

Exceptional service in the national interest

Model realization and model reduction for quantum systems

Mohan Sarovar

Scalable and Secure Systems Research
Sandia National Laboratories, Livermore, USA

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Outline

- **Model realization and system identification**
 - Estimating unknown Hamiltonian parameters

[arXiv:1401.5780 \[pdf, other\]](#)

Quantum Hamiltonian identification from measurement time traces

Jun Zhang, Mohan Sarovar

Comments: 6 pages, 2 figures

Subjects: Quantum Physics (quant-ph)

- **Model reduction**
 - Reducing simulation cost for certain many-body quantum systems

[arXiv:1406.7069 \[pdf, other\]](#)

On model reduction for quantum dynamics: symmetries and invariant subspaces

Akshat Kumar, Mohan Sarovar

Comments: 24 pages, 2 figures. Comments welcome

Subjects: Quantum Physics (quant-ph); Mathematical Physics (math-ph)

System Identification

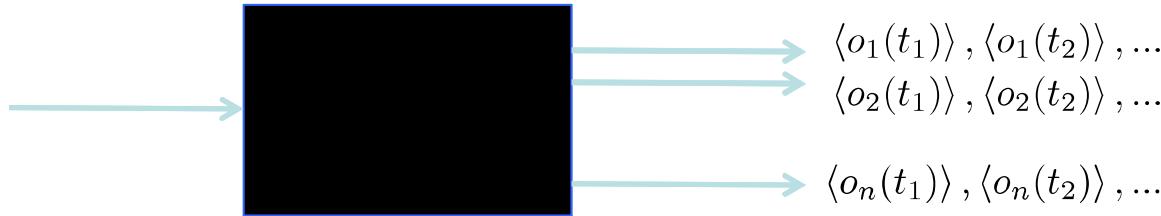
Identify system from input-output behavior

e.g. Process tomography: identify process (CP-map, unitary) at a particular time

Alternative: **identify generator/Hamiltonian of system**

System Identification

How powerful are time traces?



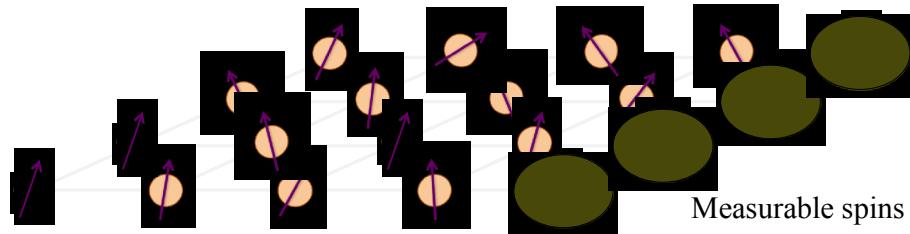
Additional considerations

- Measurements could be restricted
- May have partial information about system

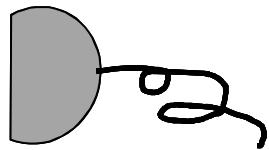
Assumptions:

1. system is finite dimensional
2. Hamiltonian dynamics (closed system)

An example



Parametric Hamiltonian
 $H(\theta_1, \theta_2, \dots, \theta_M)$



$\langle \sigma_z^1(t_0) \rangle, \langle \sigma_z^1(t_1) \rangle, \dots, \langle \sigma_z^1(t_n) \rangle$

Time trace of some
accessible observable

Can we back out the parameters in the Hamiltonian from just this?

The setup

Choose an orthogonal operator basis for the linear operator space (e.g. generalized Paulis)

$$[iX_j, iX_k] = \sum_{l=1}^{N^2-1} C_{jkl}(iX_l), \quad j, k = 1, \dots, N^2 - 1,$$

Hamiltonian can be expanded in this basis

$$H = \sum_{m=1}^M a_m(\theta) X_m$$

Goal: to identify a_m

Leads to a linear, autonomous equation for state $\mathbf{x}(t)$

$$\frac{d}{dt} x_k = \sum_{l=1}^{N^2-1} \left(\sum_{m=1}^M C_{mkl} a_m \right) x_l$$

$$\frac{d}{dt} \mathbf{x} = \mathbf{A} \mathbf{x}, \quad x_k(0) = \langle \psi(0) | X_k | \psi(0) \rangle$$

$$|\psi\rangle \in \mathbb{C}^N$$

$$\dim H = N \times N$$

$$\mathbf{x} \in \mathbb{R}^{(N^2-1)}$$

$$\dim A = (N^2 - 1) \times (N^2 - 1)$$

The setup

Similarly, each directly measured observable can be expanded in the same basis. Resulting in a AC system

$$\frac{d}{dt} \mathbf{x} = \mathbf{A} \mathbf{x}$$

$$\mathbf{y}(t) = \mathbf{C} \mathbf{x}(t)$$

But this may be too complex a description. E.g.

$$\mathbf{C} = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} a & b & 0 & 0 \\ c & d & 0 & 0 \\ 0 & 0 & a' & b' \\ 0 & 0 & c' & d' \end{bmatrix}$$

Filtration to find minimal description

$$O_i = \sum_j o_j^{(i)} X_j \quad \mathcal{M} = \{X_{\nu_1}, X_{\nu_2}, \dots, X_{\nu_p}\} \quad \text{Directly measured set}$$

$$H = \sum_{m=1}^M a_m(\theta) X_m \quad \Delta = \{X_m\}_{m=1}^M \quad \text{Hamiltonian set}$$

Filtration recursively constructed as:

$$G_0 = \mathcal{M}, \text{ and}$$

$$G_i = [G_{i-1}, \Delta] \cup G_{i-1}$$

where

$$[G_{i-1}, \Delta] \equiv \{X_j : \text{tr}(X_j^\dagger [g, h]) \neq 0, \text{ where } g \in G_{i-1}, h \in \Delta\}$$

Finite algebra => procedure terminates, resulting in filtration \bar{G} Accessible set

Results in minimal description

$$\frac{d}{dt} \mathbf{x}_a = \tilde{\mathbf{A}} \mathbf{x}_a$$

Sampling and discretization

$$\mathbf{x}_a(j+1) = \tilde{\mathbf{A}}_d \mathbf{x}_a(j)$$

$$\tilde{\mathbf{A}}_d = e^{\tilde{\mathbf{A}} \Delta t}$$

$$\mathbf{y}(j) = \tilde{\mathbf{C}} \mathbf{x}_a(j)$$

Note: $\mathbf{x}_a(j) \equiv \mathbf{x}_a(j \Delta t)$
 $\mathbf{y}(j) \equiv \mathbf{y}(j \Delta t)$

Explicit solution

$$\mathbf{y}(j) = \tilde{\mathbf{C}} \tilde{\mathbf{A}}_d^j \mathbf{x}_a(0)$$

Goal:

Use $\{\mathbf{y}(j)\}_{j=0}^J$ to estimate $\{a_m\}_{m=1}^M$

Strategy:

1. Find the minimal linear model that generates the collected data
2. Back out the unknown parameters from this model

Eigenstate realization algorithm

Step 1: Form Hankel matrix from data

$$\mathbf{H}_{rs}(k) = \begin{bmatrix} \mathbf{y}(k) & \mathbf{y}(k+1) & \cdots & \mathbf{y}(k+(s-1)) \\ \mathbf{y}(j_1+k) & \mathbf{y}(j_1+k+1) & \cdots & \mathbf{y}(j_1+k+(s-1)) \\ \vdots & \vdots & & \vdots \\ \mathbf{y}(j_{r-1}+k) & \mathbf{y}(j_{r-1}+k+1) & \cdots & \mathbf{y}(j_{r-1}+k+(s-1)) \end{bmatrix}$$

Step 2: Take SVD of Hankel matrix at k=0

$$\mathbf{H}_{rs}(0) = P \begin{bmatrix} \Sigma & 0 \\ 0 & 0 \end{bmatrix} Q^T = [P_1 \quad P_2] \begin{bmatrix} \Sigma & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} Q_1^T \\ Q_2^T \end{bmatrix}$$

Step 3: Form realizations of linear model from SVD components

$$\hat{\mathbf{A}}_d = \Sigma^{-\frac{1}{2}} P_1^T \mathbf{H}_{rs}(1) Q_1 \Sigma^{-\frac{1}{2}}, \quad \hat{\mathbf{C}} = E_p^T P_1 \Sigma^{\frac{1}{2}},$$

$$\hat{\mathbf{x}}(0) \equiv \Sigma^{\frac{1}{2}} Q_1^T e_1,$$

Realization to parameter estimation

The triple $(\hat{\mathbf{A}}_d, \hat{\mathbf{C}}, \hat{\mathbf{x}}(0))$ is a realization of the triple $(\tilde{\mathbf{A}}_d, \tilde{\mathbf{C}}, \mathbf{x}_a(0))$

$$\mathbf{y}(j) = \mathbf{C}\tilde{\mathbf{A}}_d^j \mathbf{x}_a(0) = \hat{\mathbf{C}}\hat{\mathbf{A}}_d^j \hat{\mathbf{x}}(0), \quad \text{for all } j \geq 0,$$

Markov parameters – model realization invariants

Define $\hat{\mathbf{A}} = \log \hat{\mathbf{A}}_d / \Delta t$

Expanding the exponential in a power series and equating terms,

$$\mathbf{C}\tilde{\mathbf{A}}^j \mathbf{x}_a(0) = \hat{\mathbf{C}}\hat{\mathbf{A}}^j \hat{\mathbf{x}}(0), \quad \text{for all } j \geq 0$$

Determined by the data

Polynomial equation in unknown parameters

Realization to parameter estimation

$$\mathbf{C}\tilde{\mathbf{A}}^j \mathbf{x}_a(0) = \hat{\mathbf{C}}\hat{\mathbf{A}}^j \hat{\mathbf{x}}(0), \quad \text{for all } j \geq 0$$

Determined by the data

Polynomial equation in unknown parameters

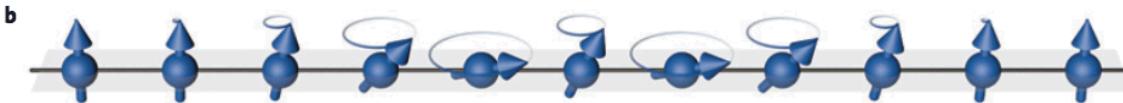
Solving these equations yields estimates of parameters

Notes:

1. Parameter estimates can be non-unique (gauge freedom/symmetries)
2. Δt must be small enough
How small? Smaller than one-over-fastest-frequency

Example

XX spin chain



Fukuhara et al. Nature Physics, 9 235 (2013)

$$H = \sum_{k=1}^n \frac{\omega_k}{2} \sigma_z^k + \sum_{k=1}^{n-1} \delta_k (\sigma_+^k \sigma_-^{k+1} + \sigma_-^k \sigma_+^{k+1})$$

$$\mathcal{M} = \sigma_x^1 \quad \text{Measure end spin}$$

$$\bar{G} = \{2^{-n/2} \sigma_x^1, 2^{-n/2} \sigma_y^1\}$$

Filtration (generalized Pauli basis)

$$\cup \{2^{-n/2} \sigma_z^1 \cdots \sigma_z^{k-1} \sigma_x^k, 2^{-n/2} \sigma_z^1 \cdots \sigma_z^{k-1} \sigma_y^k\}_{k=2}^n$$

$$\tilde{\mathbf{A}} = \begin{bmatrix} 0 & \omega_1 & 0 & -\delta_1 & & & & \\ -\omega_1 & 0 & \delta_1 & 0 & 0 & & & \\ 0 & -\delta_1 & 0 & \omega_2 & 0 & \ddots & & \\ \delta_1 & 0 & -\omega_2 & 0 & \ddots & \ddots & 0 & \\ 0 & \ddots & \ddots & \ddots & \ddots & \ddots & -\delta_{n-1} & \\ & \ddots & \ddots & \ddots & 0 & \delta_{n-1} & 0 & \\ & & 0 & 0 & -\delta_{n-1} & 0 & -\omega_n & 0 \\ & & & \delta_{n-1} & 0 & -\omega_n & 0 & \end{bmatrix}$$

Filtered system matrix is $2n \times 2n$ (as opposed to $2^n \times 2^n$)

$$\mathbf{x}_a = [\bar{x}_1, \bar{y}_1, \dots, \bar{x}_n, \bar{y}_n]^T$$

$$\bar{x}_1 = \langle \sigma_x^1 \rangle, \bar{y}_1 = \langle \sigma_y^1 \rangle$$

$$\bar{x}_k \equiv \langle \sigma_z^1 \cdots \sigma_z^{k-1} \sigma_x^k \rangle,$$

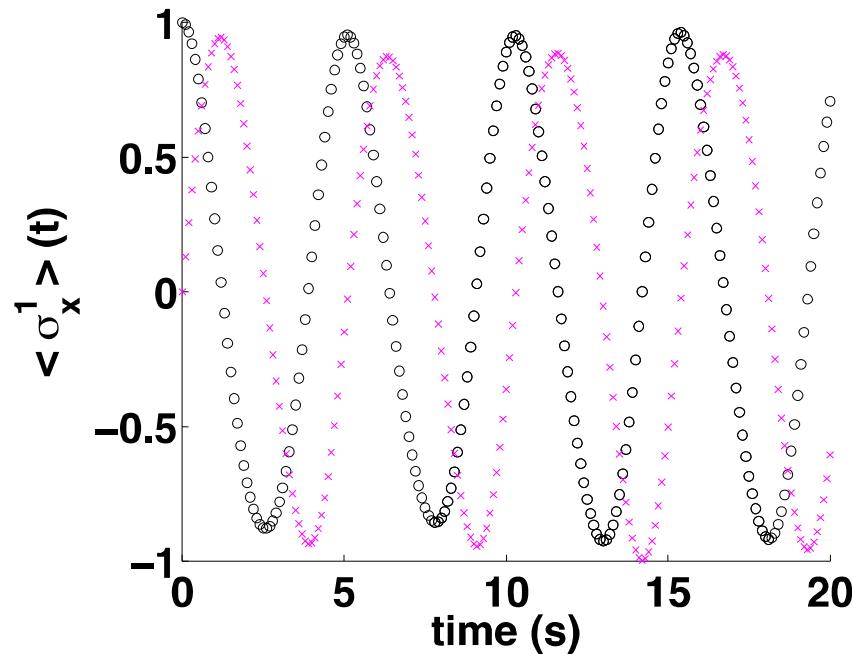
$$\bar{y}_k \equiv \langle \sigma_z^1 \cdots \sigma_z^{k-1} \sigma_y^k \rangle, \quad k \geq 2$$

Example

XX spin chain (n=3 qubits)

$$H = \sum_{k=1}^3 \frac{\omega_k}{2} \sigma_z^k + \sum_{k=1}^2 \delta_k (\sigma_+^k \sigma_-^{k+1} + \sigma_-^k \sigma_+^{k+1})$$

$$\omega_1 = 1.3, \omega_2 = 2.4, \omega_3 = 1.7, \delta_1 = 0.3, \delta_2 = 0.2$$



- $\frac{|0\rangle + |1\rangle}{\sqrt{2}}|00\rangle$
- ✖ $\frac{|0\rangle + i|1\rangle}{\sqrt{2}}|00\rangle$

Example

XX spin chain (n=3 qubits)

$$H = \sum_{k=1}^3 \frac{\omega_k}{2} \sigma_z^k + \sum_{k=1}^2 \delta_k (\sigma_+^k \sigma_-^{k+1} + \sigma_-^k \sigma_+^{k+1})$$

$$\omega_1 = 1.3, \omega_2 = 2.4, \omega_3 = 1.7, \delta_1 = 0.3, \delta_2 = 0.2$$

Construct Hankel matrix with $r=100$, $s=100$ and all $j=1$

$$\begin{aligned}
 \omega_1 &= \hat{\mathbf{C}}_2 \hat{\mathbf{A}}_2 \hat{\mathbf{x}}_2(0) = & 1.3 \\
 \omega_1^2 + \delta_1^2 &= -\hat{\mathbf{C}}_1 \hat{\mathbf{A}}_1^2 \hat{\mathbf{x}}_1(0) = & 1.78 \\
 \omega_1^3 + \delta_1^2 (2\omega_1 + \omega_2) &= -\hat{\mathbf{C}}_2 \hat{\mathbf{A}}_2^3 \hat{\mathbf{x}}_2(0) = & 2.647 \\
 \omega_1^4 + \delta_1^2 (3\omega_1^2 + 2\omega_1\omega_2 + \omega_2^2 + \delta_1^2 + \delta_2^2) &= \hat{\mathbf{C}}_1 \hat{\mathbf{A}}_1^4 \hat{\mathbf{x}}_1(0) = & 4.4041 \\
 \delta_1^4 (3\omega_1 + 2\omega_2) + \delta_1^2 (\delta_2^2 (2\omega_1 + 2\omega_2 + \omega_3) + 4\omega_1^3 + 3\omega_2\omega_1^2 + 2\omega_2^2\omega_1 + \omega_2^3) + \omega_1^5 &= \hat{\mathbf{C}}_2 \hat{\mathbf{A}}_2^5 \hat{\mathbf{x}}_2(0) = & 8.2942
 \end{aligned}$$

Coupling parameters only occur up to even order (symmetry) => can only be determined up to sign

Summary

- System identification through model realization
- Most useful when
 - measurements are restricted
 - prior information about process is available
- Continuing work:
 - Noisy measurements
 - Use a different model realization invariant (transfer function)
 - Markovian open-system evolution

Outline

- **Model realization and system identification**
 - Estimating unknown Hamiltonian parameters
- **Model reduction**
 - Reducing simulation cost for certain many-body quantum systems

[arXiv:1406.7069 \[pdf, other\]](#)

On model reduction for quantum dynamics: symmetries and invariant subspaces
[Akshat Kumar, Mohan Sarovar](#)

Comments: 24 pages, 2 figures. Comments welcome

Subjects: Quantum Physics (quant-ph); Mathematical Physics (math-ph)

Outline

Quantum state space: exponential

- Full-scale simulation of quantum systems very difficult
 - “Hilbert space is a big place” – Carl Caves
- Formal state is exponentially large in the number of particles

$$\rho_1 \in \mathcal{H}_1 \quad \dim \mathcal{H}_1 = n_1$$

$$\rho_2 \in \mathcal{H}_2 \quad \dim \mathcal{H}_2 = n_2$$

$$\rho_c \in \mathcal{H}_1 \otimes \mathcal{H}_2 \quad \dim \mathcal{H}_1 \otimes \mathcal{H}_2 = n_1 n_2 \neq n_1 + n_2$$

Outline

Quantum state space: not really exponential?

- For most practical systems, this exponential scaling is only formal

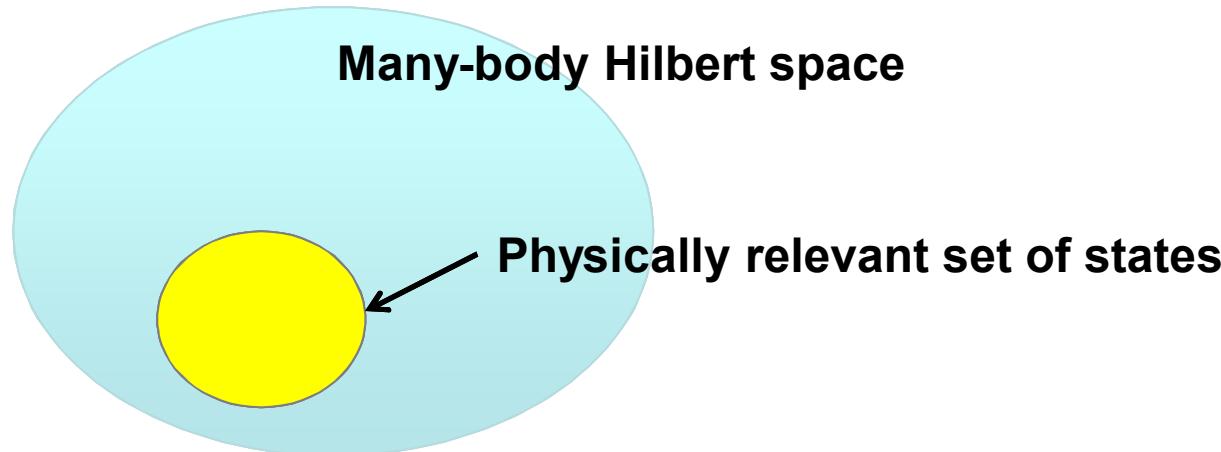
PRL 106, 170501 (2011)

PHYSICAL REVIEW LETTERS

week ending
29 APRIL 2011

Quantum Simulation of Time-Dependent Hamiltonians and the Convenient Illusion of Hilbert Space

David Poulin,¹ Angie Qarry,^{2,3} Rolando Somma,⁴ and Frank Verstraete²

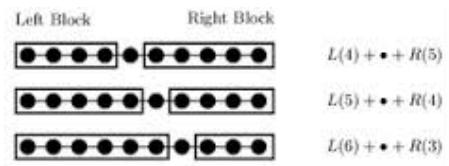
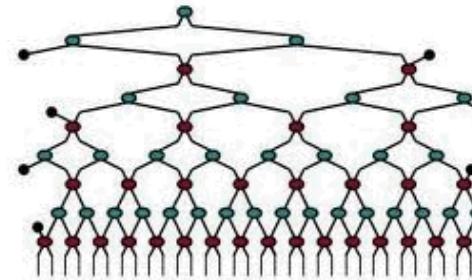


- Identifying this set of relevant states is difficult

Identifying reduced order models

Techniques in physics:

- static: DMRG, MPS, etc.



- dynamic: Nakajima-Zwanzig (statistical), Bloch equations, Glauber dynamics

$$\begin{aligned}
 \frac{d}{dt} \mathbf{P}x(t) = & \mathbf{P} \mathbf{A} \mathbf{P}x(t) + \mathbf{P} \mathbf{B}u(t) \\
 & + \mathbf{P} \mathbf{A} \mathcal{G}(t, 0) \mathbf{Q}x(0) \\
 & + \int_0^t \mathbf{P} \mathbf{A} \mathcal{G}(t, s) \mathbf{Q} \mathbf{A} \mathbf{P}x(s) ds \\
 & + \int_0^t \mathbf{P} \mathbf{A} \mathcal{G}(t, s) \mathbf{Q} \mathbf{B}u(s) ds.
 \end{aligned}$$

Model reduction

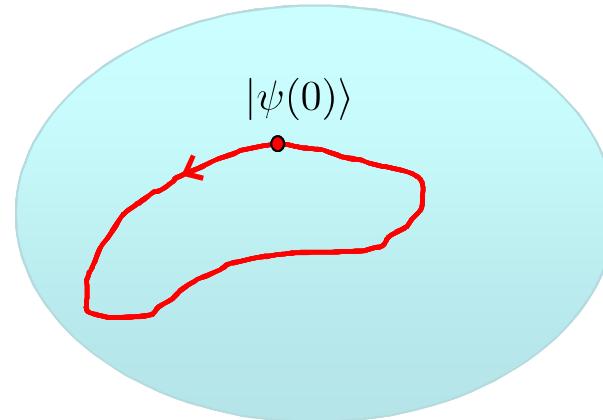
Desired Output Resources available	State snapshots	Input-output map	Dynamical model
Full state vector want to reproduce $ \psi(t)\rangle$	Proper orthogonal decomposition (POD)	-	Identify invariant subspaces
Input-output map want to reproduce $y(t)$	Empirical balanced truncation (BPOD)	Minimal model realization algorithms	Balanced truncation

Compressible dynamics

$$|\psi(t)\rangle = e^{iHt} |\psi(0)\rangle$$

$$H = \sum_i \lambda_i h_i$$

e.g. adiabatic QC



Problem:

Identify subspace of Hilbert space that contains $|\psi(0)\rangle$

and is invariant under Hamiltonian for all choices of λ

Projective model reduction: columns of P are basis vectors in this invariant subspace

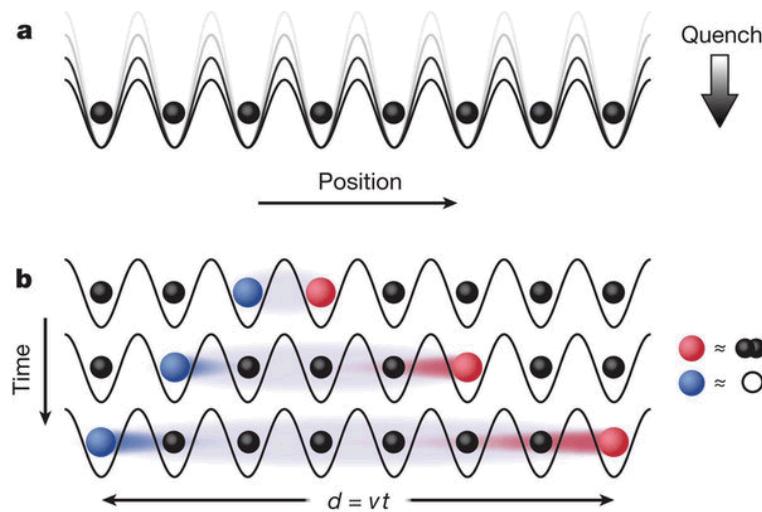
$$\frac{d}{dt} P |\psi(t)\rangle = P^\dagger H P |\psi(t)\rangle \quad \text{dim}P = N \times q, \quad q \ll N$$

$q \times q$ compressed description

E.g. Quench dynamics

Can identify many important features of many-body model by looking at dynamics after quench

Especially relevant now with cold-atom quantum simulators that are capable of quenched dynamics



Cheneau et al. *Nature*,
481 484 (2012)

E.g. Quench dynamics

Quantum Ising model

Fukuhara et al. Nature Physics, 9 235 (2013)

$$H = -B \sum_i \sigma_x^i - J \sum_{\langle i,j \rangle} \sigma_z^i \sigma_z^j$$

- Basic model for magnetism in crystalline material
- Competition between B and J results in phase transition behavior
- Can be emulated using cold atoms
- As a result: intense interest in dynamical phase transitions, quenching dynamics

Quenching dynamics:

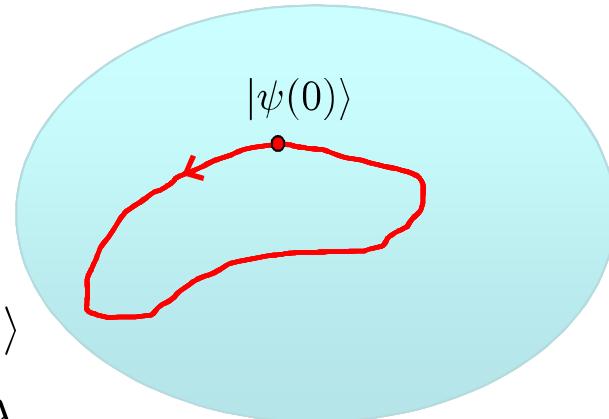
1. Prepare ground state of $H^0 = -B^0 \sum_i \sigma_x^i - J \sum_{\langle i,j \rangle} \sigma_z^i \sigma_z^j$
1. Rapidly change B and evolve system under $H^1 = -B^1 \sum_i \sigma_x^i - J \sum_{\langle i,j \rangle} \sigma_z^i \sigma_z^j$
1. The resulting dynamics is very informative; e.g. contains information about static phases of system

Compressible dynamics

$$H = \sum_i \lambda_i h_i$$

Problem:

Identify subspace of Hilbert space that contains $|\psi(0)\rangle$ and is invariant under Hamiltonian for all choices of λ



1. Certificates
 1. Is this dynamics compressible?
2. Computing reduced order models
 1. What is the invariant subspace and moreover, what is the compressed dynamical model?

Assumptions:

1. system is finite dimensional
2. Hamiltonian dynamics (closed system)

Certificate

$$H = \sum_i \lambda_i h_i \quad H \in L(\mathcal{H}) \quad \dim \mathcal{H} = N$$

$$\text{Coeff}(H) \equiv \{h_i\}$$

Theorem: (algebraic certificate)

The Hamiltonian acting on \mathcal{H} keeps invariant a non-trivial proper subspace iff the subalgebra generated by $\text{Coeff}(H)$ is a proper subalgebra of $L(\mathcal{H})$.

Intuition:

$$|\psi(t)\rangle = \exp\{i(\lambda_1 h_1 + \lambda_2 h_2)t\} |\psi(0)\rangle$$

$$|\psi(t)\rangle = \sum_n \frac{(it)^n}{n!} (\lambda_1 h_1 + \lambda_2 h_2)^n |\psi(0)\rangle$$

Products of h_i generate an algebra. If the full operator algebra is not generated, there are directions not explored in state space

Certificate

Special case: Pauli Hamiltonian

$$H = \sum_i \lambda_i \sigma_i$$

$$H \in L(\mathcal{H})$$

$$\mathcal{H} = \mathbb{C}^{2^n}$$

$$\sigma_i : \sigma_x^{(1)} \otimes \mathbf{1} \otimes \dots \otimes \sigma_y^{(n)}$$

$$\text{Coeff}(H) \equiv \{h_i\} \quad \dim \mathcal{H} = 2^n$$

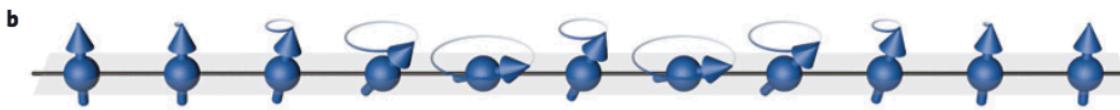
Theorem: (Pauli algebraic certificate)

Any Pauli Hamiltonian acting on n qubits with fewer than $2n$ terms has a non-trivial proper invariant subspace.

e.g. Quantum (transverse field) Ising model with random couplings and energies

Example: quench dynamics

Quantum Ising model



Fukuhara et al. Nature Physics, 9 235 (2013)

$$H = -B \sum_i \sigma_x^i - J \sum_{\langle i,j \rangle} \sigma_z^i \sigma_z^j$$

- Basic model for magnetism in crystalline material
- Competition between B and J results in phase transition behavior
- Can be emulated using cold atoms
- As a result: intense interest in dynamical phase transitions, quenching dynamics

Quenching dynamics:

1. Prepare ground state of $H^0 = -B^0 \sum_i \sigma_x^i - J \sum_{\langle i,j \rangle} \sigma_z^i \sigma_z^j$
1. Rapidly change B and evolve system under $H^1 = -B^1 \sum_i \sigma_x^i - J \sum_{\langle i,j \rangle} \sigma_z^i \sigma_z^j$
1. The resulting dynamics is very informative; e.g. contains information about static phases of system

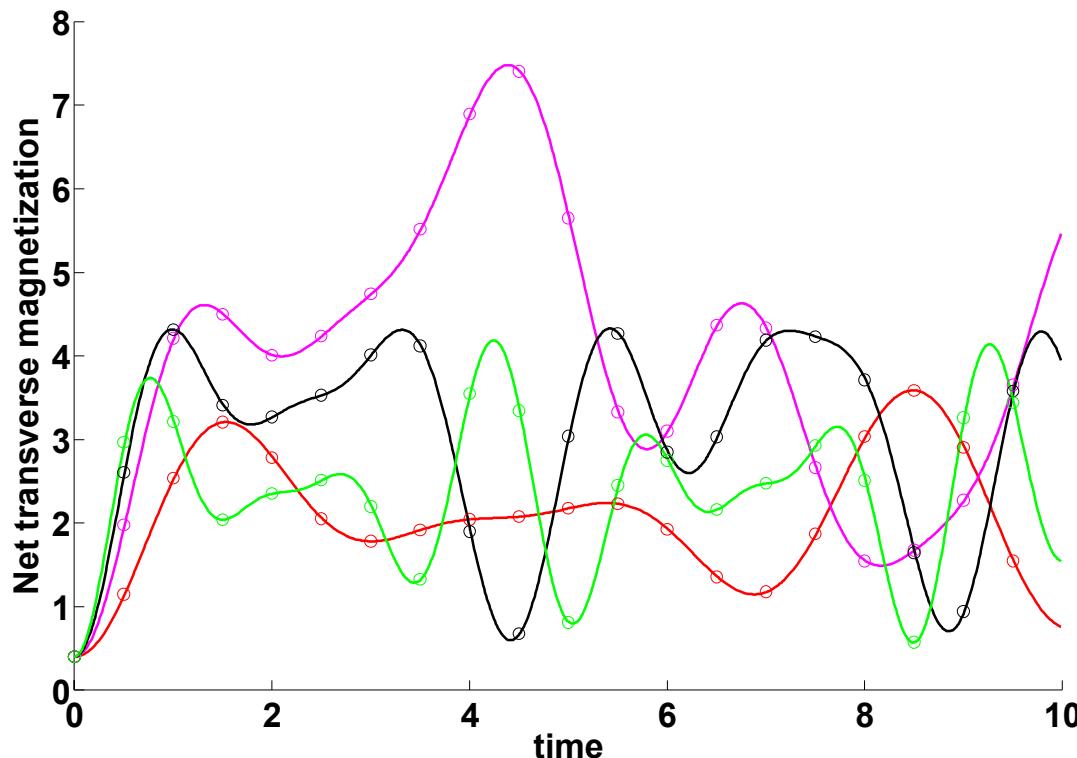
Example

POD-based model reduction to simulate quenching dynamics of the quantum Ising model

Simulation of quench dynamics in quantum Ising model

(Circles: full model, lines: reduced order model)

Quenches to different parameters are indicated by different colors



$N=8$ qubits

Full order model:
 $2^8 - 1 = 255$ complex
numbers

Reduced order model:
23 complex numbers

Order of magnitude
improvement in simulation
complexity

Conclusions and continuing work

- The exponentially scaling of simulation complexity of many-body quantum dynamics may be an “illusion” in many cases
- Model reduction techniques can identify the relevant set of states
- In extreme cases, there may be invariant subspaces
 - Have developed certificates to identify such cases
- Continuing work
 - Develop practical methods for constructing reduced order models
 - Develop code to implement model reduction techniques

Acknowledgements

Model realization/ERA

Jun Zhang

Joint Institute of UM-SJTU
Shanghai Jiao Tong University

Model reduction

Akshat Kumar

Kevin Carlberg

Sandia National Laboratories, Livermore

