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Introduction

" |ncreasing penetration of distributed energy resources (DER) and the
deployment of smart grid devices require new methods of distribution
system analysis

= Quasi-static time-series (QSTS) analysis is necessary to capture the high-
speed interactions of solar variability and other time-dependent aspects
of the system

= Current QSTS algorithms are computationally intensive (10-120 hours per
simulation). This dataset has 1-second resolution load and photovoltaic
output (PV) profiles based on the 13-node IEEE test feeder.

= The goal of this project is to increase the speed of QSTS simulations
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Overview

» Goal - Reduce the computational time of QSTS simulations:

» Separate the year-long data set into time periods. We are using periods of
two-hours.

» |dentify the key time periods throughout the year to run with the QSTS
simulation.

» Use those chosen periods as input to a decision tree ensemble algorithm
and predict the remainder of the time periods to accurately reproduce the full
baseline QSTS analysis.
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Features — Statistics calculated from the 1-second
resolution Load and PV data, used as input to the

decision tree ensembles
= 17 features - Load Mean, PV Mean, Load Standard
Deviation, . . .

Evaluation Metric - Voltage Regulator Tap Changes
= With the increasing prevalence of highly variable
DER, an increasing number of tap changes can
increase Operations & Maintenance costs.

Evaluation Accuracy — Compare predicted number
of yearly tap changes to the actual number from a

full-length QSTS simulation
= A 10% error threshold in the year-long prediction
has been deemed acceptable by our industry
partners
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Intelligent Sampling

» Randomly sampling time periods from the year to perform QSTS simulations
can occasionally have a significant bias because only specific types of days
(e.g. only clear sky days, or only winter days) are sampled. Random
sampling requires >85% of the year.

= The objective of the intelligent e
sample selection is to select which
periods are the most effective to
simulate with QSTS to estimate the
yearly impacts
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Error Introduced by Running the QSTS Simulations for Individual Periods
= |n QSTS each power flow is dependent on the simulation before it. In
sampling parts of the year to run individually, there is no information

about what happened previously. This introduces some error compared
to running the full QSTS simulation sequentially.
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Decision Tree Ensemble Machine Learning

= We investigated two methods — random forests and boosted decision

tree ensembles

= Decision tree ensembles have been shown to be competitive among
other machine learning algorithms while remaining relatively fast

= Two main types of decision tree ensemble methods — bagging
ensembles (random forest) and boosting ensembles
= Both use an ensemble of Classification And Regression Trees

(CART)

» Ensembles provide superior results compared to individual

decision trees
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The “Forest” is a user-selected number of independent decision trees g
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DOY <1225 OY >=1225 loadMean < 1610.05 £4oadMean >= 1610.05

loadMax < 1497.66

oadMax >= 1497.66

Tap
Change
Prediction

0 loadMedian < 1859 87 &¥oadMedian >= 1859 .87

A =
0.333333 loadStd < 20.9483 s4oadStd >= 20.9483

= Each tree has a unique architecture

startHour < 19 fistartHour >= 19

» Each tree produces a single prediction for
tap changes in a given period
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Individual Decision Tree

= Each tree attempts to make
the most accurate general
prediction possible

» The yearlong prediction is
the sum of the training
samples (QSTS simulations)
and the sum of the
predictions for each
remaining period.

= The Mean Error of 2.7%
corresponds to the error of
the Random Forest
prediction
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Mean Error =2.7%
MaxErr = 33.5%
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Ensemble
Test Sample Input

= Each training iteration randomly i
selects, with replacement (bagging
approach), a subset of the training
data to use Random Forest

» Individual tree predictions are
averaged for a final, ensemble
prediction from the 600 trees
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Individual Trees
_ » ‘Incorrect’ samples are given higher
= Create trees sequentially and importance in further iterations
weight each tree according to
its training error.

» Each subsequent tree is attempting

" Unlike Random Forest, the to better predict a subset of the
ensemble perform poorly in isolation predicted by previous trees
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Ensemble Test Sample Input

Tree 1l ¢ Tree 2 @ Tree 350

= The boosting algorithm is a

Weighted Average of All
regression variation of the
Adaboost algorithm., —
Boostlni Ensemble

= The final result is the weighted
average of all 350 models.
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Simulation Validation Calculate Features
for all periods

= Intelligent Sampling introduces |
randomness in the choice of training e N\
data Intelligently sample

a percentage of the
year & run QSTS

= Machine learning introduces \_ J
randomness in the choice of training
subsets and features to split on v Repeat for
10,000 Monte
Train machine Carlo Runs

= 10,000 Monte Carlo runs were done learning algorithm

to validate the results for each
method and the 99.9" percentile

errors are shown Use ML to predict
the remainder of the
tap changes for the
year
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Random Forest & Boosting Ensemble
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Speed VS Accuracy Cornparisorr of Methods
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» By simulating more of the year with QSTS, the
training data size and accuracy is increased, but
additional computational time is required for
running the longer QSTS simulation.
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Compared to Sampling Methods

= Random forest and boosting _
Comparison of Methods
ensembles can reduce 40 w | | w
computation time by ~4x \—Inte"igent Sampling
== =10% Threshold
compared to random ——Boosting
I _~ B ——Random Forest
sampling and ~1.5x 30  Rondom Sumeling

compared to intelligent
sampling alone while
maintaining acceptable
levels of error
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Compared to other Machine Learning Methods
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= QSTS simulations are necessary to accurately model the rapidly
changing conditions introduced by solar power and other DER.

= Both Random Forest and a Boosted Decision Tree Ensemble
reduce the computation time needed by ~4x relative to a full-year,
sequential QSTS simulation

» Arepresentative portion of the year, ~25%, can be sampled
and used as training data for a decision tree ensemble which
can then predict the remainder of the year while staying under
the 10% error threshold for yearly tap changes error.
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Individual Trees
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Parameters
Random Forest Boosting
» Features to sample — 5 (1/3 of the total » Features to sample - 11
number)

» Minimum Leaf Size — 6 samples
» Minimum samples per parent node — 10

Split Criterion — Mean Squared

= Split Criterion — Mean Squared Error Error
» Learning Rate — 0.08
= Sampling percentage — 100% (shrinkage)

» These parameters were obtained using a mix of optimizing algorithms, hand-
tuning and parameter sweeps.

» Full Feature List: load max, pv max, load min, pv min, load mean, pv mean,
load range, pv range, load length, pv length, load standard deviation, pv
standard deviation, starting hour, day of the year, standard deviation of the two

weeks prior 23
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Comparison of Full-Year QSTS Simulation vs Indivdual Periods QSTS Simulation
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