
LLNL-JRNL-652972

An Easy Method to Accelerate an
Iterative Algebraic Solver, part II

L. L. LoDestro, J. Yao

April 10, 2014

Journal of Computational Physics

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

An Easy Method to Accelerate an Iterative Algebraic Solver, part II

L. L. LoDestro and J. Yao
Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA, 94551-0808

(Dated: April 9, 2014)

This paper is a companion to [Yao, Journal of Computational Physics 267 (2014)]. We provide a
compact alternative development of Yao’s method to accelerate to order 2n−1 a fixed-point iterative
scheme with an original convergence-rate of order n. Using this approach, we show how to further
improve the order of convergence by increasing s, the number of steps per iteration. This scheme
extends to arbitrarily high order without extra derivative evaluations per iteration. We discuss the
efficiency of the new methods, including s = 2 (Yao’s method), and compare to that of the original
method as a function of n; and we consider the efficiency for systems of equations of system-size M .
For n=2 and large M , we find that the multi-step scheme peaks in efficiency at about s ln s ∼ M

function evaluations, where its computational speed is several times faster than Newton’s method.

I. INTRODUCTION

In this paper we expand upon J. Yao’s recent paper, ‘An Easy Method to Accelerate an Iterative Algebraic Solver,”
[1]. We provide a compact development of the method, alternative to that in [1], for the acceleration to order 2n−1
of fixed-point iterative schemes with an original convergence-rate of order n. Using this approach, we show how to
further improve the order of convergence by increasing s, the number of steps per iteration. (By “step” is meant
a new estimate of the root. s = 1 for, e.g., an nth-order Taylor-series based method and s = 2 for the modified
method in [1].) This scheme extends to arbitrarily high order without extra derivative evaluations per iteration. We
discuss the efficiency of the new methods, including s = 2 (the method proposed in [1]), and compare to that of the
original method as a function of n; and we consider the efficiency for systems of equations of system-size M . For n=2
and large M , we find that the multi-step scheme peaks in efficiency at about s ln s ∼ M function evaluations, where
its computational speed is several times faster than Newton’s method. Finally, by iterating the method itself we
generate a family of new methods with similiar performance to the multi-step schemes, but with a different sequence
of intermediate points and final step-sizes, which may be of interest in the further development of new methods.

Note that for M > 1, all the methods discussed in this paper require one accurate Jacobian inverse at every iteration
k.

II. DEPENDENCE OF THE EFFICIENCY OF FUNCTION EVALUATIONS UPON THE ORDER OF

CONVERGENCE

It might seem at first that there is a large computational advantage in using high-order methods; but even for
scalar f ’s with simple derivatives this is often not the case. The basic reason is that executing two iterations reduces

the error by ∼ (fn
k)n ∼ f

(n2)
k , not by f2n

k (k is the iteration index, n the order of convergence); i.e., the exponent
of the error increases non-linearly with n, so that fairly rapid reductions are achieved in k even at low n. It can be
cheaper to take more iterations than to accomplish more per (more expensive) iteration with fewer iterations. The
concept of error-reduction per function-evaluation (Ef in this paper) was introduced to study the question; it provides
a measure of the efficiency of the function-evaluations called for by a given a method. Early mention of Ef can be
found in A. M. Ostrowski [2]; see Refs. [3] and [4] and references therein for fuller discussions. We give a quick review
of the concept here and use it in subsequent sections to assess the performance of our modified methods against that
of an original nth-order method.

Consider a fixed error-reduction exponent E after k iterations of an nth-order method: E = nk. The total number of
function-evaluations to reach E is NT = kNk, where Nk is the number of function-evaluations required per iteration.
(“Function-evaluation” here refers to f as well as to any derivative or partial derivative. For simplicity we assume
that the evaluations are all of comparable expense. Adjustments to account for finite-differenced or other numerically
computed derivatives are easily made.) Then E = nNT /Nk = (n1/Nk)NT , so that the reduction per function-evaluation
is Ef = n1/Nk . Evaluating Ef for the original Taylor-series-based root-solver in [1] gives Ef = n1/n; and for the

modified method, Ef = (2n−1)1/(n+1). For large n, the efficiency of both these methods clearly declines with n. We
explore Ef in more detail in Sec. IV, after further generalization of the fundamental acceleration method.

Finally we observe that Ef is a major determinant of the computational expense CCPU to realize a given E :

CCPU ∼ CCPUf
NT = CCPUf

ln E

ln Ef
−−−−−−−→
(Ef−1)≪1

CCPUf

ln E

Ef − 1
, (1)

2

where CCPUf
is the cost per function-call. Throughout this paper, we neglect the cost of inverting the Jacobian in

estimating CCPU.

III. GENERALIZATION OF THE ACCELERATION SCHEME TO FIXED-POINT ITERATIVE

METHODS

Acceleration of n > 2 Taylor-series-based root-solvers, while achieving convergence of order 2n − 1 with n + 1
function-evaluations, has the drawback in common with the original solver that roots of polynomials of degree n − 1
must be solved for the intermediate and final step-sizes; and the appropriate roots from these solves must be identified.
Here we circumvent these complications by developing the acceleration method for fixed-point iteration: One solves
for f(x) = 0 by iterating upon xk according to

xk+1 = xk + δk (2)

with δk = δ(fk, f ′
k, f ′′

k , . . .), where fk ≡ f(xk), f ′
k ≡ f ′(xk), f ′′

k ≡ f ′′(xk), etc.. Without loss of generality, δ can be
written in the form

δ = −
f

f ′
(1 + g) , (3)

with g = g(f, f ′, f ′′, . . .) and gk ≡ g(fk, f ′
k, f ′′

k , . . .). The iteration scheme is said to be nth-order convergent if

fk+1 ∼ O(δn
k) . (4)

The Taylor expansion of fk+1 then becomes (employing the alternate notation f (i) for the ith derivative of f where
convenient):

fk+1 =
∞
∑

i=0

f
(i)
k

δi
k

i!
= −fkgk +

∞
∑

i=2

f
(i)
k

i!

(

−fk

f ′
k

)i

(1 + gk)
i
. (5)

In the second equality, note that fkgk, the remainder of the two lowest-order terms, can be at most of second order
(since fk+1 ∼ O(δn

k)), which then implies fk ∼ δk, which in turn restricts gk to at most first order. The series is in
the form of a function, h, that is analyzed in the Appendix. It is shown there what conditions g must satisfy in order
that fk+1 ∼ O(δn

k).
We now apply our acceleration approach to this fixed-point iteration. The functions f, g, and δ will remain the

same. To distinguish the modified iterates, we will use use tilde’s, i.e., δ̃k ≡ δ(f̃k, f̃k
′
, f̃k

′′
. . .), f̃k ≡ f(x̃k), f̃k

′
≡

f ′(x̃k), g̃k ≡ g(f̃k, f̃k
′
, f̃k

′′
. . .), etc.. We set

x̃k+1 = x̃k + ∆k

with

∆k = −
f̃k + f∗

f̃k
′ (1 + g∗)

g∗ ≡ g(f̃k + f∗, f̃k
′
, f̃k

′′
. . .)

and

f∗ ≡ f(x̃k + δ̃k) =
∞
∑

i=0

f̃k
(i) δ̃i

k

i!
= −f̃k g̃k +

∞
∑

i=2

f̃k
(i)

i!

(

−f̃k

f̃k
′

)i

(1 + g̃k)
i

.

We then have

f̃k+1 =

∞
∑

i=0

f̃k
(i) ∆i

k

i!
= −f∗ − (f̃k + f∗)g∗ +

∞
∑

i=2

f̃k
(i)

i!

(

−(f̃k + f∗)

f̃k
′

)i

(1 + g∗)
i
. (6)

In the second equality, observe that both f∗ and the remaining terms are each in the form of the function h introduced
as the right-hand-side of Eq. (5). Thus the results of the Appendix can be applied to them. This gives their scalings

as order f̃k
n

and (f̃k + f∗)n ∼ f̃k
n

respectively, and Eq. (A7) is then used to obtain

f̃k+1 = O(f∗× max(f∗, f̃k)n−1) = O(f̃k
2n−1

).

As in Ref. [1], with a cost of a single additional function-evaluation, the convergence of the original nth-order method
has been raised to 2n−1.

3

To complete contact with Ref. [1], we also calculate

(∆k − δ̃k)f̃k
′
= (g̃k − g∗)f̃k − (1 + g̃k)f∗ ∼ −f̃k g̃(1)f∗ − f∗ ∼ f∗ ∼ O(δ̃n

k).

IV. INCREASING THE CONVERGENCE-RATE FURTHER WITHOUT ADDITIONAL DERIVATIVE

EVALUATIONS

In this section we consider additional function evaluations (but no additional derivative evaluations) in going from
fk to fk+1 with a fixed-point iterative method. Our primary interest is to accelerate schemes for large systems (which
typically call for n = 2 to avoid the expense of derivatives beyond the first), but we begin with general n and with a
scalar f for simplicity (the generalization to M > 1 is straightforward).

We begin with some new notation. The subscript k will be dropped; all quantities should be understood to be at
iteration k unless explicitly noted otherwise. Similarly the tilde (̃), denoting a modified method’s iterates

(

as opposed

to the original’s, i.e., with Taylor series (5)
)

will be dropped. We identify step quantities with a bar (̄) and the step
index with a capitalized Roman-numeral superscript; and we define s to be the number of steps. We map our new
variables onto the accelerated fixed-point method of Sec. III:

x̄S0 ↔ x̃k

f̄S0 ↔ f̃k

ĀS0 ↔ f̃k

ḡS0 ↔ g̃k = g(f̃k, f̃k
′
, f̃k

′′
. . .)

δ̄S0 ↔ δ̃k = −(f̃k/f̃k
′
) × (1 + g̃k)

x̄SI ↔ x∗ = x̃k + δ̃k

f̄SI ↔ f∗ = f(x∗)

ĀSI ↔ f̃k + f∗

ḡSI ↔ g∗ = g(f̃k + f∗, f̃k
′
, f̃k

′′
. . .)

δ̄SI ↔ ∆k = −((f̃k + f∗)/f̃k
′
) × (1 + g∗)

x̄SII ↔ x̃k+1 = x̃k + ∆k

f̄SII ↔ f̃k+1 = f(x̃k+1),

where we have introduced the new variable ĀSi ≡
∑i

j=0 f̄Sj .

We write the new scheme
(

omitting updates of quantities which simply follow their definitions, such as f̄Si+1 =

f(x̄Si+1)
)

:

x̄S0 = x̄

ḡS0 = g(ĀS0 , f ′, f ′′, . . .)

δ̄S0 = −(ĀS0/f ′) × (1 + ḡS0)

x̄Si = x̄ + δ̄Si-1

ḡSi = g(ĀSi , f ′, f ′′, . . .)

δ̄Si = −(ĀSi/f ′) × (1 + ḡSi)

x̄Ss = x̄ + δ̄Ss-1

xk+1 = x̄Ss , (7)

4

giving for the Taylor expansion of fk+1:

fk+1 =

∞
∑

i=0

f (i) (δ̄
Ss-1)i

i!
= f − (1 + ḡSs-1)ĀSs-1 +

∞
∑

i=2

f (i)

i!

(

−ĀSs-1

f ′

)i
(

1 + ḡSs-1
)i

= f − ĀSs-1 + h̄Ss-1 . (8)

To proceed, we develop an iterative relation for the steps from the intermediate Taylor series, beginning with:

f̄Si+1 = f − ĀSi + h̄Si .

Subtracting the series for f̄Si gives:

f̄Si+1 − f̄Si = −ĀSi + ĀSi-1 + h̄Si − h̄Si-1 ,

so that

f̄Si+1 = h̄Si − h̄Si-1 ∼ (ĀSi − ĀSi-1)O(fn−1) ∼ f̄Si O(fn−1) ∼ O(f (i+1)(n−1)+1),

where we have used Eq. (A7). Using this result in Eq. (8), we obtain the convergence rate:

fk+1 ∼ O(fs(n−1)+1), (9)

having evaluated one derivative and s f -functions.
The error-reduction per function-evaluation of this scheme, assuming f ′ costs about the same as f to evaluate, is

Ef = (s(n−1)+1)1/(n+s−1). Evaluations of Ef at small s and n reveal a single maximum, Ef = 1.495 at s = 2, n = 3,
i.e., at the first case analyzed in [1]—Halley’s scheme accelerated to 5th-order. For comparison, the original Halley’s
scheme, s = 1, n = 3, has Ef = 1.442.

We note that for n=2 and a scalar f , this multi-step method can be found in [4]. The order of convergence is
proved there in a different way—by making use of the mean-value theorem—which may be of interest.

A. Accelerating Newton’s method for systems of equations

Our interest is primarily in system-size M > 1, so we now specialize to n=2—Newton’s method—in order to limit
the expense of derivative evaluations to M2 scaling. At large M the trends in Ef are dramatically altered from the
observations following Eq. (9). The efficiency measure becomes

Ef = (s + 1)1/(sM+M2) −−−−−−→
1≪s≪M s1/M2

,

from which it is readily seen that there is substantial improvement with increasing s and an eventual decline at s > M ;
and that as M → ∞, Ef → 1, i.e., the per-call improvement becomes negligible. Setting dEf/ds = 0 to optimize the
efficiency yields the approximate solution s ln s ∼ M .

In Fig. 1 we illustrate the efficiency of an s-step method’s function-evaluations as a function of s and system-size
M , compared to Newton’s method: We plot constant contours of (Ef (s,M) − 1)/(Ef (1,M) − 1). The figure shows
that for large M , the introduction of additional steps s at each iteration k offers a significant advantage: Referring to
Eq. (1), we see that for M ∼ 10–50, CCPU is reduced by a factor of two to three.

B. Two examples

Next we present two examples of the scheme (7) with n = 2, s = 3, and M = 32. In order to illustrate the
performance of the scheme as it may often occur in practice, we use 8-byte arithmetic and, to further control precision,
invert the Jacobian matrices ourselves.

5

FIG. 1: The color-map of the relative efficiency metric (see text for its definition) for the accelerated Newton scheme, Eqs. (7),
with n=2. The dotted blue curve plots the approximate s to maximize Ef , M =s ln s.

A TRI-DIAGONAL SYSTEM

We choose the following set of equations:

x1 +
1

2
sin(x2) = 1.0;

1

2
sin(x1) + x2 +

1

2
sin(x3) = 0;

.

1

2
sin(xi−1) + xi +

1

2
sin(xi+1) = 0;

.

1

2
sin(xM−1) + xM = 0. (10)

This results in a tri-diagonal Jacobian matrix, which we invert by an explicit back-substitution. The L1 residues
obtained with Newton’s method and the accelerated scheme are plotted in Fig. 2. The initial guess is set to xi = 1/2
for each variable. Until the final iterations, which have reached machine accuracy, the points follow their predicted
convergence rates.

A POSITIVE DEFINITE SYMMETRIC SYSTEM

This equation system is described by the following equation-set for i = 1, 2, ...M

Mxi +

M
∑

j=1

sin(xi + xj)

i + j − 1
= M +

M
∑

j=1

sin(1
i + 1

j)

i + j − 1
. (11)

6

Number Iterations

R
es

id
ue

 L
og

or
it

hm

0 1 2 3 4

-16

-12

-8

-4

0

FIG. 2: The convergence map (residue logarithm vs. num-
ber of iterations) of Newton’s method (diamonds, follow-
ing a parabola) and the accelerated method (circles, fol-
lowing a cubic curve) for the equation system (10).

Number Iterations

R
es

id
ue

 L
og

or
it

hm

1 2 3 4 5 6 7 8 9 10 11 12
-15

-12

-9

-6

-3

0

FIG. 3: The convergence map of Newton’s method and
the accelerated method for the equation system (11).
Note the linear convergence rates introduced by a finite
accuracy of the matrix decomposition.

This system has the solution xi = 1/i for all i. We employ the Cholesky algorithm to decompose the Jacobian.
The initial guess is the solution plus a random perturbation of up to 50% of the magnitude of each root. The L1

residues obtained with Newton’s method and the accelerated scheme are plotted in Fig. 3. Here we see that successive
iterates are in a fixed ratio, i.e., we have obtained only linear convergence for each of the schemes. This is because the
condition number of the Jacobian matrix is large and, given the precision of our calculation, our inverse inaccurate.
But we nevertheless include this example, because it shows that our accelerated scheme still outperforms the standard
scheme by a factor of two in convergence rate while only slightly increasing the cost

(

M(2+M) compared to M(1+M)

function evaluations per iteration
)

.

V. MULTIPLE APPLICATIONS OF THE ACCELERATION METHOD

Observing that the accelerated scheme given in Sec. III can itself be cast as an “original” method with convergence
rate n1 = 2n0 − 1, we consider accelerating it to achieve a convergence rate n2 = 2n1 − 1 = 2(2n0 − 1) − 1, to be
followed by successive such iterations. Here we have defined n0 ≡ n, the convergence rate of the fixed-point method
given by Eqs. (2)–(4). After ν accelerations, the order of convergence would be:

nν = 2νn0 − 2ν−1 · · · − 21 − 1 = 2νn0 −

ν−1
∑

i=0

2i = 2ν(n0 − 1) + 1.

The procedure appears to have promise: It results in a rapid increase in the order of convergence while calling for
one additional function evaluation per method iteration (cf. Ref. [3], Sec. 5). Furthermore, it is easily generalizable to
M > 1, whereas the method in [3] entails rational functions of f . We will find, however, that the number of function
evaluations is more than it first appears, and the procedure results in methods with Ef comparable to the multi-step
methods of Sec. IV.

7

Each application of the acceleration method analyzed in Sec. III generates a new method, which takes the form:

δν = −
f

f ′
(1 + gν) ,

f∗
ν ≡ f(x + δν) = hν(f) = O(fnν−1)

g∗ν ≡ gν(f + f∗
ν , f ′, f ′′, . . .)

∆ν = −
f + f∗

ν

f ′
(1 + g∗ν) = δ∗ν

fk+1 = f(x + ∆ν).

All quantities here are understood to be evaluated at step k of the particular method unless explicitly noted otherwise.
The function gν (and therefore hν), which determines the order of the “original” method, changes with each application
of the method, of course. We obtain gν by setting the functional form of δν to that of ∆ν−1, which is already known
and which gives a method whose order of convergence is nν−1. Then

gν = [(f + f∗
ν−1)g

∗
ν−1 + f∗

ν−1]/f.

ν =1 is the accelerated method given in Sec. III, with g1 = g specifying the given nth
0 -order (unaccelerated) method.

The Taylor expansion of fk+1 is in a form identical to that of Eq. (6), so we can immediately write:

fk+1 = −hν(f, f ′, f ′′, . . .) + hν(f + f∗
ν , f ′, f ′′, . . .) = f∗

ν ×O(fnν−1−1) = O(f2nν−1−1).

In developing the successive g∗ν , quantities such as f∗
ν−1

∣

∣

∣

f→f+f∗

ν

will arise. For this we may use the following identity:

f(x + γ)
∣

∣

f→f+φ
=

[

∞
∑

i=0

f (i) γ
i

i!

]
∣

∣

∣

∣

∣

f→f+φ

=

[

f +

∞
∑

i=1

f (i) γ
i

i!

]
∣

∣

∣

∣

∣

f→f+φ

= φ + f(x + γ|f→f+φ) .

To procede with general ν, we introduce the shorthand notation |+ν for |f→f+f∗

ν , and obtain a recurrence relation for
g∗ν :

(f + f∗
ν)g∗ν = [{(f + f∗

ν−2)g
∗
ν−2 + f∗

ν−2}|
+(ν−1) + f∗

ν−1]|
+ν

= {(f + f∗
1)g∗1 + f∗

1 }|
+2|+3|+...|+ν + f∗

2 |
+3|+...|+ν + · · · + f∗

ν−2|
+(ν−1)|+ν + f∗

ν−1|
+ν ,

after which

−f ′∆ν = {(f + f∗
1)g∗1 + f∗

1 }|
+2|+3|+...|+ν + f∗

2 |
+3|+...|+ν + · · · + f∗

ν−2|
+(ν−1)|+ν + f∗

ν−1|
+ν + f∗

ν + f.

We illustrate with ν =2—i.e., with one additional acceleration step after the scheme of Sec. III—and n0 =2. Then
g1 = Sec. III’s g = 0, g2 = f∗

1 /f , and

−f ′∆2 = f∗
1 |

+2 + f∗
2 + f = f(x + δ1|

+2) + 2f∗
2 + f = f(x −

f+f∗

2

f ′
) + 2f∗

2 + f,

with −f ′δ2 = f + f∗
1 . Thus we find we have needed two additional f -evaluations compared to the ν =1 method, for a

total of four, to raise the order of convergence from 21 + 1 = 3 to 22 + 1 = 5. The performance of this method is then
the same as that of the s = 4 multi-step method, although both the distribution of the intermediate x points and
the final xk+1 differ between the two methods. Similarly, but with considerably more algebra, we find ν =3 requires
a total of eight f -evaluations, providing the same order of convergence as with s = 8.

VI. SUMMARY AND DISCUSSION

In this paper we have extended the method to accelerate non-linear root-solvers proposed in Ref. [1] to an arbitrary
number of steps s per iteration; and, with a simplifying assumption for derivatives, we have estimated the error
reduction per function evaluation, Ef , and assessed the computational efficiency CCPU of the methods.

For a scalar problem, we find Ef =
(

s(n−1)+1
)1/(n+s−1)

. for the multi-step scheme. For an original nth-order

method (s = 1) this gives Ef = n1/n; and for Yao’s proposed accelerated method (s = 2), Ef = (2n−1)1/(n+1). The
per-function-evaluation improvement of the proposed method for scalar problems is then rather small (see details just

8

above Sec. IV A). For general system-size M , however, there is substantial improvement to be gained. Restricting

attention to n = 2, we have Ef = (s + 1)1/(sM+M2), so that for sM ≪ M2, Ef increases with s. Optimizing in s gives
s ln s ∼ M . For M in the range 10–50, we find that the cpu cost is reduced by a factor of two to three.

We have illustrated the latter result with two examples, beginning with Newton’s method and using M= 32 in
both cases. Our second example produced an ill-conditioned Jacobian matrix, which compromised the accuracy of our
direct inversion; while it did not achieve the theoretical convergence-order, it converged twice as fast as the original
Newton method. It is often the case that the high precision required for higher-order methods is unobtainable; this
example suggests the possibility of a cheap way to nevertheless obtain more rapid convergence by going to higher order
even when an algorithm’s performance is already (in the lower order scheme) damaged by noise. It remains to analyze
the effects of the noise on the scheme (or the general-s multi-step scheme); but we conjecture that these schemes,
although delivering only linear convergence, may be of use for M > 1 systems where straightforward functional
iteration is difficult to stabilize.

Finally, by iterating the (s = 2) acceleration method itself, we have shown how to generate a new family of methods
which very rapidly increase the order of convergence with succesive iterations while remaining easy to generalize to
M > 1. Although the Ef for the first few iterations equal those for the multi-step scheme of the same order, the
sequences of intermediate points and final step-sizes differ for the two families, and this appraoch may be of interest
in the further development of new methods.

Acknowledgments

This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344.

APPENDIX A: THE FUNCTION h

In this appendix we consider the function

h(z0, z1, . . . , zm, . . .) ≡ −z0g +
∞
∑

i=2

zi

i!

(

−z0

z1

)i

(1 + g)
i
, (A1)

where g = g(z0, z1, . . . , zm) is the same function of its arguments that appears in Sec. III, so that h can be expanded
in a Taylor series in z0. It is assumed again that z1 6= 0. (It is not assumed here, however, that the zi are interrelated.)

We first expand g and (1 + g)i in Taylor series in z0:

g =

∞
∑

j=0

zj
0

j!
g(j)

(1 + g)
i
=

∞
∑

l=0

zl
0 Cl,i , (A2)

where we have defined g(i)(z1, . . . , zm) ≡ ∂ig
∂zi

0

∣

∣

∣

z0=0

and introduced the functions C(z1, . . . , zm)l,i. Explicit expressions

for the Cl,i in terms of the g(j) will not be needed here. The important point is that neither the g(j) nor the Cl,i

functions depend on z0. Equation (A1) becomes

h(z0, z1, . . .) = −z0

∞
∑

i=0

zi
0

i!
g(i) +

∞
∑

i=2

zi

i!

(

−1

z1

)i ∞
∑

l=0

zl+i
0 Cl,i .

We change variables from l to s = l + i:

h = −z0

∞
∑

i=0

zi
0

i!
g(i) +

∞
∑

i=2

zi

i!

(

−1

z1

)i ∞
∑

s=i

zs
0 Cs−i,i .

Next we invert the order of the double sum, obtaining

h = −z0

∞
∑

i=0

zi
0

i!
g(i) +

∞
∑

s=2

zs
0

s
∑

i=2

zi

i!

(

−1

z1

)i

Cs−i,i . (A3)

9

For the remainder of this appendix we restrict attention to the case when it is known that h = 0 through order
n − 1, with z0 the ordering parameter. In this case the coefficients of the powers of z0 through n − 1 in Eq. (A3)
must vanish separately. From this we find requirements for g’s dependence on its first argument in terms of its other
arguments:

0 = g(0) (A4)

0 = −
g(j−1)

(j−1)!
+

j
∑

i=2

zi

i!

(

−1

z1

)i

Cj−i,i , 2 ≤ j ≤ n − 1. (A5)

Observe that Eq. (A4) reproduces Sec. III’s result gk ∼ fk, argued from considerations of the first few terms of the
Taylor series (5). It follows from g(0) = 0 and Eq. (A2) that C0,i = 1 for all i.

Equations (A5) are easily solved for the g(i) in terms of z1, . . . , zm: Referring to Eq. (A2), we see that for any i, Cl,i

is a function of only those g(j)’s with j in the range 1, . . . , l. The Cj−i,i in Eq. (A5), which range from C1,– to Cj−2,–

(omitting C0,– since it equals unity), therefore bring in g(j)’s only with j in the range 1, . . . , j − 2. So the conditions

that g(j) must satisfy separate; they can be derived one at a time, starting from j − 1 = 1. For j = 2, for example,
the requirement is g(1) = z2/(2z2

1), as is also quickly seen from the lowest-order expansion of Eq. (A1). We are left
with

h =

∞
∑

j=n

zj
0

[

−
g(j−1)

(j−1)!
+

j
∑

i=2

zi

i!

(

−1

z1

)i

Cj−i,i

]

∼ O(zn
0) . (A6)

Finally we note that

h(y, z1, . . .) − h(z0, z1, . . .) ∼ (y − z0)O(yn−1, zn−1
0)

[

−
g(n−1)

(n−1)!
+

n
∑

i=2

zi

i!

(

−1

z1

)i

Cn−i,i

]

= O((y − z0)×max(y, z0)
n−1). (A7)

Comments:
The conditions (A5) are independent of z0. If it is known, as it is for the Taylor series of the original nth-order

method, Eq. (5) in Sec. III, that h vanishes through O(n − 1) for a particular argument set {z0, z1, . . . , zm, . . . } =

{fk, f
(1)
k , f

(2)
k , . . . , f

(m)
k , . . . }, then Eqs. (A5) will be satisfied for any f in h(f, f

(1)
k , f

(2)
k , . . . , f

(m)
k , . . .).

Similarly, though no longer constrained, the square-bracketed term in Eq. (A6) depends only on k and j and is of
order unity.

For series including h where the order of interest is n− 1 and in which f (n−1) does not vanish, f (n−1) must appear
in h; then m ≥ n − 1 is required.

[1] J. Yao, Journal of Computational Physics 267, 139 (2014), URL http://dx.doi.org/10.1016/j.jcp.2014.02.027.
[2] A. M. Ostrowski, Solution of Equations and Systems of Equations (Academic Press, New York, 1966), 2nd ed.
[3] H. T. Kung and J. F. Traub, Journal of the Association for Computing Machinery 21, 643 (1974).
[4] R. Wait, The Numerical Solution of Algebraic Equations (John Wiley & Sons, Chichester, 1979).

