

Structure of T4moF, the toluene 4-monooxygenase ferredoxin oxidoreductase

Justin Finley Acheson, Hannah Moseson, and Brian G. Fox

Biochemistry, Just Accepted Manuscript • DOI: 10.1021/acs.biochem.5b00692 • Publication Date (Web): 26 Aug 2015

Downloaded from <http://pubs.acs.org> on September 12, 2015

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

ACS Publications

Biochemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

1
2
3
4
5
6
7 Structure of T4moF, the toluene 4-monooxygenase
8
9
10
11 ferredoxin oxidoreductase
12
13
14
15

16
17 *Justin F. Acheson, Hannah Moseson & Brian G. Fox**
18
19

20 Department of Biochemistry, College of Agriculture and Life Sciences, University of
21
22 Wisconsin–Madison, Madison, Wisconsin 53706, USA
23
24

25 RUNNING TITLE Oxidoreductase structures in diiron hydroxylase reaction
26
27
28
29
30
31

32 **Corresponding Author**

33 * To whom correspondence should be addressed: Department of Biochemistry, 433 Babcock Dr.,
34 University of Wisconsin, Madison, Wisconsin 53706. Phone: (608) 262-9708. Fax: (608) 262-
35 3453. E-mail: bgfox@biochem.wisc.edu
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 ABBREVIATIONS
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

BMM, bacterial multicomponent monooxygenase; T4MO, four-protein toluene 4-monooxygenase complex from *Pseudomonas mendocina* KR1; T4moH, hydroxylase component of T4MO; T4moD, effector protein of T4MO; T4moHD, stoichiometric complex of T4moH and T4moD; T4moC, Rieske-type ferredoxin of the T4MO complex; T4moHC, stoichiometric complex of T4moH and T4moC; T4moF, NADH oxidoreductase of the T4MO complex; RMSD, root mean square deviation.

1
2
3 ABSTRACT The 1.6 Å crystal structure of toluene 4-monooxygenase reductase T4moF is
4 reported. The structure includes ferredoxin, flavin, and NADH binding domains. The position of
5 the ferredoxin domain relative to the other two domains represents a new configuration for the
6 iron-sulfur flavoprotein family. Close contacts between the C8 methyl group of FAD and [2Fe-
7 2S] ligand Cys36-O represent a plausible pathway for electron transfer between the redox
8 cofactors. Energy-minimized docking of NADH and calculation of hinge-like motions between
9 domains suggest how simple coordinated shifts of residues at the C-terminus of the enzyme
10 could expose the N5 position of FAD for productive interaction with the nicotinamide ring. The
11 domain configuration revealed by the T4moF structure provides an excellent steric and
12 electrostatic match to the obligate electron acceptor, Rieske-type [2Fe-2S] ferredoxin T4moC.
13 Protein-protein docking and energy minimization of the T4moFC complex indicate that T4moF
14 [2Fe-2S] ligand Cys41 and T4moC [2Fe-2S] ligand His67, along with other electrostatic
15 interactions between the protein partners, form the functional electron transfer interface.
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

KEYWORDS diiron enzyme; oxidoreductase, iron-sulfur flavoprotein, electron transfer; protein-protein complex.

Bacterial multicomponent monooxygenases (BMMs) belong to a class of soluble diiron enzymes that carry out hydroxylation of unactivated C-H bonds and aromatic rings (1). Often, these enzymes use O₂ and exogenous electrons to oxidize a substrate as the initial activation step of a microbial metabolic pathway (2). The BMMs are of great interest due to their high reactivity, and the unique mechanistic and structural features of their diiron centers. Further motivations for their study include potential biotechnological uses in the remediation of xenobiotic compounds and in the synthesis of fine chemicals.

BMMs require a minimum of three proteins: a flavin-containing ferredoxin:NAD⁺ oxidoreductase; a diiron hydroxylase; and a cofactorless effector protein that is unique to this family of enzymes (2, 3). Four component BMMs require an additional Rieske-type ferredoxin that serves as an intermediate electron carrier between the oxidoreductase and the hydroxylase (4). Typically, the oxidoreductase accepts a hydride equivalent from NADH and then delivers reducing equivalents via the intermediacy of its [2Fe-2S] cluster to either the diiron center or the Rieske-type ferredoxin. The effector protein, O₂, and substrate bind to the reduced hydroxylase to form a complex that carries out catalysis.

Toluene 4-monooxygenase (T4MO) is a four component BMM found in *Pseudomonas mendocina* KR1 (5). T4MO catalyzes regiospecific oxidation of toluene and produces *p*-cresol with ~97% yield (6). This initial oxidation step allows *P. mendocina* to grow on toluene as its sole carbon source. There are four T4MO proteins. T4moF, a 37 kDa FAD- and [2Fe-2S]-containing oxidoreductase transfers electrons to T4moC, a 12 kDa Rieske-type ferredoxin. T4moC transfers electrons to T4moH, a 210 kDa diiron hydroxylase. T4moD, an 11 kDa cofactorless effector protein, binds to T4moH to advance the catalytic cycle.

1
2
3 X-ray structures of T4moC (7), T4moD (8), T4moH (9), as well as T4moH bound to
4 either T4moD (9) or T4moC (10) have been previously reported. Here we report the crystal
5 structure of T4moF solved at a resolution of 1.6 Å. This is the first structure of an intact BMM
6 oxidoreductase containing both Fd and FAD/NADH binding domains, and also completes the set
7 of X-ray structures for all members of the T4MO complex. Although T4moF has structural
8 similarities to the benzoate dioxygenase (BenC) (11) and phthalate dioxygenase (PDR) (12)
9 reductases, the location of the Fd domain and closest approach between [2Fe-2S] and FAD
10 differs from both of these earlier structures. Using this new structure as a starting point, we used
11 molecular docking approaches to investigate the binding of NADH to T4moF and also the
12 formation of the electron transfer complex between T4moF and T4moC. These new results
13 provide a useful picture of these critical, early complexes in the BMM catalytic cycle.
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

MATERIALS AND METHODS

Plasmid construction. The T4moF gene was amplified from pT4moABEF (13) using primers that added the 5'-SgfI and 3'-PmeI restriction sites used for FlexiVector cloning. The amplified gene product and pVP68K, an expression plasmid that fuses maltose binding protein (MBP) to the N-terminus of a target protein (14, 15), were digested with Flexi-cloning blend restriction enzymes (Promega, Madison WI) and ligated with T4 DNA ligase (Promega, Madison, WI), creating expression plasmid pVP68KT4moF (Figure S3). pVP68KT4moF was further modified to introduce two mutations, Lys270Ser and Lys271Ser, using QuikChange site-directed mutagenesis (Stratagene, Santa Clara, CA). The mutated plasmid is called pF270_271S.

Protein Expression. pF270S_271S was transformed into *E. coli* BL21 RILP (Stratagene) and the cells were grown in a Bioflow 110 bioreactor (New Brunswick Science, NJ) as

1
2
3 previously described for T4moH (10). Briefly, 2 × 2 mL of non-inducing minimal medium was
4 inoculated in the morning and grown at 37°C (15). In the evening, 2 × 500 mL of the same
5 medium was inoculated with the 2 mL starter cultures and grown overnight at 25°C. In the
6 morning, both 500 mL cultures were transferred to a Bioflow 110 14 L vessel containing 9 L of
7 5M medium (15) at 37°C with O₂ levels maintained by agitation. When the cells reached an
8 OD₆₀₀ of ~2.5, the temperature was reduced to 25°C and expression was induced by the addition
9 of 200 μM IPTG, 20 g Casamino acids, and 36 g of lactose. The total expression time was 5 h,
10 after which the medium was collected and centrifuged in 1 L jars by centrifugation at 4200 rpm
11 for 25 min. The 10 L fermentation typically yielded ~45 g of cell paste.
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26 **Protein Purification.** The cell paste was thawed on ice, and then suspended in 2 mL of
27 25 mM MOPS, pH 7.5, containing 50 mM NaCl and 2% (v/v) glycerol (buffer A) per gram of
28 cell paste. The cell suspension was sonicated on ice with alternating 15 s on and 30 s rest periods
29 for a total of 10 min of sonication on time. The sonicated cell suspension was centrifuged at
30 48000 × g and 4°C in a JA-20.50 rotor and Avanti J30-I centrifuge (Beckman Coulter) for 60
31 min. The supernatant was then diluted two-fold with buffer A and applied to a 45 mm × 250 mm
32 DEAE Sepharose column (GE Healthcare, Piscataway NJ) at 5 mL/min. The column was
33 washed with 2 column volumes of buffer A and T4moF was then eluted in a 1200 mL linear
34 gradient of 50 to 450 mM NaCl in buffer A at 5 mL/min. The fractions containing a brownish
35 orange color, indicative of the FAD and [2Fe-2S] cluster of T4moF, eluted at ~300 mM NaCl.
36 These fractions were assayed for activity and pooled based on the T4MO-catalyzed oxidation of
37 nitrobenzene to *p*-nitrophenol (16).
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

55 Pooled fractions were applied to an XK 26/40 (GE Healthcare, Piscataway NJ) amylose
56 column (New England Biolabs, Ipswich, MA) installed on an Akta Purifier (GE Healthcare,
57
58
59
60

Piscataway NJ) equipped with Unicorn 5.0 software. The column was equilibrated with 25 mM MOPS, pH 7.5, containing 250 mM NaCl and 2% (v/v) glycerol (buffer B) at 2 mL/min. Unbound protein was removed by washing with buffer B until the absorbance at 280 nm returned to baseline for at least 2 column volumes. The bound protein was eluted in buffer B with the addition of 10 mM maltose. The orange-brown peak was collected, yielding nearly pure MBP-T4moF fusion protein.

The MBP-T4moF fusion protein was diluted to 100 mL and 3C protease was added at 4°C for ~24 h to allow liberation of T4moF. Proteolysis was confirmed by SDS-PAGE. Imidazole was added to the proteolyzed sample to 25 mM and then the sample was passed over a Ni-NTA column equilibrated with buffer B containing 25 mM imidazole. The column flow-through, containing T4moF, was collected and concentrated using either a Centricon YM-10 or Amicon 10K spin column. The concentrated protein was then diluted with 10 mM MOPS, pH 7.5, containing 50 mM NaCl and reconcentrated. The buffer-exchanged protein was concentrated to ~15 mg/mL, drop frozen in liquid N₂, and stored at -80°C.

Crystallization and Structure Determination. T4moF crystals were obtained by hanging drop vapor diffusion after mixing 1.5 μL of a ~15 mg/mL protein solution with 1.5 μL of 100 mM Bis-Tris, pH 5.5, containing 200 mM ammonium acetate, 16% PEG 3350, 5 mM NiCl₂, and 50 mM guanidine-HCl. Tapered yellow-brown rods grew within 2-3 days to a size suitable for diffraction experiments. Crystals were cryo-protected by passing through Fomblin 2500 and frozen in liquid N₂. Diffraction data were collected at Life Sciences–Collaborative Access Team (LS–CAT) at the Advance Photon Source (APS), Argonne National Laboratory. The data were indexed, integrated, and scaled using HKL2000 (17). Molecular replacement was achieved by using Swissmodel (18) to create homology models to the Fd and FAD/NADH

1
2
3 binding domains of PDB 1KRH [BenC, benzoate dioxygenase reductase (11)], and by then
4 treating both domains as independent units in Phaser-MR (19). The electron density was
5 modeled using iterative rounds of Phenix.refine (19) and Coot (20). Molprobity (21) was used to
6 assess statistics and overall quality of the structure. Figures were prepared with Pymol (22).
7
8
9
10
11
12

13 **NADH Docking.** T4moF was aligned with FNR complexed with NADP⁺ (PDB 1QFZ)
14 (23) using PyMOL to provide an initial model for how NADH would bind to T4moF. Some
15 alterations in the position of the predicted position of NADH bound to T4moF were introduced
16 after inspection of protein-ligand contacts. After the initial placement was complete, the position
17 and geometry of the NADH placed into the T4moF structure was minimized using Phenix
18 Geometry Minimization (19). The protein-protein docking web server *ClusPro*
19 (<http://nrc.bu.edu/cluster/>) was used to obtain 3D-models of the complex of T4moF with T4moC
20 (24, 25). This server provides algorithms that filter docked conformations based on shape
21 complementarity, desolvation and electrostatic energies. The PDB coordinates obtained for
22 T4moF in this work were used as the static “receptor” molecule and the file 1VM9 contained the
23 coordinates for T4moC (7) used as the moving “ligand” molecule.
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

RESULTS AND DISCUSSION

44 **Vector Construction.** The expression and purification of T4moF has been challenging
45 compared to other T4MO proteins. In the natural multi-cistronic message, the expression of
46 T4moF is attenuated by the presence of rho-independent terminator sequences (26). During
47 overexpression in *Escherichia coli*, it formed inclusion bodies, and during purification it often
48 lost the FAD cofactor. An early vector, pUCT4moF, gave an appreciable amount of soluble
49 protein (~1 mg/g of cell paste). However, the low yield of an untagged enzyme made purification
50
51
52
53
54
55
56
57
58
59
60

1
2
3 tedious (13). The adoption of pVP68K (14) alleviated these problems by providing tight control
4 of basal expression in the presence of non-inducing medium, strong induction in the presence of
5 IPTG and lactose, and improved handling as an MBP fusion protein. Furthermore, the use of
6 amylose affinity chromatography in the second purification step avoided the need to expose the
7 enzyme to high concentrations of imidazole. These process improvements increased the final
8 yield of T4moF to ~2 mg/g of cell paste after release of intact T4moF by proteolysis of the
9 fusion protein. However, even with this streamlined purification and increased yield, extensive
10 screening for crystallization yielded no positive results.
11
12
13
14
15
16
17
18
19
20
21
22

23 **Surface Entropy Reduction.** A homology model prepared in Swissmodel (18) from the
24 closest homolog BenC (11) (PDB 1KRH) was inspected for possible residue targets for surface
25 entropy reduction (27). From this, Lys270 and Lys271 were located on a predicted surface loop,
26 and were replaced with serine. After expression and purification as described in Materials and
27 Methods, crystallization screening with the doubly mutated enzyme yielded brown rod-like
28 crystals.
29
30
31
32
33
34
35
36
37

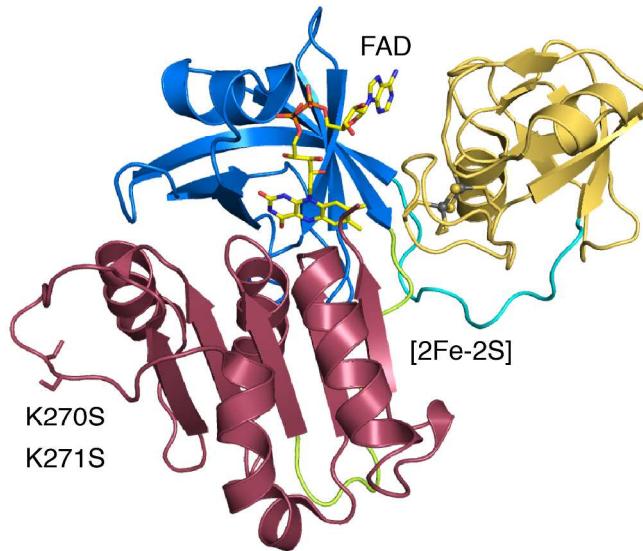
38 **Structure Determination.** T4moF crystals belonged to the C2 space group and
39 diffraction data extending to 1.6 Å were collected. Molecular replacement using BenC (PDB
40 1KRH) as the template was unsuccessful. In order to achieve the molecular replacement, the loop
41 connecting the Fd and FAD/NADH binding domains was removed and homology models for the
42 two separated domains were then treated as independent proteins for the molecular replacement.
43 Using the split domains, a phasing solution was identified and the structure was solved.
44 Ultimately, the results will show that the Fd and FAD/NADH binding domains in T4moF have a
45 considerably different orientation than in BenC, which likely caused failure of the standard
46 molecular replacement to identify a phasing solution.
47
48
49
50
51
52
53
54
55
56
57
58
59
60

The data collection and refinement statistics for T4moF are presented in Table 1. The diffraction data had I/σ of 13.08 (3.94 in the highest shell) and was 96.56% complete. The structure was refined to a resolution of 1.6 Å, and the R_{work} and R_{free} were 0.1447(0.1562) and 0.1882(0.2231), respectively, with values in highest resolution shell shown in parentheses. There is a single monomer of T4moF in the asymmetric unit, and the atoms in the FAD and [2Fe-2S] cluster had full occupancy. The addition of Ni^{2+} to the T4moF crystallization buffer improved the quality of the crystals, and we found that three solvent-exposed His residues, His12, His98 and His278, coordinate a single Ni^{2+} that was also coordinated by a molecule of Bis-Tris from the crystallization buffer. In addition, solvent-exposed His11 also coordinates a single Ni^{2+} , but no Bis-Tris molecule as a consequence of crystal contacts.

Table 1. Data collection and refinement statistics for T4moF

	T4moF	4WGM
Data collection		
Space group	C2	
Cell dimensions		
a, b, c (Å)	84.33, 69.07, 68.22	
α, β, γ (°)	90, 116.53, 90	
Resolution (Å)	27.12 -1.615	
	(1.67 -1.62)*	
R_{sym} or R_{merge}	0.066 (0.37)	
$I/\sigma I$	13.08 (3.94)	
Completeness (%)	96.56 (91.2)	
Redundancy	3.9 (3.7)	

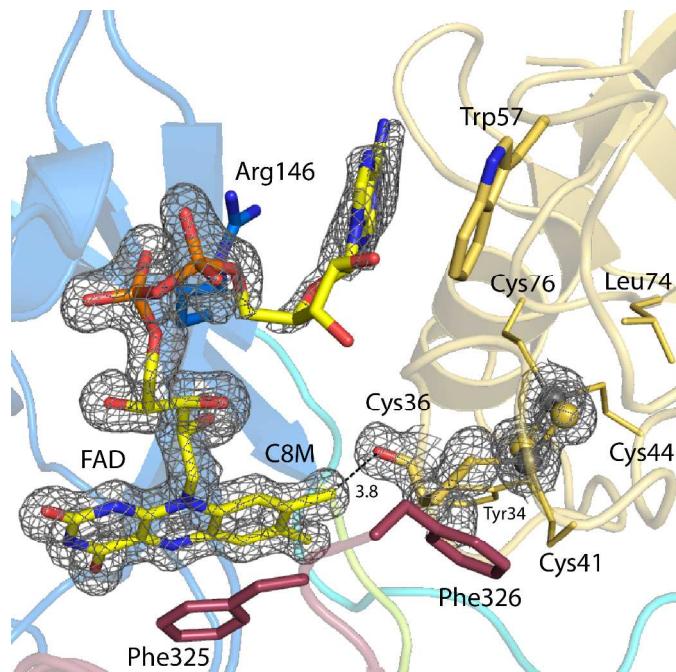
Refinement


Resolution (Å)	27.12 -1.62
	(1.67 -1.62)
No. reflections	43392 (4063)
$R_{\text{work}} / R_{\text{free}}$	0.145 (0.156)/ 0.188 (0.223)
No. atoms	3083
Protein	2560
Ligand/ion	103
Water	420
<i>B</i> -factors	
Protein	23.10
Ligand/ion	27.70
Water	34.90
R.m.s. deviations	
Bond lengths (Å)	0.006
Bond angles (°)	1.15

*Values in parentheses are for highest-resolution shell, which was near to the detector edge. Data was collected from a single crystal.

Structure of T4moF. T4moF is a three-domain 326 residue monomeric enzyme (Figure 1) belonging to the large family of iron-sulfur flavoproteins. In T4moF, the N-terminal plant-type Fd domain consists of 90 residues (Figure 1, *gold* cartoon). The C-terminal domain, called an FNR-like domain, belongs to the ferredoxin-NADP⁺ reductase superfamily (28), and contains both FAD (Figure 1, *blue* cartoon) and NADH binding domains (Figure 1, *maroon* cartoon) that

1
2
3 are separated by a 12 residue linker (*green* cartoon, residues 190-201). The Fd and FNR-like
4
5 domains are connected by an 12 residue linker (Figure 1, *cyan* cartoon, residues 89-100).
6
7
8



9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 **Figure 1.** Structure of T4moF. The Fd domain is shown in *gold*, FAD binding domain in *blue*,
29 NADH binding domain in *maroon*, and loops connecting the domains in *cyan* and *green*. The
30 positions of bound FAD (yellow sticks), the [2Fe-2S] cluster (grey and yellow spheres), and
31 mutations K270S and K271S, introduced to decrease surface entropy, are also shown.
32
33
34
35
36
37

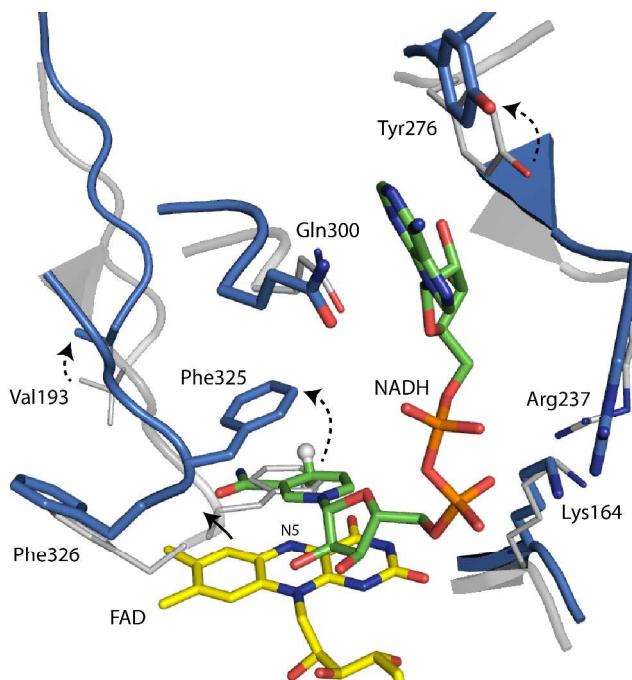
38 Figure S1 shows a phylogenetic tree of the relevant subclade of the iron-sulfur
39 flavoprotein family. Prior to this work, X-ray structures were known for BenC (11) and PDR
40 (12), two homologous oxidoreductases that partner with Rieske and Fe^{2+} -dependent
41 dioxygenases, and NMR structures were also known for the separated Fd (29) and FNR-like (30)
42 domains of MmoC. Figure S2 shows a structure-annotated sequence alignment of enzymes most
43 closely related to T4moF whose functions have been established (31). T4moF and TomoF are
44 closely related oxidoreductases from aromatic ring hydroxylating BMMs, BenC and MmoC are
45 closely related but from Rieske and Fe^{2+} -dependent dioxygenase and methane oxidizing BMM
46 complexes, respectively, while PDR and PhP are more distantly related oxidoreductases from
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 two different enzyme complexes, i.e., a Rieske and Fe²⁺-dependent dioxygenase and an aromatic
4 ring hydroxylating BMM. T4moF, BenC and PhP have a similar arrangement of the Fd and
5 FAD/NADH domains extending from the N-terminus of the enzyme, while PDR, the
6 phylogenetically distant outlier, has a cyclic permutation of these domains to FAD/NADH
7 followed by Fd.
8
9
10
11
12
13
14
15

16 **FAD Domain and Binding.** The FAD binding domain in T4moF has a similar structure
17 to BenC (11), which is overall smaller than the comparable domains from other members of the
18 FNR-like superfamily (32). A six-stranded β -sheet with an α -helix located between β 5 and β 6
19 provides the cleft needed to bind FAD (*blue* cartoon, Figure 2). Electron density of the FAD
20 cofactor and the [2Fe-2S] cluster are also shown in Figure 2, along with the positions of other
21 key residues in the active site. Residues from the FAD domain donate all observed hydrogen-
22 bonding contacts to FAD isoalloxazine ring, with the identities of the bonding partners and the
23 interatomic distances given in Table S2. The N1, N5 and N10 atoms in the bound FAD are
24 planar (Figure 2), indicating that the flavin is in the oxidized state.
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Figure 2. Relationship between redox cofactors in T4moF. Colors of individual domains are as in Figure 1. Electron density of redox cofactors at 1.5σ . Cysteine residues 36, 41, 44, and 76 coordinate the irons of the [2Fe-2S] cluster. Cys36-O provides the closest approach to FAD C8M, 3.8 Å. Trp-57 (gold sticks) from the Fd domain and Arg146 from the FAD domain position the adenine between the Fd and FAD domains. Phe325 from the NADH domain (maroon sticks) makes an important contact with FAD between the FAD/NADH domains. Phe326 is the C-terminus of the enzyme.

The atoms of the FAD isoalloxazine ring have lower average B-factors (~10) than the rest of the enzyme (~23-28, Table 1), indicating they are well ordered. Notable π -stacking interactions that hold the FAD isoalloxazine ring are provided by Tyr135 from the FAD domain and Phe325 from the NADH domain. Phe325 is homologous to Phe335 from BenC, Tyr308 from FNR, and Phe342 from MmoC (Figure S1). The role of Phe325 in NADH binding is described below.


1
2
3 The atoms of the adenine moiety of the FAD in T4moF have higher average B-factors
4 (~50) than the remainder of the enzyme, likely indicating this portion of the cofactor may adopt
5 multiple configurations. Indeed, there are relatively few interactions between the adenine and
6 T4moF, with a cation- π interaction with Arg146 and a π -stacking with Trp57 of the Fd domain
7 (Figure 2) providing the main interactions. This contribution of the Fd domain is unique
8 compared to what is observed in other FNR-type proteins (MmoC PDB 1GAQ, FNR-Fd-1 PDB
9 1EWY, BenC PDB 1KRH, and cytochrome b_5 reductase PDB 1NDH) where the stabilizing
10 interactions are provided by either the FAD domain only or by a combination of the FAD and
11 NADH domains (11, 30, 33-35).
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Ferredoxin Domain. In T4moF, the Fd domain contains a single [2Fe-2S] cluster coordinated by four cysteines in the Cys-X₄-Cys-X₂-Cys//Cys plant-type ferredoxin motif (36). Cysteine residues 36, 41, 44 and 76 coordinate the iron atoms of the [2Fe-2S] cluster, while residues 35, 37 and 39-42 provide hydrogen bonds to the sulfur atoms in the [2Fe-2S] cluster (see Table S1). The [2Fe-2S] cluster is also flanked by Tyr34 and Leu74, which protect it from solvent. The 12-residue coil (*cyan* cartoon) that connects the Fd (*gold* cartoon) and FAD (*blue* cartoon) domains makes extensive contacts with the FAD domain, and only minor contacts with the NADH binding domain (*maroon* cartoon).

Comparison of the structure of the T4moF Fd domain with other plant-type ferredoxins revealed that Cys36 has a binding conformation that is most similar to that observed in 1e⁻ reduced [2Fe-2S]¹⁺ clusters (37), i.e., where the carbonyl projects away from the [2Fe-2S] cluster (Figure 2). In the T4moF crystals, which were prepared in the oxidized state, photo-reduction from synchrotron radiation (37) may have reduced the [2Fe-2S] cluster without reducing the FAD, which is planar. In the observed configuration, Cys36-O provides the closest approach to

1
2
3 C8M of FAD (3.8 Å, Figure 2), suggesting the preferred contact for inter-domain electron
4 transfer. HARLEM, a software package used to predict likely electron transfer pathways,
5 supports that these two atoms are likely participants in the electron transfer reaction (38).
6
7 However, since binding of NADH may alter the distances between the FAD and [2Fe-2S]
8 cofactors, this may correspondingly change the output of the HARLEM calculation.
9
10
11
12
13
14
15

16 **NADH Binding Interactions.** The NADH binding domain contains a 5-stranded β -sheet
17 with two α -helices on either side (Figure 1), which is typical of the FNR-like superfamily (39).
18 Attempts to solve a T4moF structure with either NAD⁺ or NADH bound were unsuccessful, but
19 presumably for different reasons. Soaking with NAD⁺ seemingly had no effect on the integrity of
20 the crystals, but no electron density corresponding to bound NAD⁺ was observed. In contrast,
21 soaking with NADH caused the crystals to rapidly disintegrate, supporting evidence from other
22 studies that NADH binding promotes a structural rearrangement in this family of enzymes,
23 perhaps associated with a redox reaction (40). Moreover, co-crystallization of T4moF in the
24 presence of either NAD⁺ or NADH was not successful. Examination of the T4moF structure
25 suggested that penultimate C-terminal residue Phe235 from the NADH domain would need to be
26 displaced in order for the nicotinamide ring from NADH to bind in a productive manner for
27 hydride transfer (Figure 3, gray cartoon and lines showing the position of Val193, Tyr276,
28 Phe325 and Phe326 in the ligand-free enzyme).
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

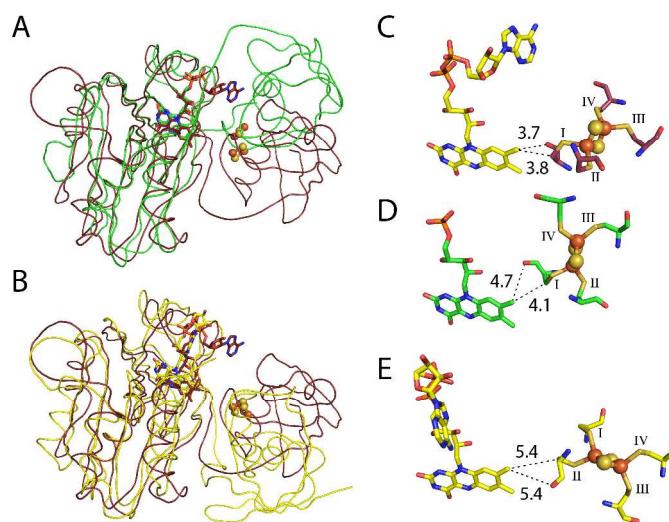
Figure 3. Docked position of NADH in T4moF. The ligand-free (gray cartoon and lines) and NADH-bound structures (blue cartoon and sticks) were aligned by their FAD (yellow sticks) groups. Positioning of the nicotinamide ring (green sticks) near to FAD N5 requires shifts in positions of Phe325, Phe326 and other residues indicated by *black arrows*.

To gain further insight into the possible binding mode used by NADH, FNR Tyr308Ser bound with NADP⁺ [PDB 1QFZ, (23); with the indicated mutation at the position corresponding to T4moF Phe325], was aligned to T4moF and NADH was then modeled into the T4moF structure using NADP⁺ as the template (23). Further adjustment of the position of the docked NADH was carried out after inspection of interactions with the surrounding residues (22). After initial placement in Pymol, energy minimization was carried using Phenix (19). The energy-minimized docking placed the adenine moiety in the cleft between Tyr276 and Gln300, while residues Lys164 and Arg237 coordinated the phosphate groups. Additionally, the phenyl ring of Phe325 was displaced by ~3.5 Å so that C4N of nicotinamide could reside within less than 3 Å

of FAD N5 in a position to facilitate transfer of the pro-R hydride to FAD. The hydride transfer reaction should also be facilitated by polarization of FAD N1, which is provided by a hydrogen bonding network to this position involving Tyr148-OH, FAD-O4, an active site water molecule, and FAD-O2. Docking of NADH also caused a shift in the positions of C-terminus Phe326 (shown) and Arg324, which has two conformations including a hydrogen bonding interaction with Glu93 (not shown). Notably, both Phe325 and Phe326 reside in a position between the FAD and Fd domains within 3 Å of both Cys36 and Cys41 bound to the [2Fe-2S] cluster.

The energy-minimized placement of NADH also caused the FAD and NADH binding domains to open slightly, as has already been predicted in other FNR-type proteins (12). To search for residues that could possibly contribute to this motion, a prediction was carried out with HingeProt (41). This analysis revealed Val193 (Figure 3) might be a hinge site in the linker connecting the FAD and NADH domains and thus participate in the needed repositioning; incidentally, a second hinge was predicted by this software at Gly94 between the Fd and FAD domains (not shown).

Normal mode analysis (42) supported the possibility of interdomain motions corresponding to those predicted by the docked structure and also by the hinge calculation. Thus mode 10 calculated by the eNemo server (frequency 1.74; collectivity 0.3519) moves the FAD and NADH domains apart, with the motion originating near Val193. This motion also pulls Phe325 away from its resting position above FAD N5, potentially facilitating binding of the nicotinamide ring in the proper position for the flavin reduction reaction. Another motion in this mode, localized near Gly94, moves the Fd domain away from the FAD domain, giving additional space for movement of Arg234 and Phe326 along with Phe325. Interestingly, mode 9 (frequency 1.32; collectivity 0.5860) moves the FAD and NADH domains back together, also


1
2
3 with hinge motion originating near Val193. This motion results in movement of Phe325 back
4 toward its resting position above FAD N5, and so suggests how domain motions may also
5 participate in the displacement of the nicotinamide ring of NAD⁺ after reduction of the flavin.
6
7
8
9
10

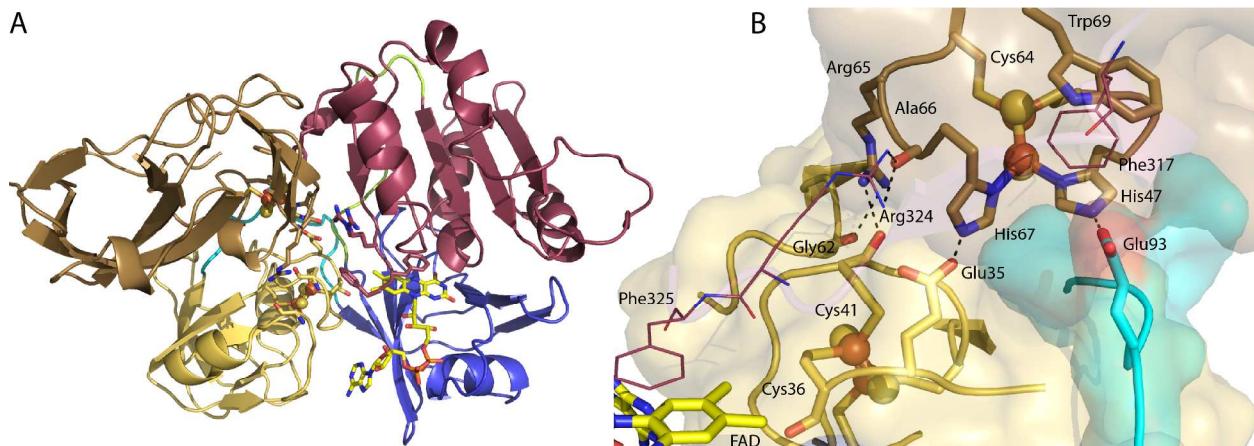
11 **Comparison with Other Iron-sulfur Flavoproteins.** NMR structures of the separate
12 ferredoxin (29) (Fd) and FAD/NADH binding (30) domains from the related oxidoreductase
13 (MmoC) of three-component methane monooxygenase (MMO) have been reported. Early on,
14 cross-linking of MmoC revealed an interaction with the beta subunit of MmoH (43). Later,
15 solution NMR studies of the interactions between the MmoC-Fd domain and MmoH revealed
16 that a small α -helix (α 2) on MmoC-Fd was also likely to be important in the protein-protein
17 interaction (29). This helix is \sim 25 Å away from the [2Fe-2S] cluster in MmoC. Although the Fd
18 domain of T4moF lacks this helix, it does use a small loop in the corresponding region of the
19 structure aligned with MmoC-Fd to interact with the adenine ring of FAD. Furthermore, in the
20 T4moHC complex, T4moC makes contacts with a flexible loop of the T4moH beta chain \sim 25 Å
21 from the [2Fe-2S] cluster (10). These distal contacts provide an important contribution to
22 formation of a productive electron-transfer complex in T4moHC, and so distal interactions
23 detected between MmoC and MmoH may potentially contribute in a similar way. Variations in
24 distal recognition thus provide one way that the electron transfer proteins used in various BMMs
25 and other redox-dependent enzymes can be more specifically targeted to different interaction
26 partners (10).
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

50 A comparison of the structures of T4moF and the homologous, full-length
51 oxidoreductases BenC (PDB 1KRH) and PDR (PDB 2PIA) was carried out. Alignment of the
52 individual Fd domains (Table S3) showed an excellent agreement, with T4moF and BenC
53 aligning with root mean square deviation (RMSD) of 0.624 Å². Likewise, comparison of the
54
55
56
57
58
59
60

1
2
3 individual FNR-like domains gave RMSD values less than 2 Å². The alignment of the FNR-like
4 domains in the structures of full-length enzymes was used as a basis to investigate inter-domain
5 relationships in the three enzymes. Since MmoC is closely related to BenC, the following
6 comments on the structural homology of full-length BenC and T4moF may apply to MmoC as
7 well.
8
9

10
11 Alignment of the FNR-like domains of T4moF with PDR (Figure 4A) and BenC (Figure
12 17)
13 18 4B), revealed differences in the positions of their Fd domains. Inspection of the contacts to the
14 19 Fd domains in these three structures suggested their positioning was unlikely to be an artifact of
20 21 crystal packing. The T4moF structure revealed a new interaction between the Fd and FAD
22 23 domains that brings Cys36-O, the first Cys residue in the plant-type [2Fe-2S] ferredoxin motif
24 25 (indicated by roman numeral I), to within 3.7 Å of C8M of FAD and Cys36-CB to with 3.8 Å.
26 27 Although the [2Fe-2S] cluster in PDR was positioned ~3 Å away from the [2Fe-2S] clusters in
28 29 both T4moF and BenC, PDR had the O and CB atoms of the first Cys residue in the plant-type
30 31 ferredoxin motif within 4.7 and 4.1 Å of C8M of FAD, respectively (Cys272 in PDR, indicated
32 33 by roman numeral I). Further comparison revealed that the 5.4 Å closest approach to FAD C8M
34 35 in BenC was provided by equidistant positioning of the O and CB atoms from the second Cys
36 37 residue in the motif (Cys46 in BenC, indicated by roman numeral II).
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Figure 4. Alignment of T4moF with BenC and PDR. The FNR-like domain of T4moF (red ribbon) was aligned with BenC (panel A, yellow ribbon, PDB 1KRH) or PDR (panel B, green ribbon, PDB 2PIA). RMSDs for the alignments are found in Table S3. These alignments show that the Fd domain in T4moF adopts a different position with respect to the FNR-like domain than observed in the prior two structures. C, D and E, distances of the closest approach between flavin and [2Fe-2S] in T4moF, BenC and PDR, respectively. Roman numerals indicate the position of the residue in the plant-type [2Fe-2S] ferredoxin motif.


Interestingly, PDR has an FAD/NADH-Fd domain architecture, which is a cyclic permutation of the Fd-FAD/NADH domain arrangement observed in BenC and T4moF. As reported earlier (12), cyclic permutation of the three contributing domains does not dramatically alter the relative positions of the redox cofactors in the tertiary structure. However, the cyclic permutations may provide different possibilities for interactions of the Fd domain with subsequent proteins in their respective enzyme complexes, providing another mechanism for evolutionary adaption in the iron-sulfur flavoprotein family (11).

Predicted complex of T4moF and T4moC. With the availability of the T4moF structure, we asked whether the domain positions just described might provide a favorable shape for protein-protein interactions with T4moC, the Rieske-type ferredoxin that accepts electrons from T4moF. Even with no adjustment of the domain positions in T4moF, visual inspection showed there was remarkably good steric and electrostatic matching when T4moC was placed into the cleft between the Fd and NADH binding domains in T4moF. Correspondingly, ClusPro v2.0 protein-protein docking (24, 25) gave a number of plausible structures for the T4moFC complex. One of these plausible structures is shown in Figure 5. Relative to the image of T4moF shown in Figure 1, the orientation of the docked complex has been rotated around the *z*-axis by 180°. Thus T4moC makes its key interactions by approach from the opposite side of T4moF than does NADH. Also notable, the docked structures have the [2Fe-2S] clusters in T4moF and T4moC separated by ~12 Å, within a predicted favorable distance for biological electron transfer (44).

Figure 5B shows a close-up of the predicted interface between T4moF and T4moC. The energy-minimized interface has several intriguing features. The Rieske [2Fe-2S] ligands His47 and His67, which are solvent-exposed in T4moC alone and make essential inter-protein contacts in the T4moHC complex (10), are also potentially involved in the T4moFC complex through interactions with T4moF Glu93 and Glu35, respectively. Moreover, the docking model predicts that T4moC Arg65 can have a hydrogen bonding interaction with Cys41, which is a ligand to the [2Fe-2S] cluster in T4moF, and with T4moF Gly62-O. The importance of these interactions is supported by earlier mutagenesis studies showing that T4moC Arg65Ala had ~7-fold drop in k_{cat}/K_M for reduction by T4moF, which was primarily driven by an increase in K_M from ~2 μM to

~20 μ M (45). It is also possible that Arg324 from T4moF, which shows two conformations in the T4moF electron density, can make electrostatic interactions with T4moC Ala66-O.

The electrostatic contributions to the interface between T4moF and T4moC predicted by the docking are consistent with the disrupting influence that increasing ionic strength had on the rate of inter-protein electron transfer (45). Interestingly, the T4moC Arg65Ala mutation had no effect on the ability of chemically reduced T4moC to transfer electrons to T4moH (45). This is consistent with the structure of the T4moHC complex, which shows that T4moC Arg65 is not included in the electron transfer interface between T4moC and T4moH, but instead projects into solvent (10). However, formation of a trinary T4moHCF complex is not plausible, given the involvement of T4moC Rieske [2Fe-2S] ligands His47 and His67 in the formation of complexes with both T4moF and T4moH.

Figure 5. Predicted protein-protein interaction between T4moF and T4moC. T4moF has a prominent cleft between the Fd (gold) and NADH binding (maroon) domains that appears to be well-shaped to interact with T4moC (brown). A, energy-minimized T4moFC complex. The [2Fe-2S] clusters (spheres) are ~12 \AA apart. B, close up of the interface showing predicted key

1
2
3 interactions, including T4moC Arg65 (*brown* sticks) interacting with T4moF Cys41 and Gly62;
4
5 T4moC His67 interacting with T4moF Glu35; and T4moC His47 interacting with T4moF Glu93.
6
7
8

9 **Summary of T4moF catalysis.** By combining the predicted position for NADH binding
10 obtained from this work with prior structural and spectroscopic results on PDR (12, 40, 46) and
11 MmoC (29, 30, 47, 48), all three oxidoreductases will undoubtedly have a similar reductive half
12 reaction with NADH. A minor structural arrangement, gated by predicted inter-domain motions,
13 should lead to repositioning of Phe325 and allow NADH to bind the FNR-like domain (40) with
14 the nicotinamide ring placed into a productive position in the active site. The results of energy-
15 minimized docking of NADH also support hydride transfer to N5 of the isoalloxazine ring.
16 Release of NAD⁺, which has been shown to be a gating step for electron transfer in both PDR
17 and MmoC, also seems likely to be gated by inter-domain motion. In this regard, the binding
18 affinity for NAD⁺ is ~2 orders of magnitude lower than NADH (46), and the crystal structure of
19 PDR bound to NAD⁺ showed electron density for all atoms of NAD⁺ except the nicotinamide
20 moiety. As a result, inter-domain motions that help Phe325 resume its resting position relative to
21 FAD may weaken interactions with the nicotinamide ring, thus contributing to the release of
22 NAD⁺.
23
24

25 Electron-transfer between FAD and the [2Fe-2S] cluster may proceed through FAD C8M
26 and Cys36-O as predicted by HARLEM, leading to formation of the reduced [2Fe-2S] cluster in
27 T4moF and the semiquinone state of FAD. Subsequent electron transfer from the [2Fe-2S]¹⁺
28 cluster of T4moF to the Rieske-type [2Fe-2S] cluster in T4moC requires the formation of a new
29 protein-protein interaction, and results presented here suggest that T4moF adopts an ideal
30 configuration to achieve this. Interestingly, although electron transfer within T4moF likely
31 involves C8M and Cys36-O, the most favorable interaction between T4moF and T4moC will
32 involve Cys41 and Glu35. Interestingly, the Cys41-Glu35 interaction is predicted to be
33 significantly more favorable than the Cys41-Cys36 interaction, and the Cys41-Glu35 interaction
34 is predicted to be significantly more favorable than the Cys41-Cys47 interaction. The Cys41-Glu35
35 interaction is predicted to be significantly more favorable than the Cys41-Cys47 interaction. The Cys41-Glu35
36 interaction is predicted to be significantly more favorable than the Cys41-Cys47 interaction. The Cys41-Glu35
37 interaction is predicted to be significantly more favorable than the Cys41-Cys47 interaction. The Cys41-Glu35
38 interaction is predicted to be significantly more favorable than the Cys41-Cys47 interaction. The Cys41-Glu35
39 interaction is predicted to be significantly more favorable than the Cys41-Cys47 interaction. The Cys41-Glu35
40 interaction is predicted to be significantly more favorable than the Cys41-Cys47 interaction. The Cys41-Glu35
41 interaction is predicted to be significantly more favorable than the Cys41-Cys47 interaction. The Cys41-Glu35
42 interaction is predicted to be significantly more favorable than the Cys41-Cys47 interaction. The Cys41-Glu35
43 interaction is predicted to be significantly more favorable than the Cys41-Cys47 interaction. The Cys41-Glu35
44 interaction is predicted to be significantly more favorable than the Cys41-Cys47 interaction. The Cys41-Glu35
45 interaction is predicted to be significantly more favorable than the Cys41-Cys47 interaction. The Cys41-Glu35
46 interaction is predicted to be significantly more favorable than the Cys41-Cys47 interaction. The Cys41-Glu35
47 interaction is predicted to be significantly more favorable than the Cys41-Cys47 interaction. The Cys41-Glu35
48 interaction is predicted to be significantly more favorable than the Cys41-Cys47 interaction. The Cys41-Glu35
49 interaction is predicted to be significantly more favorable than the Cys41-Cys47 interaction. The Cys41-Glu35
50 interaction is predicted to be significantly more favorable than the Cys41-Cys47 interaction. The Cys41-Glu35
51 interaction is predicted to be significantly more favorable than the Cys41-Cys47 interaction. The Cys41-Glu35
52 interaction is predicted to be significantly more favorable than the Cys41-Cys47 interaction. The Cys41-Glu35
53 interaction is predicted to be significantly more favorable than the Cys41-Cys47 interaction. The Cys41-Glu35
54 interaction is predicted to be significantly more favorable than the Cys41-Cys47 interaction. The Cys41-Glu35
55 interaction is predicted to be significantly more favorable than the Cys41-Cys47 interaction. The Cys41-Glu35
56 interaction is predicted to be significantly more favorable than the Cys41-Cys47 interaction. The Cys41-Glu35
57 interaction is predicted to be significantly more favorable than the Cys41-Cys47 interaction. The Cys41-Glu35
58 interaction is predicted to be significantly more favorable than the Cys41-Cys47 interaction. The Cys41-Glu35
59 interaction is predicted to be significantly more favorable than the Cys41-Cys47 interaction. The Cys41-Glu35
60 interaction is predicted to be significantly more favorable than the Cys41-Cys47 interaction.

1
2
3 likely involve contacts of T4moF Glu35 and Cys41 with several residues on T4moC including
4
5 Arg65, Ala66 and Rieske [2Fe-2S] ligand His67 (Figure 5B).
6
7
8

9 CONCLUSIONS 10 11

12 This work on T4moF provides a new structure of an intact BMM oxidoreductase from the
13 iron-sulfur flavoprotein family. There is high structural homology within this family (*II*), albeit
14 with little sequence identity and with cyclic permutation of the Fd and FNR-like domains.
15 Oxidoreductases are generally thought to have optimized interactions with their cognate protein
16 partners arising from specific electrostatic and steric interactions of residues that make up the
17 respective electron transfer surfaces. This work also provides an example of how distal protein-
18 protein interactions help to define the electron transfer complex. While electron transfer is not
19 rate-limiting for T4MO catalysis (45, 46), this work suggests several conformational
20 rearrangements that must occur in order for T4moF to be reduced by NADH. The structure of
21 T4moF also identified a unique domain arrangement that supports formation of a highly
22 favorable complex with its specific electron transfer partner T4moC. The predicted protein-
23 protein interface is consistent with earlier mutagenesis results on electron transfer between
24 T4moF and T4moC (45), lending support to the validity of the current structure-enabled analysis.
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

44 AUTHOR INFORMATION 45 46

47 Author Contributions 48

49 The manuscript was written through contributions of all authors. All authors have given approval
50 to the final version of the manuscript.
51
52
53
54
55
56
57
58
59
60

Financial Conflicts of Interest

None.

Funding Information

This work was funded by MCB-0843239 from the National Science Foundation to B.G.F. The use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science contract No. W-31-109-ENG-38. The use of the Life Science Collaborative Access Team (LS-CAT) was supported by the College of Agricultural and Life Sciences, Department of Biochemistry, and Office of the Vice Chancellor for Research and Graduate Education of the University of Wisconsin. J.F.A. was supported by a Wisconsin Distinguished Graduate Fellowship.

ACKNOWLEDGMENT

We would like to thank the Dane County School Consortium's Youth Apprenticeship Program for support provided to H.M.

Supporting Information

Hydrogen bonding distances for redox cofactors (Tables S1 and S2), RMSD values for alignment of iron-sulfur flavoprotein structures (Table S3), a sequence alignment (Figure S1), phylogenetic tree (Figure S2) and T4moF expression vector map (Figure S3).

REFERENCES

1. Lipscomb, J. D. (1994) Biochemistry of the soluble methane monooxygenase, *Annu Rev Microbiol* 48, 371-399.
2. Leahy, J. G., Batchelor, P. J., and Morcomb, S. M. (2003) Evolution of the soluble diiron monooxygenases, *FEMS Microbiol Rev* 27, 449-479.

1
2
3 3. Green, J., and Dalton, H. (1985) Protein b of soluble methane monooxygenase from
4 *methylococcus capsulatus* (bath). A novel regulatory protein of enzyme activity, *J Biol*
5 *Chem* **260**, 15795-15801.
6 4. Pikus, J. D., Studts, J. M., Achim, C., Kauffmann, K. E., Munck, E., Steffan, R. J.,
7 McClay, K., and Fox, B. G. (1996) Recombinant toluene-4-monooxygenase: Catalytic
8 and mössbauer studies of the purified diiron and rieske components of a four-protein
9 complex, *Biochemistry* **35**, 9106-9119.
10 5. Whited, G. M., and Gibson, D. T. (1991) Toluene-4-monooxygenase, a three-component
11 enzyme system that catalyzes the oxidation of toluene to p-cresol in *pseudomonas*
12 *mendocina* kr1, *J Bacteriol* **173**, 3010-3016.
13 6. Pikus, J. D., Studts, J. M., McClay, K., Steffan, R. J., and Fox, B. G. (1997) Changes in
14 the regiospecificity of aromatic hydroxylation produced by active site engineering in the
15 diiron enzyme toluene 4-monooxygenase, *Biochemistry* **36**, 9283-9289.
16 7. Moe, L. A., Bingman, C. A., Wesenberg, G. E., Phillips, G. N., Jr., and Fox, B. G. (2006)
17 Structure of t4moc, the rieske-type ferredoxin component of toluene 4-monooxygenase,
18 *Acta Crystallogr D Biol Crystallogr* **62**, 476-482.
19 8. Lountos, G. T., Mitchell, K. H., Studts, J. M., Fox, B. G., and Orville, A. M. (2005)
20 Crystal structures and functional studies of t4mod, the toluene 4-monooxygenase
21 catalytic effector protein, *Biochemistry* **44**, 7131-7142.
22 9. Bailey, L. J., McCoy, J. G., Phillips, G. N., Jr., and Fox, B. G. (2008) Structural
23 consequences of effector protein complex formation in a diiron hydroxylase, *Proc Natl*
24 *Acad Sci U S A* **105**, 19194-19198.
25 10. Acheson, J. F., Bailey, L. J., Elsen, N. L., and Fox, B. G. (2014) Structural basis for
26 biomolecular recognition in overlapping binding sites in a diiron enzyme system, *Nat*
27 *Commun* **5**, 5009.
28 11. Karlsson, A., Beharry, Z. M., Matthew Eby, D., Coulter, E. D., Neidle, E. L., Kurtz, D.
29 M., Jr., Eklund, H., and Ramaswamy, S. (2002) X-ray crystal structure of benzoate 1,2-
30 dioxygenase reductase from *acinetobacter* sp. Strain adp1, *J Mol Biol* **318**, 261-272.
31 12. Correll, C. C., Batie, C. J., Ballou, D. P., and Ludwig, M. L. (1992) Phthalate
32 dioxygenase reductase: A modular structure for electron transfer from pyridine
33 nucleotides to [2fe-2s], *Science* **258**, 1604-1610.
34 13. Bailey, L. J., Elsen, N. L., Pierce, B. S., and Fox, B. G. (2008) Soluble expression and
35 purification of the oxidoreductase component of toluene 4-monooxygenase, *Protein Expr*
36 *Purif* **57**, 9-16.
37 14. Blommel, P. G., Martin, P. A., Seder, K. D., Wrobel, R. L., and Fox, B. G. (2009) Flexi
38 vector cloning, *Methods Mol Biol* **498**, 55-73.
39 15. Fox, B. G., and Blommel, P. G. (2009) Autoinduction of protein expression, *Curr Protoc*
40 *Protein Sci Chapter 5*, Unit 5 23.
41 16. Mitchell, K. H., Studts, J. M., and Fox, B. G. (2002) Combined participation of
42 hydroxylase active site residues and effector protein binding in a para to ortho
43 modulation of toluene 4-monooxygenase regiospecificity, *Biochemistry* **41**, 3176-3188.
44 17. Otwinowski, Z., and Minor, W. (1997) Processing of x-ray diffraction data collected in
45 oscillation mode, *Macromolecular Crystallography, Pt A* **276**, 307-326.
46 18. Arnold, K., Bordoli, L., Kopp, J., and Schwede, T. (2006) The swiss-model workspace: A
47 web-based environment for protein structure homology modelling, *Bioinformatics* **22**,
48 195-201.
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

19. Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C., and Zwart, P. H. (2010) Phenix: A comprehensive python-based system for macromolecular structure solution, *Acta Crystallogr D Biol Crystallogr* 66, 213-221.
20. Emsley, P., and Cowtan, K. (2004) Coot: Model-building tools for molecular graphics, *Acta Crystallogr D Biol Crystallogr* 60, 2126-2132.
21. Chen, V. B., Arendall, W. B., 3rd, Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S., and Richardson, D. C. (2010) Molprobity: All-atom structure validation for macromolecular crystallography, *Acta Crystallogr D Biol Crystallogr* 66, 12-21.
22. DeLano, W. L. (2002) *The pymol molecular graphics system*, DeLano Scientific, San Carlos, CA, USA.
23. Deng, Z., Aliverti, A., Zanetti, G., Arakaki, A. K., Ottado, J., Orellano, E. G., Calcaterra, N. B., Ceccarelli, E. A., Carrillo, N., and Karplus, P. A. (1999) A productive nadp⁺ binding mode of ferredoxin-nadp⁺ reductase revealed by protein engineering and crystallographic studies, *Nat Struct Biol* 6, 847-853.
24. Comeau, S. R., Gatchell, D. W., Vajda, S., and Camacho, C. J. (2004) Cluspro: A fully automated algorithm for protein-protein docking, *Nucleic Acids Res* 32, W96-99.
25. Comeau, S. R., Gatchell, D. W., Vajda, S., and Camacho, C. J. (2004) Cluspro: An automated docking and discrimination method for the prediction of protein complexes, *Bioinformatics* 20, 45-50.
26. Yen, K. M., and Karl, M. R. (1992) Identification of a new gene, tmof, in the pseudomonas mendocina kr1 gene cluster encoding toluene-4-monoxygenase, *J Bacteriol* 174, 7253-7261.
27. Longenecker, K. L., Garrard, S. M., Sheffield, P. J., and Derewenda, Z. S. (2001) Protein crystallization by rational mutagenesis of surface residues: Lys to ala mutations promote crystallization of rhogdi, *Acta Crystallogr D Biol Crystallogr* 57, 679-688.
28. Karplus, P. A., and Bruns, C. M. (1994) Structure-function relations for ferredoxin reductase, *J Bioenerg Biomembr* 26, 89-99.
29. Muller, J., Lugovskoy, A. A., Wagner, G., and Lippard, S. J. (2002) Nmr structure of the [2fe-2s] ferredoxin domain from soluble methane monooxygenase reductase and interaction with its hydroxylase, *Biochemistry* 41, 42-51.
30. Chatwood, L. L., Muller, J., Gross, J. D., Wagner, G., and Lippard, S. J. (2004) Nmr structure of the flavin domain from soluble methane monooxygenase reductase from methylococcus capsulatus (bath), *Biochemistry* 43, 11983-11991.
31. Gille, C., and Frommel, C. (2001) Strap: Editor for structural alignments of proteins, *Bioinformatics* 17, 377-378.
32. Bruns, C. M., and Karplus, P. A. (1995) Refined crystal structure of spinach ferredoxin reductase at 1.7 a resolution: Oxidized, reduced and 2'-phospho-5'-amp bound states, *J Mol Biol* 247, 125-145.
33. Kurisu, G., Kusunoki, M., Katoh, E., Yamazaki, T., Teshima, K., Onda, Y., Kimata-Ariga, Y., and Hase, T. (2001) Structure of the electron transfer complex between ferredoxin and ferredoxin-nadp(+) reductase, *Nat Struct Biol* 8, 117-121.

1
2
3 34. Morales, R., Kachalova, G., Vellieux, F., Charon, M. H., and Frey, M. (2000) Crystallographic studies of the interaction between the ferredoxin-nadp⁺ reductase and ferredoxin from the cyanobacterium *anabaena*: Looking for the elusive ferredoxin molecule, *Acta Crystallogr D Biol Crystallogr* 56, 1408-1412.

4 35. Nishida, H., Inaka, K., Yamanaka, M., Kaida, S., Kobayashi, K., and Miki, K. (1995) Crystal structure of nadh-cytochrome b5 reductase from pig liver at 2.4 a resolution, *Biochemistry* 34, 2763-2767.

5 36. Rypniewski, W. R., Breiter, D. R., Benning, M. M., Wesenberg, G., Oh, B. H., Markley, J. L., Rayment, I., and Holden, H. M. (1991) Crystallization and structure determination to 2.5-a resolution of the oxidized [2fe-2s] ferredoxin isolated from *anabaena* 7120, *Biochemistry* 30, 4126-4131.

6 37. Sevrioukova, I. F. (2005) Redox-dependent structural reorganization in putidaredoxin, a vertebrate-type [2fe-2s] ferredoxin from *pseudomonas putida*, *J Mol Biol* 347, 607-621.

7 38. Kurnikov, I. V. (2000) Harlem molecular modelling package, Department of Chemistry, University of Pittsburgh.

8 39. Ingelman, M., Bianchi, V., and Eklund, H. (1997) The three-dimensional structure of flavodoxin reductase from *escherichia coli* at 1.7 a resolution, *J Mol Biol* 268, 147-157.

9 40. Correll, C. C., Ludwig, M. L., Bruns, C. M., and Karplus, P. A. (1993) Structural prototypes for an extended family of flavoprotein reductases: Comparison of phthalate dioxygenase reductase with ferredoxin reductase and ferredoxin, *Protein Sci* 2, 2112-2133.

10 41. Emekli, U., Schneidman-Duhovny, D., Wolfson, H. J., Nussinov, R., and Haliloglu, T. (2008) Hingeprot: Automated prediction of hinges in protein structures, *Proteins* 70, 1219-1227.

11 42. Durand, P., Trinquier, G., and Sanejouand, Y.-H. (1994) A new approach for determining low-frequency normal modes in macromolecules, *Biopolymers* 34, 759-771.

12 43. Fox, B. G., Liu, Y., Dege, J. E., and Lipscomb, J. D. (1991) Complex formation between the protein components of methane monooxygenase from *methyllosinus trichosporium* ob3b. Identification of sites of component interaction, *J Biol Chem* 266, 540-550.

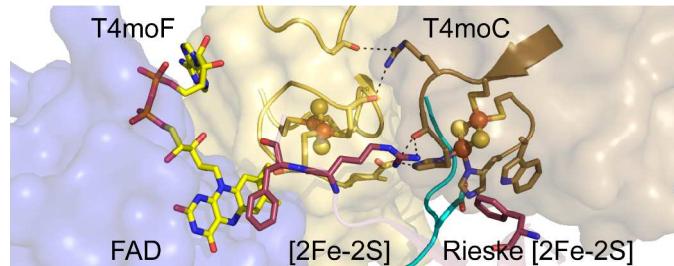
13 44. Gray, H. B., and Winkler, J. R. (1996) Electron transfer in proteins, *Annu Rev Biochem* 65, 537-561.

14 45. Elsen, N. L., Moe, L. A., McMartin, L. A., and Fox, B. G. (2007) Redox and functional analysis of the rieske ferredoxin component of the toluene 4-monooxygenase, *Biochemistry* 46, 976-986.

15 46. Gassner, G., Wang, L., Batie, C., and Ballou, D. P. (1994) Reaction of phthalate dioxygenase reductase with nadh and nad: Kinetic and spectral characterization of intermediates, *Biochemistry* 33, 12184-12193.

16 47. Green, J., and Dalton, H. (1989) A stopped-flow kinetic study of soluble methane monooxygenase from *methyllococcus capsulatus* (bath), *Biochem J* 259, 167-172.

17 48. Blazyk, J. L., and Lippard, S. J. (2002) Expression and characterization of ferredoxin and flavin adenine dinucleotide binding domains of the reductase component of soluble methane monooxygenase from *methyllococcus capsulatus* (bath), *Biochemistry* 41, 15780-15794.


18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 For Table of Contents Use Only
4
5
6
7
8

9
10
11
12
13
14 Structure of T4moF, the toluene 4-monooxygenase
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

ferredoxin oxidoreductase

Justin F. Acheson, Hannah Moseson & Brian G. Fox

