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An overview is presented of the GLENS project, a community-wide effort enabling

analyses of global and regional changes from stratospheric aerosol geoengineering

in the presence of internal climate variability.

aerosols has been discussed as a potential means

of deliberately offsetting some of the effects
of climate change (Crutzen 2006). Various model
studies have demonstrated that reducing incoming
solar radiation globally can offset the increase in
global average surface temperature associated with
increasing greenhouse gases (e.g., Kravitz et al. 2013).
Despite the stabilization of global surface tempera-
ture, these simulations show significant changes in
atmospheric conditions with global solar reductions
or stratospheric sulfur or aerosol injections. Side
effects in these simulations include “overcooling” of
the tropics and “undercooling” of the poles, leading
to continued Arctic summer sea ice loss (e.g., Moore
et al. 2014; Tilmes et al. 2016). Additionally, the
slowing of the hydrological cycle (e.g., Schmidt et al.
2012) and the potentially uneven cooling between
the two hemispheres resulting from solar geoengi-
neering can lead to shifts in precipitation patterns
(Haywood et al. 2013; Jones et al. 2017) and reduc-
tions in monsoon precipitation (Tilmes et al. 2013).
Many available model results to date are based on an
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artificial design intended to explore the impact of
large forcing effects through global solar dimming.
For other experiments, only a few ensemble members
are performed, making it difficult to identify the
robustness of regional climate effects.

Simulations of stratospheric sulfate aerosol
geoengineering inject sulfur dioxide (SO,) into the
stratosphere that oxidizes to form sulfate aerosols or
they use direct injections of sulfate aerosols. These
experiments require model capabilities beyond those
in solar reduction simulations. The stratospheric
aerosol distribution resulting from such injections de-
pends on the model’s aerosol microphysical scheme,
as well as interactions with chemical, dynamical,
and radiative processes (Pitari et al. 2014; Mills et al.
2017). Aerosol size and sedimentation are increased
with the injection amount and the efficiency of the
sulfates to affect the top of the atmosphere radiative
imbalance is reduced (Niemeier and Timmreck 2015;
Kravitz et al. 2017; Kleinschmitt et al. 2017). The
warming of the tropical stratosphere in response to
the enhanced aerosol burden results in circulation
changes in the stratosphere with potential effects
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on the quasi-biennial oscillation (QBO; Aquila et al.
2014), as well as impacts on the tropospheric circu-
lation (Richter et al. 2018). Changes in the chemical
composition, including changes in water vapor and
ozone, as well as changes in tropospheric clouds, may
alter the long- and shortwave climate forcing. All
these factors add complexity and potential sources
of nonlinearity to the model response, leading to
increased uncertainty in the results. Furthermore,
shortcomings in our current knowledge of climate
system interactions and future climate forcings
makes it practically impossible to precisely predict
the required injection regimes with a substantial lead
time, in order to meet specified climate objectives.

ADVANCES OF THIS PROJECT. In this
project, we combine four key elements aimed at
meeting specific climate goals in order to advance
our understanding of the impacts of stratospheric
aerosol geoengineering and to overcome some of
the abovementioned limitations by using a strategic
approach.

i) We employ the state-of-the-art Community
Earth System Model, version 1, using the
Whole Atmosphere Community Climate Model
[CESM1I(WACCM)] as its atmospheric compo-
nent, which provides a comprehensive repre-
sentation of atmospheric conditions in both the
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troposphere and stratosphere (Mills et al. 2017),
and is coupled to land, sea ice, and the ocean.

ii) Weinject SO, at four predefined injection locations
at ~5 km above the tropopause, namely at 30°N,
30°S, 15°N, and 15°S, that are sufficient to modify
the stratospheric aerosol distribution in order to
maintain the global mean surface temperature
T0, the interhemispheric (positive northward)
temperature gradient T1, and the equator-to-pole
(projection onto quadratic) temperature gradient
T2, as defined by Kravitz et al. (2017).

iif) We use a feedback-control algorithm coupled
to CESM1(WACCM) that annually adjusts the
amount of sulfur injection at each of the four
locations, based on departures of the simulation
from chosen objectives from the previous years.

iv) We employ a 20-member geoengineering large
ensemble [the Stratospheric Aerosol Geoengi-
neering Large Ensemble (GLENS)], which was
the amount possible with the available computer
resources, to enable a more robust assessment of
the regional climate response within the vari-
ability of the climate system.

As is now well recognized within the context of
detecting climate change signals, assessment of the
statistical significance and robustness of regional
changes, as well as an appreciation of the possible
futures that could arise as a result of the combined
influence of climate forcings and internal variability,
can benefit greatly from the use of multimember
ensembles (Kay et al. 2015).

THE MODEL. All simulations are performed with
the state-of-the-art CESM (Hurrell et al. 2013). Different
model components, as listed in Table 1, are interactively
coupled. The atmospheric model, WACCM, uses a 0.9°
latitude x 1.25° longitude grid with 70 vertical layers
reaching up to 140 km (~10-° hPa). The model includes
comprehensive, fully interactive middle atmosphere
chemistry with 95 solution species, two invariant spe-
cies, 91 photolysis reactions, and 207 other reactions.
The chemical scheme includes gas-phase and hetero-
geneous reactions important for stratospheric ozone
chemistry, as well as sulfur-bearing gases important
for stratospheric sulfate formation (Mills et al. 2017). A
simplified chemistry scheme is used in the troposphere,
which supports the formation of aerosols and is coupled
to interactive biogenic emissions from the land model
(Table 1). As aresult, the simulations presented here are
not suitable for investigating changes in tropospheric
ozone or other tropospheric trace gases. This model
has been updated with the capability to simulate the
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TasLE |. CESM(WACCM) components used for GLENS; see text for more details.

Model component Version Reference

Atmosphere WACCM Marsh et al. (2013), Mills et al. (2017)
Aerosol MAM3 Liu et al. (2012)

Land CLM4.5 Oelson et al. (2017)

Biogenic emissions

Model of Emissions of Gases and Aerosols
from Nature version 2.1 (MEGAN?2.1)

Guenther et al. (2012)

Sea ice

Los Alamos Sea Ice Model (CICE4)

Holland (2013)

Ocean

Parallel Ocean Program (POP2)

Danabasoglu et al. (2012)

TABLE 2. Summary of available model simulations used in this project. Detailed case names and

initialization file names are provided to document file names for potential users of the model

output, whereby XX in column 3 refers to member numbers.

Simulation Years Case Ensemble members

RCP8.S 2010-97 b.e15.B5505C5WCCML45BGCR.f09 gl6. 3 (001-003)
control.0XX

RCP8.5 2010-30 b.e15.B5505C5WCCML45BGCR.f09 gl6. 17 (004-020)
control.0XX

. . b.e15.B5505C5WCCML45BGCR.f09 gl6.
Geoengineering 2020-99 feedback 0XX 20 (001-020)

formation of stratospheric sulfate aerosols after the
injection of SO,, through oxidation with interactively
changing OH, using a modal aerosol model [the
three-mode version of the Modal Aerosol Module
(MAM3)], which is interactively coupled to chemistry
and radiation (Mills et al. 2016). MAM3 includes com-
prehensive aerosol microphysics to simulate required
processes including nucleation, coagulation, condensa-
tional growth, evaporation, and sedimentation and is
applied in both the troposphere and stratosphere. The
coupling between tropospheric aerosols, clouds, and
radiation is resolved and described by Liu et al. (2012).
For this project, we use a new version of the land model
[Community Land Model, version 4.5 (CLM4.5) instead
of CLM4.0]. Compared to the earlier version, CLM4.5
includes an active terrestrial carbon cycle, including
photosynthesis and respiration, considering different
carbon and nitrogen pools. Some significant changes
in the climate response are identified when using the
updated CLM4.5 compared to CLM4.0, including sea-
sonal changes in surface temperatures over the Arctic.
A detailed evaluation of the model (using CLM4.0) is
provided by Mills et al. (2017).

The model compares favorably with present-day ob-
servations in terms of its climatology and the variability
of the ocean and atmosphere. It produces a reasonably
good representation of the QBO and an excellent rep-
resentation of stratospheric ozone column and water
vapor concentrations (Mills et al. 2017). Furthermore,
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this model compares very well with observations of
radiative forcing changes when simulating the period
following the 1991 eruption of Mount Pinatubo (Mills
etal. 2017) and is therefore well suited to perform strato-
spheric aerosol geoengineering experiments.

SIMULATIONS. The GLENS simulations use
prescribed greenhouse gas forcing concentrations fol-
lowing the representative concentration pathway 8.5
(RCP8.5; i.e., a high anthropogenic emission scenario).
This setup requires steadily increasing sulfur injec-
tions for the geoengineering simulations to counteract
the forcing of increasing greenhouse gases in order
to keep the climate at 2020 conditions. The purpose
of this setup is not to suggest a realistic application,
but to identify the side effects, risks, and limitations
of geoengineering, while applying increasing sulfur
injection rates in a single model. Details about the
setup of the simulations (including case names) are
listed in Table 2. The evolution of global mean surface
temperature T0, interhemispheric surface temperature
gradient T1, and equator-to-pole surface temperature
gradient T2 are shown in Fig. 1.

The RCP8.5 simulations are started in 2010 using
atmospheric initial conditions from a CESM1(WACCM)
free-running historical simulation, following the
RCP8.5 emission scenario (after 2005), as described by
Mills et al. (2017). Initial conditions for the land and
river model are taken from a 10-yr spinup simulation
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with CESM1(WACCM), branched from a transient
historical (1850-2010) CESM1 simulation coupled to
the CLM4.5 land model. The 20-member ensemble
starts in 2010 and continues until 2030. Three ensemble
members are extended at least until 2097, with only one
(ensemble number three) completing year 2099 because
of instabilities in simulating RCP8.5 toward the end of
the twenty-first century. For each ensemble member,
the atmospheric state is initialized with 1 January
conditions taken from different years between 2008
and 2012 of the reference simulation and a round-off
(order of 10" K) air temperature perturbation, while
the land, sea ice, and ocean start from the same initial
conditions for each ensemble member. The ocean and
sea ice initial conditions were taken from year 2010
of member 001 of the CESM Large Ensemble Project
(Kay et al. 2015). This approach provides a reasonable
sampling of atmospheric internal variability but does
undersample the potential contribution of ocean states.

Global mean temperature

The geoengineering simulations are set up the same
way as the RCP8.5 simulations, but using injections of
SO, at four independent locations (15°N and 15°S at
25kmand 30°N and 30°S at 22.8 km, all at an arbitrari-
ly chosen longitude of 180°) with the goal of keeping
the climate conditions representative of 2020 (Fig. 1).

Temperature targets for 2020 conditions are derived
using the first 13 members of the RCP8.5 simulation
averaged between 2015 and 2025 to include +5 yr around
2020 (not all 20 RCP8.5 members were available at the
time the first 13 feedback simulations started), leading
to the global temperature target TO, 288.21 K; the
interhemispheric temperature target T1, 0.59 K; and the
equator-to-pole temperature target T2, -6.01 K (Table 3).
Very similar temperatures were derived when using all
20 ensemble members for the same period (not shown).
For climatological comparisons we suggest comparing
to a reference period 2010-30. Corresponding surface
temperature values are listed in Table 3 (third row) and

are also similar to the target tem-
peratures used.

The geoengineering simula-
tions start in 2020, where they
branch from each of the 20 con-
1 trol simulations and are contin-
. ued until 2099. The feedback-

control algorithm (see “Achieving

6 T T T T T T
5 | RCP8.5
4 + Geoengineering
¥ 3 1
2
1
0
_1 \ 1 1 1 1 1 1 1 1
08 Inter-hemispheric temperature gradient

temperature goals” section) is
applied to each of the 20 members
individually to reach the above-

prescribed target temperatures,
resulting in slightly different
injection amounts per location
in each simulation (see Fig. 2). It
should be noted that, while each
of the feedback members is ini-

Equator-to-pole temperature gradient

tialized in 2020 from ocean con-
ditions that had already diverged

0-8 ‘ ‘ between 2010 and 2020 in the
0.6 | control simulations, this is not
0.4 1 sufficient to completely eliminate
0.2 - the memory of the ocean initial

0 Lo — conditions in the Atlantic sector.
0o | 1 1 1 | | | | | All RCP8.5 and geoengineering
e ensemble members are prone

(7/0\Q (}/QQ’Q (}/Q%Q Q/Qb‘g Q/QCDQ (?/QQ)Q q/Q/\Q q/Qq’Q Q/QQQ Q;\QQ to a more negative phase of the

Atlantic multidecadal oscillation

Fic. I. (top) Global mean surface temperature T0, (middle) the
interhemispheric surface temperature gradient Tl, and (bottom) the
equator-to-pole surface temperature gradient T2 for RCP8.5 (gray for
single ensemble members and black for the ensemble mean) and for
the geoengineering simulations (light blue for single ensemble members
and dark blue for the ensemble mean) as compared to 2015-25 values
of the RCP8.5 simulation.
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(AMO) (Trenberth and Shea
2006) around 2020 and then
subsequently recover over the
next 15-20 yr. The reason for
this initial behavior has to be
investigated in more detail, but



TasLE 3. Ensemble mean surface temperature values for TO, Tl, and T2 (K; see text). The target
temperature chosen for the feedback-control mechanism to keep temperatures at 2020 conditions
is shown in the first row. Values for recommended climatological comparisons between 2010 and
2030 are shown in the second row, and results from the geoengineering simulations between 2020
and 2100 are shown in the third row. Values in parentheses describe the cross-ensemble standard
deviation in each year averaged over the considered period.

Simulation Average over (yr) TO (std dev) TI (std dev) T2 (std dev)
RCP8.5 2015-25 288.21 (0.11) 0.59 (0.05) 6.01 (0.04)
RCP8.5 2010-30 288.25 (0.11) 0.62 (0.05) 6.00 (0.04)
Geoengineering 2020-2100 288.24 (0.13) 0.62 (0.05) 5.94 (0.04)
should be taken into account when 55 N
interpreting future changes in the . S5
Atlantic sector in these simulations.
45 - .
TECHNICAL DETAILS AND TZ a0 | i
MODEL OUTPUT. Model sim- S
ulations were performed on the @ 35T iy
new Cheyenne high-performance g 30 L i
computing platform built for the ®
National Center for Atmospheric n? 25 a0’ ™
Research (NCAR) by Silicon  § 5|
Graphics International (SGI). A §
total of 22.8-million core hours were E 5T
used to run a total of 2,227 years for 10 -
this set of simulations. Comprehen-
sive output has been produced to 5T 1 £og i
enable the analysis of various topics. —_—

Monthly output is available for the
atmosphere, ocean, land, sea ice,
and river runoff. Higher temporal
resolution output has been produced

O - 2
2020

2030 2040 2050 2060 2070 2080 2090 2100

Fic. 2. Injection amount at each injection location (Tg SO, yr™') at
15°S (red), 15°N (green), 30°S (blue), and 30°N (pink), as well as the
total injection amount (black). Single ensemble members are shown
in lighter colors, and the ensemble mean is in darker colors.

for certain atmospheric variables,
including a 10-day instantaneous
output of important stratospheric tracers and reaction
rates of the most important stratospheric reactions;
daily mean output of important climate, transport,
and aerosol variables; 6-hourly mean output for
investigating the diurnal cycle of temperature and
wind on the full horizontal and vertical model grid;
and other climate variables related to clouds, pre-
cipitation, and radiation. General diagnostics of the
ensemble results for the atmosphere, land, ice, and
ocean, as well as information on how to download
the output from the NCAR Earth System Grid
(ESQ), are available at www.cesm.ucar.edu/projects
/lcommunity-projects/GLENS/.

ACHIEVING TEMPERATURE GOALS.
The basis for identifying four injection locations to
maintain annually averaged temperature targets (T0,
T1, and T2, as defined above) is a set of 42 single-grid-
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cell stratospheric injection experiments and combined
injection experiments that identify the relationships
between a single-grid-point stratospheric injection
location and surface temperature changes (Tilmes et al.
2017; MacMartin et al. 2017). Both injection altitudes,
at ~1 and ~5 km above the tropopause, were tested
within these experiments, and it was found that the
higher injection location, as used for this ensemble,
is more efficient in reducing surface temperatures for
the same injection amount, but may result in different
impacts (Tilmes et al. 2017). The required SO, injection
rates at each of the four injection locations needed to
meet the temperature targets can be estimated prior
to the start of the simulations from those early experi-
ments. However, because of uncertainties and nonlin-
earities in the response of the system to SO, injection,
these initial estimates would lead to gradually grow-
ing deviations from the target values. To compensate
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for this, we use a feedback 0
algorithm that annually
adjusts the injection rates at
each of the four locations in
response to simulated devia-
tions from the temperature
targets based on a weighted
contribution of deviations
in both the preceding year

A Surface T (K)
&

R2 =0.99

slope =-0.10 K/(Tg so, year'1)

T T T T T T T T

2020 2040 2060 2080 2100

1 1 1 1 1 1 1

and integrated through the -6
simulation to that date [for
details, see MacMartin et al.
(2014) and Kravitz et al.
(2016, 2017)]. This algo-
rithm aims toward main-
taining the target values of
T0, T1, and T2 over time.
Global mean surface
temperatures are successfully kept to the target tem-
perature values (Fig. 1, top). The spread of the en-
semble (cross-ensemble standard deviation in each
year) is within the internal variability of RCP8.5 en-
semble members between 2010 and 2030. The inter-
hemispheric surface temperature (T1) goal is met but
contains a slight positive bias (stronger warming in
the Northern Hemisphere than the Southern Hemi-
sphere) for the ensemble mean after 2040, resulting
from the fact that the feedback algorithm never quite
caught up with the continually increasing forcing.
Despite this bias, values of T1 only change by a
small amount such that the ensemble mean still lies
within the ensemble spread of the reference period.
Equator-to-pole temperature gradients are kept very
close to 2010-30 conditions for roughly the first
20-30 yr. Thereafter, deviations from the control
period increase with increasing injection amount.
The initial estimate for injection rates was derived
from a single earlier simulation with a different
pole-to-equator and interhemispheric temperature
gradient, using an earlier version of the land model,
where injections were primarily at 30°S and 30°N
(Kravitz et al. 2017). Over the initial decades of the
simulation, the controller successfully converges to
better manage the interhemispheric temperature
gradient, leading to more SO, injection at 15°N after
2040, and hence a slightly different spatial pattern of
response after 2040 compared with before. Since the
algorithm successfully diagnoses the need to empha-
sis the interhemispheric gradient and cannot quite
simultaneously manage all three degrees of freedom,
the equator-to-pole temperature gradient goal was
not perfectly reached. Nevertheless, by the end of the
twenty-first century, the change in the equator-to-

0 5 10
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pole temperature gradient compared to the control
in 2010-30 is still only about 15% of the change that
occurs without geoengineering. The identification
of these effects will lead to improvements in the
feedback controller for future simulations.

The injection amount per location in the geoengi-
neering simulations is shown in Fig. 2. Consistently
across the ensemble members, about 80% of the
injection amount is at 30°N and 30°S, with most
of the remaining injection at 15°N and very little
at 15°S. The total required injection amount by the
end of the twenty-first century reached 52 Tg SO,
yr'. This is about equivalent to an annual injection
amount of 5 times the sulfur burden that reached the
stratosphere after the eruption of Mount Pinatubo
in 1991. As pointed out in earlier studies (Niemeier
and Timmreck 2015; Kleinschmitt et al. 2017), the
magnitude of the achieved radiative forcing reduction
does not scale linearly with the SO, injection amount;
increasing SO, injections result in relatively less radia-
tive forcing reduction. However, as was also shown by
Kravitz et al. (2017), in this setup, we derive a close to
linear relationship between the injection amount and
temperature change. The derived rate is approximately
1° of cooling for 10 Tg SO, yr* for the combined in-
jections at all four locations (Fig. 3). Details that lead
to the linear behavior in the temperature response,
including potential changes of aerosol properties with
time, will be the subject of future studies.

STRATOSPHERIC AEROSOL AND
TEMPERATURE RESPONSE. While the
feedback control algorithm is designed to meet the
three temperature targets, other changes in the climate
stystem occur, for example, in stratospheric chemistry

55

FiG. 3. Annual mean global surface temperature change with injection amount
(difference between the ensemble mean of the three RCP8.5 members and
the 20 geoengineering members). Black line indicates ordinary least squares
regression through the colored points.



and dynamics (Richter
et al. 2018; Tilmes et al.
2018). Stratospheric SO,
injections in the geoen-
gineering simulation lead
to the formation of sulfate
aerosols with a maximum
burden around the pri-
mary injection locations
(Fig. 4). The larger injec-
tion amount in the North-
ern Hemisphere creates
a higher vertical exten-
sion of the aerosol layer
and larger mass burdens
close to the injection loca-
tions as compared to the
Southern Hemisphere.
Resulting temperature
changes in the tropical
stratosphere (Fig. 5) are
more comparable between
hemispheres than the
aerosol burden, because
of the importance of both
radiative and dynamical
heating in response to geo-
engineering, as described
in detail by Richter et al.
(2017). Temperatures in
the lower tropical strato-
sphere increase below
the injection locations by
around 5°C during 2040-
59 and around 10°C by
the end of the twenty-first
century, as compared to
the control period. The
increased cooling at later
time periods in the upper
stratosphere is the result
of continuously increasing
greenhouse gases as com-
pared to RCP8.5 2010-30
conditions. The resulting
changes in stratospheric
processes can have im-
portant implications for
the future evolution of
stratospheric column
ozone, which impacts
the amount of ultraviolet
radiation reaching the
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Fic. 4. Differences in the ensemble mean zonal and annual mean stratospheric
sulfate mass mixing ratio between geoengineering averaged over different
periods: (a) 2020-39, (b) 2040-59, (c) 2060-79, and (d) 2080-99 and RCP8.5 in
2010-30. Contours are in intervals of 10 ug S (kg air)~'. Black circles depict the

locations of SO, injections.
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Fic. 5. Differences in the ensemble mean zonal and annual mean temperature
between geoengineering averaged over different periods: (a) 2020-39, (b)
2040-59, (c) 2060-79, and (d) 2080-99 and RCP8.5 in 2010-30. Contours are
in intervals of 2°C. Black circles depict the locations of SO, injections.
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Earth’s surface, and can further impact surface cli-
mate. Additional changes in stratospheric dynamics
include a potential modification of the QBO, which
may also impact tropospheric winds and temperatures;
these have yet to be investigated in detail. Increases in
the stratospheric sulfate burden with increasing injec-
tion amounts of sulfur also are expected to feed back
onto clouds, acid rain, and air quality.

NEW OPPORTUNITIES TO STUDY
REGIONAL CLIMATE IMPACTS. The appli-
cation of strategic stratospheric aerosol geoengineer-
ing has been demonstrated to result in much smaller
global and regional temperature changes by the end of
the century than the RCP8.5 simulation (Kravitz et al.
2017). This result is confirmed by the GLENS project
(Fig. 6), showing regional temperature changes of the
geoengineering ensemble mean below +1°C for most
regions with maximum changes below +2°C, com-
pared to changes of up to 10°C for RCP8.5 between
2075 and 2095 and 2010 and 2030. The relatively small
changes in surface temperature in the geoengineering
simulation are for the most part significantly different
from zero (p value < 0.05) using a two-sided f test.
However, when it comes to identifying potential
climatic impacts of the implementation of this kind
of geoengineering scheme, it is not only necessary
to identify robust mean changes, but also the range
of possible outcomes (i.e., changes in extremes) that
could arise as a result of the combined impact of both
externally forced changes and internal variability. A
detailed understanding of the magnitude of potential
responses and an appreciation of the uncertainties due
to sampling of short climate records on a regional scale

(a) RCP8.5 (2075-2095) - RCP8.5 (2010-2030)  (b) GEOENGINEERING (2075

will be required. While this is a first step, with a single
model, the GLENS project will allow these issues to be
addressed for the first time within the context of geoen-
gineering. Asan example, the histograms in Fig. 7 show
the distribution of differences in 20-yr climatologies
of near-surface air temperature between 2075 and
2095 under geoengineering and the RCP8.5 2010-30
reference period. The 20 ensemble members provide
400 such differences giving insights into the range
of anomalies that may be experienced with a limited
sample size. Figure 7 demonstrates that the sign, mag-
nitude, and uncertainty in the temperature response
are highly spatially variable, indicating regionally
varying impacts of geoengineering that must be fully
understood before such a scheme can be considered
for real-world implementation. We only show surface
temperature here, but given past experiments with the
response to climate change (Deser et al. 2012a,b), we
expect the quantities related to the hydrological cycle
to exhibit greater variability. In addition, the large
ensemble will allow for investigations into changes
in extremes, such as heat waves and winter storms,
which are of great relevance to society but cannot be
investigated with individual realizations.

The high temporal resolution output of the provided
meteorological fields further enables application of
downscaling methods to explore regional and local
impacts on society and the environment with addi-
tional perspective on the impacts of internal climate
variability. For instance, cost estimations depending
on SO, injection amounts and other economical trade-
offs can be investigated. However, conclusions based
on this project need to be viewed with care, keeping
in mind that results are based on a single model. It

0

2m Temperature (K)

2 4 6 8 10

-2095) - RCP8.5 (2010-2030)

FiG. 6. Differences in the ensemble mean annual averaged 2-m temperature between (a) RCP8.5 in 2075-95 minus
RCP8.5 in 2010-30 and (b) between geoengineering in 2075-95 minus RCP8.5 in 2010-30. Gray areas indicate
regions where the differences are not significantly different from zero (p value < 0.05) using a two-sided t test.
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is therefore important to discern whether regional
changes are a result of robust physical mechanisms
that would be expected to occur in the real world or
whether they rely on the specifics of the model and
therefore may be model dependent. Furthermore,
future model development and updated components,
for instance, the use of a more sophisticated aerosol
model or increases in resolution, may significantly
change the results.

Besides the atmospheric processes and regional
climate change, land, sea ice, and ocean changes are
important. For instance, changes induced by solar aero-
sol geoengineering on ocean currents and quantities
including El Nifio-Southern Oscillation and the Atlan-
tic meridional overturning circulation (AMOC) have
not been sufficiently studied in the past. Furthermore,
detection and attribution studies have been performed
on earlier multimodel results that did not include a
strategic application of geoengineering, as presented
in Blirger and Cubasch (2015). New insights into
these research areas are expected based on this novel
multiple-member ensemble dataset. Understanding the
processes that lead to regional changes could motivate

NE North America

further exploration into how one could expand cli-
mate objectives, for instance, through different design
choices, such as the locations or seasons of injection.
Finally, the chosen setup is not meant to suggest a
reasonable application of geoengineering, because of
the increasing risk of an abrupt termination of geo-
engineering and a rapid adjustment of temperatures
back to uncontrolled conditions (Trisos et al. 2018).
Responsible geoengineering should only be applied
in addition to, and not as a substitute to, aggres-
sive decarbonization to reduce the risks of climate
change (e.g., Wigley 2006; Tilmes et al. 2016). Results
from this study can be used to identify the injection
amount that results in changes outside the observed
range of historical variability, which is relevant for
assessing reasonable limits of geoengineering.

SUMMARY AND BROADER IMPLICA-
TIONS. The effects of stratospheric aerosol geoen-
gineering on the Earth system and its implications
for natural and human systems have to be carefully
investigated before the method can be considered
as a viable option for moderating global warming.
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Fic. 7. Ensemble mean 2-m temperature change over land between 2075 and 2095 of the geoengineering simu-
lations and between 2010 and 2030 of the RCP8.5 simulations (note that over land this is the same as in Fig. 6b,
but with a smaller contour interval). The surrounding histograms show the distribution of differences in 20-yr
climatologies of annual average 2-m temperature between 2075 and 2095 of the geoengineering simulations
and between 2010 and 2030 of the RCP8.5 simulations. The 20 ensemble members give 400 possible differences
to make up the distributions shown.
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The GLENS project presented here is a significant
advancement over prior work in that it provides
the community with a new and comprehensive
dataset of strategically geoengineered state-of-the-
art climate simulations. We encourage the wider
research community, including natural and social
scientists, to use this dataset for evaluating and
understanding the potential impacts of this geoen-
gineering strategy. This project is an important step
toward understanding the benefits, side effects, and
risks associated with geoengineering, and supports
the continued development of strategies that aim
toward reducing risks and uncertainties of a potential
future application, which is an essential first step in
informing society and decision-makers.
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