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e Liquid-gas or liquid-liquid
Interfaces subjected to vertical
vibration will form surface waves
when the vibration amplitude
exceeds a critical value.

* The initially flat free surface then
becomes unstable to the formation
of standing surface waves.

 These waves have a frequency half
of the driving frequency (the first
sub-harmonic resonance), often

View of Faraday waves from above a vibrating free referred to as period_doub“ng
surface at: 80 Hz, 5 g, 76 mm dia, 25 mm depth,
20 ¢St PDMS silicone oil » These waves were first reported by

Michael Faraday in 1831, who

performed experiments using

water, ink, turpentine, egg whites,
Faraday, M., (1831), “On a peculiar class of acoustical alcohol and mercu ry

figures; and on certain forms assumed by a group of
particles upon vibrating elastic surfaces,” Philosophical

Transactions of the Royal Society, 121, 299-318.
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Fioree 1. Excitation at half the excitation frequenecy of a fluid layer undergoing a vertical
oacillation. When the vessel goes down, the fluid ipertia tends to create a surface deformation, as
in the Rayleigh-Taylor instability. This deformation disappears when the vessel comes back up,
in & time equal %o & quarter-period of the corresponding wave (T,). The decay of this deformation
creates & flow which induces, for the following excitation period T', the exchange of the maxima and
the minima. Thus one obtaing T, = 27

Douady, S., (1990), “Experimental study of the Faraday instability,” J. Fluid Mech., 221, 383-409.
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hy do we care about Faraday Waves’>@
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120 Hz, 14.5 g

e e —

130 Hz, 17 g
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140 Hz, 19.7 g

e T T —

150 Hz, 22.6 g

_,J

160 Hz, 25.8 g

As part of a larger study on the effect of vibration on bubbles we need to
understand when free surface breakup occurs and when breakup acts
as a bubble source (20 cSt PDMS silicone oil with air above)
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175 umwp -p a|SpIacement 4.39 250 pm 'p-p displac‘ment, 6.1
10 ¢St PDMS, 110 Hz
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Single frequency vibrations
Z = z,Sinomt

V—@—wz COoSwmt
S dt 0

_dz_ .
a—w— -0 ZOSIH(Dt

- Vibration conditions completely
Labworks ET-140 shaker defined by o=2=rf, z,, and a (pick 2,
third is determined)
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Frequency
The Spectrum of a Sine Wave
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* Vibration leads to a modulated gravity

g =g - 0?’z,sinwt

 Small amplitude waves in a vessel

undergoing sinusoidal vertical oscillations
can be described by the Mathieu equation
(when damping is small):

d’z dz ) _

FT BB T |w§ + z,sin(wt)|z = 0
where o Is the excitation frequency and g is
the amplitude (proportional to z,). This
describes a simple harmonic oscillator with
a periodically time-varying spring constant.
After a spatial Fourier transform, each
wavenumber k also satisfies the Mathieu
equation
d’z dz

Tl + 4vk? ’T: + k|g — w?zysin(wt)|z =0
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(approximately £ frequency

There are instabilities for certain
ranges of the unperturbed frequency
®,, the damping y, the forcing
frequency w, and the forcing
amplitude z,. The easiest instability to
excite gives free surface oscillation at
half the forcing frequency o.

"GURE 2. Stability chart for the solutions of Mathieu’s equation
y q

d?a m
ar +{p—2¢cos 2T a = 0.

*Benjamin and Ursell, The Stability of the Plane Free Surface of a Liquid in
Vertical Periodic Motion, Proc. R. Soc. Lond. A, 1954, 225
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Wave patterns depend on excitation frequency, the shape of the
container, fluid properties (esp. viscosity), and the depth.

()

FIG. 1. Images of the fluid suwrface at frequencies [ where
patterns of square symmetry are observed: (a) f = 45.0 Hz,
hexagonal symmetry; (b) f = 30,0 Hz, 8-fold gquasiperiodic;
{e) f = 290 Hz, and 10-fold quasiperiodic; (d) f = 27.0 Hz.
The visualized region is of diameter 26 cm, approximately 1,/2
the diameter of the contamer.

Binks and van de Water, Nonlinear Pattern Formation of Faraday Waves, Phys. Rev. Letters, 1997
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Labworks ET-140
- electrodynamic shaker

Acrylic boxes of several
shapes and sizes mounted on
top of shaker

PDMS silicone oil in box
(v =20 cSt for most
experiments to date)

Size and depth considerations

Aspect ratio: Bechhoefer et
al. (JFM, 1995) discuss
sidewall meniscus wave
Influence at different
width:depth ratios. Ours
range from 3:1to 10:1.
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View of Faraday waves from directly above a vibrating free surface at:
130 Hz, 9.4 g, 76 mm dia, 25 mm depth, 20 cSt PDMS silicone oil
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Most real world vibrations don’t occur
at a single frequency, but are a
combination or distribution of

. 0 ]
frequencies K\_

Random vibration is motion at many . A
frequencies simultaneously, with the
amplitude of each frequency varying

randomly with time.

Random vibration is usually described
through its Power Spectral Density
(PSD) with units of g%/Hz

Acceleration, velocity, displacement
no longer directly related to frequency
as in sine excitation. The RMS
amplitude vs. time is statistically
defined.
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Example

POWER SPECTRAL DENSITY FUNCTION - LINE GRAPH
Qverall Level = 1.47 GRMS
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*http://www.vibrationdata.com/tutorials2/psd.pdf
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Strange Units (g4/Hz)
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— PSD defined by mean squared acceleration (g?) divided by

the bandwidth (Hz)

PSD (Power Spectral Density) really should be ASD

(Acceleration Spectral Density).

— However, commonly used PSD indicates the "power" from
the output of accelerometers during structural test.
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=
=
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Figure 5. Random Vibration Spectrum
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» Most literature on Faraday waves
considers single sine frequencies

» A few groups have examined multiple
discrete frequency excitation (Zhang and
Vinals, JFM, 1997)

 For most or all applications, the forcing is
via a continuous spectrum.

1 « Zhang et al. (Phys. Fluids, 1993) showed

that random forcing broadens the
unstable frequency range and that the
threshold acceleration needed to form
waves increases as the spectrum
broadens.

* Repetto and Galletta (JFM, 2002)
performed theoretical study showing that
the range of unstable frequencies
broadens under narrow-band spectrum
random forcing compared to single
frequency forcing
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Wave patterns caused by each forcing frequency and interactions
between waves

Arbell and Fineberg, Pattern Formation in two-frequency forced parametric waves, Phys. Rev. E, 2002
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Program Random Test

Spectrum Breal: Points Test
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PSD defined as shown here
— 1x scaling or 2.14 g rms amplitude
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Critical amplitude

/5 mm dia, 25 mm depth
2 cSt PDMS: 0.96 g rms
10 cSt PDMS: 2.03 g rms
20 cSt PDMS: 4.23 g rms
50 cSt PDMS: 4.49 g rms

Defining transition difficult.
For single frequency
excitation Faraday waves can
be distinguished from
meniscus wave sloshing by
their frequency. Not the case
for random excitation.

20 cSt PDMS, 4.23 g rms
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Early results show that
random excitation Faraday
waves ... Theory

Continue experiments and
comparison with model

Vary aspect ratio

Determine quantitative test for instability

— Distinguish from sloshing (period doubling works for
single frequency sine excitation, not clear for random vibe)

Minimize sloshing and wave reflection
— Angled walls (Arbell and Fineberg, 2002)
— Fill to brim (Douady, 1990)
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Questions?

View of Faraday waves on a vibrating free surface.
80 Hz, 5 g, 20 cSt PDMS
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 Faraday waves are generated at the interface between two fluids when parametrically excited by
vertical vibration. This is most commonly seen at liquid-gas interfaces where Faraday waves can
form a variety of patterns on the free surface, with wave period twice the excitation period
(Faraday, 1831). Many studies have examined Faraday waves in a wide range of liquids and
containers under a wide range of single frequency vibration excitation conditions, both
experimentally and analytically (Benjamin and Ursell (1954); Wright et al., 1996; Wernet et al.,
2001). Most vibrations encountered in the real world are composed of multiple simultaneous
frequencies, with the vibration amplitude varying randomly with time. However, very few studies
have examined the effect of multiple frequencies on the generation of Faraday waves (Zhang,
1993; Repetto and Galletta, 2002). In the present work we review the literature on random
vibration experiments and Faraday waves excited by such vibrations. Experimental results will
be presented and discussed, and compared with analytical predictions. These phenomena have
been observed in several PDMS oils over a broad range of viscosities, as well as in water.
Random vibration conditions are varied, and include fairly broad power spectra.

e 6talks in 2 hours —shoot for 15-17 minutes

e Benjamin, T. B. and Ursell, F., (1954), “The Stability of the Plane Free Surface of a Liquid in Vertical Periodic Motion,” Proc.
Royal Soc. A, 225, 505-515.

» Faraday, M., (1831), “On a peculiar class of acoustical figures; and on certain forms assumed by a group of particles upon
vibrating elastic surfaces,” Philosophical Transactions of the Royal Society, 121, 299-318.

* Repetto, R. and Galletta, V. (2002) “Finite amplitude Faraday waves induced by a random forcing,” Phys. Fluids, 14(12),
4284-4289.

* Wernet, A., Wagner, C., Papathanassiou, D., Muller, H. W., and Knorr, K., (2001), “Amplitude Measurements of Faraday
Waves,” Phys. Rev. E, 63, 06305:1-9.

* Wright, W. B., Budakian, R., and Putterman, S. J., (1996), “ Diffusing Light Photography of Fully Developed Isotropic Ripple
Turbulence,” Phys. Rev. Let.. 76(24), 4528-45313.

e Zhang, W., Casademunt, J., and Vinals, J., (1993), “ Study of the Parametric Oscillator Driven by Narrow-Band Noise to
Model the Response of a Fluid Surface to Time-Dependent Accelerations,” Phys. Fluids A, 5(12), 3147-3161.
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Difficult since the interface is not very reflective (Wernet
et al., 2001). Techniques include:
— Shadowgraphy: Pass parallel beam of diameter equal to
container size through interface and record pattern caused

by peaks and valleys acting as array of lenses. Limited to
small surface deflections.

— Laser reflection: Track focused laser beam reflection onto
position-sensitive detector

— Diffusive scattering: Seed liquid with dye or particles to
scatter light. Wave crests contain more liquid so absorb or
scatter more light than thinner valleys do.

— Contacting permittivity
— Interferometry

— Radar back scatter VAVAVAUAWAN

— X-ray absorption
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Fravre 6. {a) The prineiple of the measurement method of the surface wave amplitude : a laser
beam is reflected at the free surfece, and one looks at the image point M on a vertical sereen far
away. The origin is chosen as the reflection with a horizontal surface. In the geometrical
approximation. M only depends on the slope of the surface at the reflection point. (5) and (¢} The

image points on the scréen in two cases : the relation can be easily inverted to give the loeal slopes,
and thus to measure the amplitude.

Douady, S., (1990), “Experimental study of the Faraday
instability,” J. Fluid Mech., 221, 383-4009.
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Position Sensitive Detector
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Figure 1. a) Experimental setup; b) typical signal recordings for
the PSD (upper trace) and the accelerometer (lower trace),
showing the parametric resonance of the surface oscillations.

Residori et al. 2007), “Two-mode competition in Faraday
instability,” Europhysics Letters, 77 44003 (5pp).
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Photos or movies: Left clear wave pattern, right
unclear

Quantitative definition of transition from undisturbed to
Faraday waves is difficult
— Sloshing, or meniscus waves, formed at the walls have no

stability threshold so are always present. These waves
have a frequency equal to the driving frequency



