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Introduction

▪ Increasing penetration of distributed energy resources (DER) and the  
deployment of smart grid devices require new methods of distribution 
system analysis 

▪ Quasi-static time-series (QSTS) analysis is necessary to capture the high-
speed interactions of solar variability and other time-dependent aspects 
of the system

▪ Current QSTS algorithms are computationally intensive (10-120 hours per 
simulation).  This dataset has 1-second resolution load and photovoltaic 
output (PV) profiles based on the 13-node IEEE test feeder.

▪ The goal of this project is to increase the speed of QSTS simulations
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▪ Goal - Reduce the computational time of QSTS simulations:

▪ Separate the year-long data set into time periods.  We are using periods of 

two-hours. 

▪ Identify the key time periods throughout the year to run with the QSTS 

simulation.

▪ Use those chosen periods as input to a decision tree ensemble algorithm 

and predict the remainder of the time periods to accurately reproduce the full 

baseline QSTS analysis.  
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Methodology
Overview
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Calculate features for 

all periods

Intelligently sample a 

percentage of the year 

& run QSTS

Train decision tree 

ensemble

Use the ensemble to 

predict the remainder 

of the year

▪ Features – Statistics calculated from the 1-second 

resolution Load and PV data, used as input to the 

decision tree ensembles
▪ 17 features - Load Mean, PV Mean, Load Standard 

Deviation, . . .

▪ Evaluation Metric - Voltage Regulator Tap Changes 
▪ With the increasing prevalence of highly variable 

DER, an increasing number of tap changes can 

increase Operations & Maintenance costs.

▪ Evaluation Accuracy – Compare predicted number 

of yearly tap changes to the actual number from a 

full-length QSTS simulation
▪ A 10% error threshold in the year-long prediction 

has been deemed acceptable by our industry 

partners

Methodology
Overview

Separate year-long 

data into periods



▪ Randomly sampling time periods from the year to perform QSTS simulations 

can occasionally have a significant bias because only specific types of days 

(e.g. only clear sky days, or only winter days) are sampled. Random 

sampling requires >85% of the year.

Methodology
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▪ The objective of the intelligent 

sample selection is to select which 

periods are the most effective to 

simulate with QSTS to estimate the 

yearly impacts

▪ Stratified sampling ensures that 

QSTS is run for at least one 

sample for each type of time period

Intelligent Sampling



Methodology
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▪ In QSTS each power flow is dependent on the simulation before it.  In 
sampling parts of the year to run individually, there is no information 
about what happened previously.  This introduces some error compared 
to running the full QSTS simulation sequentially.
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Methodology
Decision Tree Ensemble Machine Learning

▪ We investigated two methods – random forests and boosted decision 

tree ensembles

▪ Decision tree ensembles have been shown to be competitive among 

other machine learning algorithms while remaining relatively fast

▪ Two main types of decision tree ensemble methods – bagging 

ensembles (random forest) and boosting ensembles

▪ Both use an ensemble of Classification And Regression Trees 

(CART)

▪ Ensembles provide superior results compared to individual 

decision trees

Decision Tree 

Ensemble
(load mean, load standard deviation, 

pv mean, starting hour, etc)

Input Features Tap Change Prediction



Random Forest

8The “Forest” is a user-selected number of independent decision trees

Individual Decision Tree
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Tap 

Change 

Prediction

Random Forest

▪ Each tree has a unique architecture 

▪ Each tree produces a single prediction for 

tap changes in a given period

Individual Decision Tree
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Random Forest
Individual Decision Tree

▪ Each tree attempts to make 

the most accurate general

prediction possible

▪ The yearlong prediction is 

the sum of the training 

samples (QSTS simulations) 

and the sum of the 

predictions for each 

remaining period.

▪ The Mean Error of 2.7% 

corresponds to the error of 

the Random Forest 

prediction
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Test Sample Input

Average All Predictions

Random Forest 

Prediction

Prediction 2

Random Forest

Prediction 1 Prediction 600

Ensemble

▪ Each training iteration randomly 

selects, with replacement (bagging 

approach), a subset of the training 

data to use

▪ Individual tree predictions are 

averaged for a final, ensemble 

prediction from the 600 trees
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Boosting
Individual Trees

▪ Unlike Random Forest, the 

individual trees in a boosting 

ensemble perform poorly in isolation

▪ Each subsequent tree is attempting 

to better predict a subset of the 

training data that was poorly 

predicted by previous trees

▪ Create trees sequentially and 

weight each tree according to 

its training error. 

▪ ‘Incorrect’ samples are given higher 

importance in further iterations

Tree 1 Tree 150 Tree 350

(…) (…)
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Tree 1 Tree 2 Tree 350
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Test Sample Input

Weighted Average of All 

Predictions

Boosting Ensemble 

Prediction

Prediction 2Prediction 1 Prediction 350

Boosting
Ensemble

▪ The final result is the weighted

average of all 350 models.

▪ The boosting algorithm is a 

regression variation of the 

Adaboost algorithm.  
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Calculate Features 

for all periods

Intelligently sample 

a percentage of the 

year & run QSTS

Train machine 

learning algorithm

Use ML to predict 

the remainder of the 

tap changes for the 

year

Repeat for 

10,000 Monte 

Carlo Runs

Results

▪ Intelligent Sampling introduces 

randomness in the choice of training 

data

▪ Machine learning introduces 

randomness in the choice of training 

subsets and features to split on

▪ 10,000 Monte Carlo runs were done 

to validate the results for each 

method and the 99.9th percentile 

errors are shown

Simulation Validation
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Results

▪ Results shown use 20% of 

the year as training data 

(simulated with QSTS) 

Random Forest & Boosting Ensemble
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Results
Speed vs Accuracy

▪ By simulating more of the year with QSTS, the 

training data size and accuracy is increased, but 

additional computational time is required for 

running the longer QSTS simulation.

▪ ~25% of the year must be 

run using QSTS to guarantee 

that the 99.9th percentile 

error for the prediction of 

yearly tap changes will be 

under 10%
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Results
Compared to Sampling Methods

▪ Random forest and boosting 

ensembles can reduce 

computation time by ~4x 

compared to random 

sampling and ~1.5x 

compared to intelligent 

sampling alone while 

maintaining acceptable 

levels of error
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Results

▪ Similarity in the results 

for Random Forest and 

the Boosting Ensemble, 

as well as a Neural 

Network Ensemble, 

seem to suggest a 

limiting factor other 

than the machine 

learning algorithms.  

Compared to other Machine Learning Methods
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Conclusion

▪ QSTS simulations are necessary to accurately model the rapidly 

changing conditions introduced by solar power and other DER.

▪ Both Random Forest and a Boosted Decision Tree Ensemble 

reduce the computation time needed by ~4x relative to a full-year, 

sequential QSTS simulation

▪ A representative portion of the year, ~25%, can be sampled 

and used as training data for a decision tree ensemble which 

can then predict the remainder of the year while staying under 

the 10% error threshold for yearly tap changes error.
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Tree 50Tree 25

Boosting
Individual Trees
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Boosting & Random Forest 
Parameters

Random Forest Boosting

▪ Features to sample – 5 (1/3 of the total 

number)

▪ Minimum samples per parent node – 10

▪ Split Criterion – Mean Squared Error

▪ Sampling percentage – 100%

▪ Features to sample - 11

▪ Minimum Leaf Size – 6 samples

▪ Split Criterion – Mean Squared 

Error

▪ Learning Rate – 0.08 

(shrinkage)

▪ These parameters were obtained using a mix of optimizing algorithms, hand-

tuning and parameter sweeps.

▪ Full Feature List: load max, pv max, load min, pv min, load mean, pv mean, 

load range, pv range, load length, pv length, load standard deviation, pv

standard deviation, starting hour, day of the year, standard deviation of the two 

weeks prior 
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