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How are Polymers Used at SNL?

Foams for:
> energy dissipation
> light constraints

Plastic Parts for:
> injection molded pieces

Gaskets and O-rings for:
> sealing cavities

Cushions, Pads, Coatings for:
> stress relief

> damping elastomers
. . Overpotting — ;
« Optimal use of polymers is / «——Coating

not always obvious
» Poor choice of polymers can
cause premature failures emm  Underdl
. Modeling iS important Printed Wiring Board (PWB)
. Solder Solder Pad
e Must understand materials
to represent them in models

Electronic
Part




Polymers Are Complex Materials

They respond differently than metals and ceramics
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time dependent and nonlinear:

* relaxation rates vary with temperature

and load

Behavior depends on thermal and strain histories

02

Performance predictions must be able to capture the full range of behavior for
general thermo-mechanical loadings from manufacturing to failure.

* must be extensively validated
« computationally tractable



What We Do

1. Capability Development (relevant to Encapsulation and Bonding)
a. Understanding of Polymer Material Structure-Processing-
Properties Relationships
b. Understanding of Stress in Polymers
2. Material Properties Analysis
3. Problem Solving



Our Vision: Validated Model-Based Lifecycle Engineering
for Packaging Design

Polymer Nonlinear Viscoelastic (NLVE) Model D-B. Adolf, etal., Polymer, 2004, 45, 4599
D.B. Adolf, et al., Polymer, 2009, 50, 4257

research . development . analysis
physics tools predictions

Predict Stress/Strain and Understand Impact on Performance

C.M. Clarkson, J.D. McCoy and J.M. Kropka, Polymer, 2016, 94 19

manufactu ring G. Arechederra et al., American Physical Society March Meeting, 2016
cure chemistry \
thermal Current talk
cycling

How do we make it?
(Cure Chemistry)

mechanical
loading / aging

Kropka et al., Int. J. Adhn. & Adhs, 2015, 63, 14

Adhesive

™

failure

How does it perform?
(Constitutive Eqns)

J.D. McCoy et al., Polymer, 2016, 105, 243
J.M. Kropka et al., SAND2016-5543
J.M. Kropka et al., SAND2013-8681
G. K. Arechederra et al., Thermochimica Acta, 2017, 656, 144

What can go wrong?
(Failure Metrics)

Current Focus Areas



Capability Development: Evolution of Constitutive
Representation of Polymers

Linear Elasticity
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+ manufacturing
+ aging
+ failure metrics



Hierarchy of Polymer Material Characterization for Modeling

Nonlinear Viscoelasticity (NLVE)
Other Options not Possible
Bare Bones Approach
Measure:

1. calorimetric Tg

2. filler volume fraction

Quick and Dirty Approach

Measure:

1. filler volume fraction

2.thermal strain versus
temperature

3. elastic shear modulus versus
temperature

|
|
|
|
|
|
I
|
|
Model Parameterization: | Model Parameterization:
Estimate NLVE response based | Estimate NLVE response based
on universal properties and rule | on universal properties and
of mixtures approach I rule of mixtures approach.
I Compare predictions to data.
I Ability to tweak relaxation
I spectra and prefactors to
: better match predictions to
|
|
|
|
|
|
|

data.

Limitations/Potential Errors:

e Must be rigid fillers (e.g.,
alumina, silica, mica...)

e Breadth of relaxation spectra

* Nonlinear material clock

Limitations/Potential Errors:
Lack definition of clock for
nonlinear relaxations

Critical Encapsulants/Adhesives

The Whole Shebang

Measure:

1. filler volume fraction

2.thermal strain versus temperature

3. elastic shear modulus versus
temperature

4. compressive stress-stain through
yield at multiple temperatures

5.shear mastercurve

6. glassy volume relaxation

7.creep at multiple temperatures
and stress levels

8. Material evolution during cure

Model Parameterization:
Populate material specific SPEC
NLVE model

Advantage:

Model can now predict yielding AND
(physical) aging with more
confidence



Polymer Glass Aging Topics

 Background
O Glass Formation and Structural Recovery/Relaxation
O Signatures and Impact of Structural Recovery/Relaxation
O What is lacking in our understanding and what is left to do?
e Our Current Efforts
O Goals
Materials
Volume and mechanical response changes associated with aging
Assessment of impact of aging on stress and failure in application relevant geometries
Simple structural response tests validate predictive tools

O O 0O



Glass Formation and Structural Recovery/Relaxation
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Simon and McKenna, Structural recovery and physical aging of polymeric glasses, in Polymer Glasses, 2017



Signatures of Structural Recovery/Relaxation

Intrinsic Isotherms Asymmetry of Approach Memory Effect
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Relaxation Depends on Structure Relaxation Depends on History

KAHR and TNM models capture qualitative features of glassy kinetics
and the 3 signatures of structural recovery

Simon and McKenna, Structural recovery and physical aging of polymeric glasses, in Polymer Glasses, 2017



Impact of Structural Recovery and Physical Aging

“Failure modes of polymers can change from ductile to brittle failure with aging”
S.L. Simon and G.B. McKenna, in Polymer Glasses, 2017, pg. 46

Tensile and impact tests of PET during isothermal “aqging”
initial shear band unaged

neck propagation

Izod impact studies of PC
during isothermal “aging”
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D.G. Legrand, J. Appl. Pol. Sci., 1969, 13 2129

R.N. Haward et al., Polymer, 1983, 24 1245

These are thermoplastics, but the phenomena can occur in thermosets too




What is left to do?

“Further work and direct measurement of the volume and enthalpy along with the
mechanical (physical aging) experiments should be undertaken on the same samples”
S.L. Simon and G.B. McKenna, in Polymer Glasses, 2017
« Currently probing epoxy volume/enthalpy relaxation plus changes in mechanical
response AND using this information to design “strength” experiments in
application relevant geometries

“...because the (KAHR and TNM) models do still exhibit some difficulties in quantitative
prediction with model parameters showing a dependence on thermal history...” efforts
are necessary to improve upon these models
S.L. Simon and G.B. McKenna, in Polymer Glasses, 2017
« Currently testing Sandia’s non-linear viscoelastic modeling capabilities against
aging data



Approach to Understanding/Predicting Epoxy Aging

 |dentify material aging mechanisms and their impact on material physical behavior (current
efforts and results)

* Develop/augment science-based modeling tools to predict material aging behavior with high
fidelity

* Demonstrate impact of aging on stress in application relevant geometries (scoping tests)

 Validate predictive tools in application relevant geometries (scoping tests)

Is physical aging a concern in terms of stress evolution in application designs?



Materials

828/T403' and 828/GMB/T403 828/DEA? and 828/GMB/DEA3
EPON® Resin 828 EPON® Resin 828
Diglycidylether of Bisphenol-A Diglycidylether of Bisphenol-A
0 o o OH 5 0\/@ o . 5 OH . 0\/<?
Jeffamine® T-403 Polyetheramine Diethanolamine

CH 3

K]\tNHz H O\/\ N /\/ O H
cH o] CH (x+y+z) = 5-6 H
HzrﬁA\/O ﬁﬂixo\/%wz
e McCoy et al. Polymer 2016, 105, 243-254.

3M D32 glass microballoons

T, ™ 90C T ~70C
(when mixed stoichiometrically epoxy-amine) g
IMix ratio, cure schedule, and more can be found in SAND2013-8681

2Mix ratio, cure and typical properties can be found at: http://www.sandia.gov/polymer-properties/828 DEA.html
3Mix ratio, cure and typical properties can be found at: http://www.sandia.gov/polymer-properties/828 DEA GMB.html



http://www.sandia.gov/polymer-properties/828_DEA.html
http://www.sandia.gov/polymer-properties/828_DEA_GMB.html

828/DEA!

EPON® Resin 828
Di_glycidylether of Bisphenol-A
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Polymerization at T = 70°C (the cure process before aging)

Adduct-Forming Reaction
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:"'\J'O'x “a PR N N . O \’<-|0
[ J L)
~ ~
n

All secondary amine is consumed
in an addition reaction and
excess epoxide remains

generated during
adduct-forming

Proposed Gelation Reaction

R n

Anionic Chain-Growth Polymerization Catalyzed by
Tertiary Amine from Adduct-Forming Reaction

Initiation Propagation
R"=OH- - o
; / - /N
tertiary amine R-CHCH: + RaN' + R'-OH === R CHOCH, R0+ RECHCH, 7= R0-GH-GH0
; R
RN
~ R"-0-CH CH; O
o R -
] +  — R'—O—CH-CH;~0—CH-CH,-0
R—CHCH, —= . GH2 4 R—oH o R
: RaN—CH R—CH-CH,
R
OH R"+o—cI:H—CHZ+o R"%O*(?H*CHZ%OH
CHz 4 R—oH =— CCHz 4 R0 R " R ’
R'3N—CH + — +
R Termination R'—OH RI—0
OH OH
CH; CH; )
| + X—0 —* + RN
RN CH X-0-CH
R R
X = R"—0O—CH CH, | n=0A...

J.D. McCoy et al., Polymer, 2016, 105, 243

T,~70°C

[when mixed 100:12 (pbw) 828:DEA and cured 24 hours at T=70°C ]

IMix ratio, cure and typical properties can be found at: http://www.sandia.gov/polymer-properties/828 DEA.html



http://www.sandia.gov/polymer-properties/828_DEA.html

Polymer Glass Aging

8
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Material Volume Changes
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SNL NLVE polymer models (e.g., SPEC) have the framework to predict the aging behavior and
should be tested against measurements

Clarkson, McCoy and Kropka, Polymer, 94 (2016) 19-30 Arechederra et al., APS 2016
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Measuring Volume Response Associated with Aging

Full Experiment
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Isothermal Volume Response for 2 Common
Epoxy Thermosets

828/DEA < 828/T403

o Aluminum, T=65C ~

& 828/DEA, T=105C (chemical only) <

v 828/DEA, T=55C (chemical+physical) @©
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S n
< + 828/DEA, T=75C (chemical+physical) —
‘® il s o & XL e B @®©
= 0 e 4})
N < -0.05
o _|
(] —_—
£ -0.05 @©
—
= E -0.1
e O
~ -01 e
()] +—)
< 8 | © Aluminum, T=65C
S = .0.15 4 & 828/T403, T=105C (chemical only)
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Note: Remaining reactive potential (excess epoxide groups in the
case of 828/DEA) can play a significant role in total volume change

*The 50 nm instrument (length) resolution enables quantitative tracking of material length over time
and provides the opportunity to resolve functionality [e.g., /(t)] that describes material behavior

* Minimizing potential for continued cure during “aging” by using “stoichiometric” epoxy thermosets
(e.g., 828/T403) can have significant impact on material “shrinkage” magnitude
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Anatomy of Compressive Stress-Strain Response of

Glassy Polymers
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Changes in Compressive Stress-Strain Response
Associated with Thermal Aging

Engineering Stress {(MPa)
o
(=]
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=y
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1

Increasing Aging Time
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|., 828/DEA

0r0.56"

9 10 15
Engineering Strain (%)

4 Distinguishable Changes in Compressive Stress-Strain Response Include:

Increase in “elastic” compressive modulus
Increase in “yield” stress

Narrowing of “yield” peak

Increase in “flow” stress




Evolution of Yield Stress during Thermal Aging

initial increase proportional
to logarithm of aging time 80

-E-- linear fits no longer
n 70 accurate at long time
=
S
o 60
7 ¢ T=76°C
Pt ¢
= 50 unigue behavior associated
Ly with aging/testing temperature
O initially above T,
O 40
>

30

828/DEA
20

0.1 1 10 100 1000 10°

Aging Time (hours)

Focusing on T = 55°C and 65°C datasets for now:
* Changes in yield stress are substantial—as high as 82%
* The evolution of yield stress with time changes (or possibly stops) after ~30 days

What is the mechanism(s) driving this change?




Mechanisms Driving Evolution of Yield Stress
during Thermal Aging

Physics Chemistry

110-—I-I-I'HII1—I-I-I'FHI1—I_I-I'FIII* T -----I‘

455 A
- 65C A
-9— 76C 4
100+ A— 105C s’

Volume

Temperature Aging Time (hours)

Volume relaxation (densification) of the material Continued chemical crosslinking increases the
slows molecular motions in the polymer chain and glass transition temperature of the material. This
this contributes to an increase in the observed yield also slows molecular motions in the polymer
stress in the compressive stress-strain response chain (at a given temperature below T,) and
contributes to an increase in the observed yield
stress in the compressive stress-strain response

Can these contributions to the overall increase in yield stress be separated?



Chemical and Physical Contributions to the
Evolution of Yield Stress during Thermal Aging

Chemical + Physical

(Measured)
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By thermally annealing the samples above the glass transition temperature (after aging), the
physical history of the sample is erased and the chemical-only contributions to the evolution
of the yield stress are resolved. Physical-only contributions are calculated by subtracting the
chemical-only contributions from the total change in yield stress.




Fracture Toughness Changes with Aging Too
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Fracture Toughness Changes Occur Over the Same Timescale
and are Associated with Structural Relaxation




Summary

« Demonstrated ability to resolve in-situ material dimensional changes
associated with isothermal aging under no mechanical load

* lllustrated differences in dimensional changes between materials
associated with the specifics of a given material (e.g., remaining
reaction potential that can occur under the aging conditions)

 Resolved substantial changes in the compressive yield stress (as high
as 80%) of the 828/DEA material over relatively short times (~30 days)
when aged and tested below, but near, the glass transition temperature
(e.g., T4-10°C, T,-20°C)

 Resolved the apparent attainment of equilibrium, at which time there is
no further change (associated with physics) in yield stress

 Discriminated between the chemical and physical contributions to the
evolution of the yield stress during isothermal aging



Impact of Aging in Application-
Relevant Geometries



Adhesion Failure Tests

» Shear loading
only (torsion)

Saucer Design

test geometries
to measure
initiation of

adhesive failure

’I_ Substrate

3-D Finite Element Epoxy
Models

D

|
« air interface is ill-  Shear

defined *Tension/Compression

* induce initiation at « Combined

an embedded surface
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Why “Saucer” Adhesion Test Geometry

1. Max stresses do not reside at an air interface (failure at “embedded interface”)

maximum normal traction maximum shear traction located at
) located at center of adherend . initiation of adherend curvature
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2. Max stresses are smooth functions, not “spiked”
3. Sample allows for mixed loading modes: tension, compression, shear, etc.



Aging Test
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Results Coming Soon
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Simple Structural Response
Test for Validation



Confined Aging Experiment
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Aging Under Tension
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* Full thermal/force history captured from cure to aging
*Force decreases during isothermal aging, indicating stress relaxation dominates over physical aging
under these test conditions




Aging Under Compression e sample ;
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* Cure, compressive loading during heating and aging history captured
* Magnitude of force decreases during isothermal aging. Both stress relaxation and physical aging tend
to decrease the magnitude of force during isothermal aging under these conditions.




Reproducibility During Cure
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Force (Ibs)

0.1-:

* All tests give consistent measurement of the force developed during cure
*This provides another geometry (in addition to the Bimaterial Beam and the Thin-Disk-On-Cylinder) to
assess stress associated with cure




Aging Response
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Final Remarks

O

We are actively examining structural recovery (volume, enthalpy) and
physical aging (e.g., compressive stress-strain, fracture toughness)
together in epoxy thermosets

e Dimensional changes monitored at a high resolution

e Significant changes in mechanical response (yield stress, fracture

toughness) are observed to accompany structural relaxation

Based on what is learned from materials testing, we are designing
structural tests to examine the impact of materials aging on
application designs

More work is necessary to assess predictive capabilities of materials
aging in order to build confidence in the tools to examine the impacts
of application designs and environments



	Understanding and Predicting the Evolution of Glassy Thermoset Polymers During Aging� �Jamie M. Kropka, Sandia National Laboratories, Albuquerque, NM
	Polymer Physics, Characterization, Modeling and Processing Group
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Adhesion Failure Tests
	Why “Saucer” Adhesion Test Geometry
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39

