free Energy

0.004 0.005

0.006 0.007 0.008
p
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Outline

» classical density functional theory

* nanoparticle/polymer assembly

— hard sphere systems

— polymer-nanoparticle attractions

* electrical double layers

— hard sphere systems

— electroosmotic flow
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ﬁ;'ﬂterfacial Properties: Experiments

model athermal system: PS NPs in PS

B PS nanoparticles blended with PS
NPs stay 8- 8 40 nm thick film
: : ® NPs prevent dewetting!
dispersed :Zf@ 2 3 _ P event dewe g
(for Ryp < Rg) & 9
9 @

Mackay et al., Nature Mat., 2003
E. Harth, J. Am. Chem. Soc., 2002

6=1.12 d 08=1.56 e 08=2.06 f
w=0.1 w=0.15 w=0.2

L& o

0.5

D4

profile from neutron reflectivity
*nanoparticles segregate to surface

D3

D2

01

Volume Fraction of the Nanoparticles

Krishnan et al. Langmuir (2005) Sandia

0 20 40 60 80 100 120 140 160 m National
Distance from Air Interface(A) Laboratories
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Coarse-Grained Models

polymer

‘ nanoparticle

<>

D

* polymers: freely-jointed, tangent chains
* athermal system:

°* model as hard spheres

* only interactions are entropic
* attractions:

* mean-field

* simple forms (LJ; exponential)

Kuhn length for PS: 1.485 nm

D=2.0(=2.97 nm
D=3.0(=4.45nm
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:;'qhysics of PNC Phase Behavior

hard sphere systems:
depletion attractions
(entropic)

*between particles
*between particles & hard walls

other contributions to equilibrium structure:
* polymer configurational entropy
* enthalpic (van der Waals) interactions
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Structure of a DFT: ISAFT
Qpa(r)] = Flpa(®)] + ¥ [ drpa(r) Va(r) - ]

..;"

F :Fid_|_Fhs_|_Fch
ideal gas part: F'[po(r kTZ/drpa ) [Inpa(r) — 1]

hard sphere functional:  F™*[pe(r)] = kT/drCID [ny(r)]  (“White Bear” FMT,
Roth et al., 2002)

chain bonding contribution:

h / o // ococ) oo /—»// seg /! 1
F pa kT/d g __ln/d 471: Gococ’ y ( )pou ( )‘l‘i

minimize free energy
0Q

op(r)

S. Tripathi and W.G. Chapman, Phys. Rev. Lett. 94, 087081
(2005); J. Chem. Phys. 122, 094506 (2005); ';h ﬁg{‘lg':al
S. Jain et al., J. Chem. Phys. 127, 244904 (2007) Laboratories

=0 — equations to solve for ) (r)
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Athermal Blends: A Layering Phase Transition
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E. S. McGarrity et al., Phys. Rev. Lett., 99, 238302 (2007).

0.025

0.03

N =40, D=2 (H3nm

«fixed total packing fraction
P,0° + PrpG,, = 0.79

first-order transition
sentropy-driven
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NP layer, areal coverage 0.82
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| N

surface free energy (QozlkT)

onstant pressure: still a transition
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Balance of entropic terms

dependence on chain length

D=2(,] 0=0.37

0.015 A
A - constant 1
“o_ 0.014 ® - constantP |
£ 0.013| g A
3 A R
.5 0.012
7 o
8 0.011 -
. al
.01
— 20 40 60 80

N

no transition for short chains
=—> configurational entropy

E. S. McGarrity et al., J. Chem. Phys., 128, 154904 (2008).

n

tfransition density (p' 03)

dependence on NP size
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:;}'Effect of Attraction Strength

attractive potentialu,,,(r) = _ce—(r—omp)/a

N
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Zo Sandia
Frischknecht, A. L., Padmanabhan, V. & Mackay, M. E. J Chem Phys 136, 164904 (2012). ﬂ" R
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Summary of NP Work

» modified iISAFT predicts NP surface segregation
« first order phase transition
» polymeric effect

« entropy alone is sufficient to cause NPs to segregate
to the surface

« transition still present for:
« constant pressure
« monomer-particle attractive interactions

E. S. McGarrity et al., Phys. Rev. Lett., 99, 238302 (2007).
E. S. McGarrity, A. L. Frischknecht, and M. E. Mackay, J. Chem. Phys., 128, 154904 (2008).

A. L. Frischknecht, V. Padmanabhan, M. E. Mackay, J. Chem. Phys., 136, 164904 (2012).
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Outline

» classical density functional theory

* nanoparticle/polymer assembly

— hard sphere systems

— polymer-nanoparticle attractions

* electrical double layers

— hard sphere systems

— electro-osmotic flow
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Classical Theory

Gouy-Chapman-Stern theory (GCS)

compact layer diffuse layer 5 Poisson-Boltzmann eqtn
f h 1T 1 1
é — 1 d* e —2Z;eQ
+ @ - : L e = 03 Z
® - L E Tt ()
- * ! 5 g
B - G‘j @ . '53'1 :
T - !
% - D @ ! electrostatic
- - g — potential ¢
BHe - |
_ 2@ O !

QOuter Helmholtz Plane
Inner Helmholtz Plane

¢(Z) = ZU{;TT tanh—l (tanh <Z{L;> exp[_/.g(Z — d)]) K = (2p062/6kT)1/2

size of diffuse layer depends on: potential, concentration, temperature
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Application of DFT to the Double Layer

“first done in 1987 (Boyle et al)
*seminal papers by Tang, Scriven, Davis, et al.
-other important work by D Henderson, D Gillespie, etc.

NN
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Primitive Model (PM)

sions as charged hard spheres
scontinuous dielectric medium for solvent
.charged hard surface (wall)

« if ions have same size, called restricted
primitive model (RPM)

Semi-primitive model (SPM)

.charged hard spheres
*neutral charged solvent, dielectric ¢
.charged hard wall

«also called 3-component model (3CM)
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Free-energy for Double-Layer

. 7 s corr
® ‘ F[pa] =F d[poz] + Fh [pa] + FMF[poz] + F [pa]
® ® o 1
FMEL,] = = /drzze ;(r)o(r
: ® ® 2 2 z; pilr) mean-field
» electrostatics

where ¢ satisifes Poisson’s eq with appropriate BCs

1
FTlpd = KT Y [ a0 ey (')
]

ion correlation term

Aci;i(Jr —1'|) = ¢i5(r) + y5C 5 (r)
" * ekT|r — r'| *

obtain from integral eq. theory of bulk state (MSA)
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Residual Equations to Solve

solve R;=0

Rlz 1npa() ,LLa /Zan (7) dI‘ —|—Z/drp,3 ’UJQ,B I'—I')
Y

_ Z/dr pB(I‘ )Acag(r —-r ) + Zoc¢(r)

g

Ry =n.(r) — Z / dr’ po (r)w) (r — 1)

Ry = V3¢ — —anpa T = 47T]€BT€€()CZ/62

T* characterizes strength of Coulomb interactions

e? _d
ArkTeey  T*

Bjerrum length: Ig =

where electrostatic energy = kT

Sandia
National
Laboratories



plp,
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DFT Results: Primitive Model

Boda et al., J Chem Phys (2002) 116, 7170-7176
points = MC; solid lines = DFT; dashed lines = PB
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p“(Z) /P “(0)

Semi-primitive model

Oleksy and Hansen, Mol. Phys. (2006) 104, 2871-2883

*semi-primitive model
all species have different sizes
suses White Bear HS functional

1M NaCl, o = 0.043 1M CaCl,, o =-0.087

25 ™
25 ot
2t
5 15¢
15| 5_;
A o 1t
it
05 0.5
0 s 0 1
0 2 4 6 8 10 12 0 2 4 6 8 10 12

Z[A] Z[A]

also tabulate surface tensions, adsorptions
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Bare Wall Potential (p e /k_ T)

@ 35 —1M
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Comparison of DFT with MD, PB

1:1 electrolyte in water, 300K, LJ interactions

¢c—-DFT Solvent
=c-DFT Counterion
c—-DFT Coion
—MD Solvent
—MD Counterion
—~MD Coion

-6 -4 -2 0o .2 4
Position in Channel (z = z/d)

93 mM, surface charge 0.44

Surface Charge (o d?/ e)

Jonathan W. Lee, Robert H Nilson, Jeremy A. Templeton, Stewart K
Griffiths, Andy Kung, and Bryan M. Wong, J Chem Theory Comput 8, 2012—
2022 (2012).

o
Log Number Density
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Application to EOF

consider steady-state electro-osmotic flow in a channel aligned along z

0 Ou, ()

%'u(‘?:c

pe(r) = ziepi(x)

— _peEz

obtain p, from DFT

7
4 6¢0 o . =
10 , N 0.1 M
3 ; o¥=0.5
e 10° Py A g SO0 o
J? 10% . counterions - ’ ] : _:-:' 7 H"‘-‘\‘PB
- F 2 40 |,.[ N
& ot - ’ MPB2
G 10 F :E M.z.\ L7 23 az \ *
= E ] 4 . \
2 ] solvent E 30 N
0 Y
30 (\/\_/\W 3 MPB \
= s 220 T ‘
E 10" | £ ; \
3 - i i
7 /. S (ol \
107 b A a ;
[0‘3>'.. PPN B B TR T 0.0' . A X .
3 -2 - 0 1 2 3 3 2 - 0 1 2 3
Normalized Position, x/d Normalized Position, x/d
Nilson, R. H. & Griffiths, S. K. Influence of atomistic physics on electro-osmotic flow: An m
analysis based on density functional theory. J Chem Phys 125, 164510 (2006).
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Comparison to MD

N S -y
— th e

Normalized Fluid Speed, u*
—
tn

1.0
0.5
0.0
Normalized Position, x/d
Nilson, R. H. & Griffiths, S. K. Influence of atomistic physics on electro-osmotic flow: An ﬂ.‘ ﬁggg'ﬁ'ﬂl
analysis based on density functional theory. J Chem Phys 125, 164510 (2006). Laboratories




Conclusions

« DFT often accurate molecular model
» faster than particle simulations
* includes polymers, charges

 DFT goes beyond Poisson-Boltzmann
 more accurate at high ion concentration
* more accurate at high surface density
* includes finite ion size, ion correlations
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Tramonto as a

Solvent for Simulation

single chain polymer in LJ solvent

0. initial polymer configuration

1. polymer acts as external field for DFT

2. solve 3D DFT,; calculate solvent potential of mean force on polymer
3. do MC step for new chain configuration; go back to 1.

L.J.D. Frink and M. Martin.
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