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Gasoline
 High octane number
 Short-chain alkanes
 Highly branched species
 Aromatics

Jet Fuel
 Long-chain alkanes
 Limited branched species
 Aromatics

Diesel
 High cetane number
 Long-chain alkanes
 Limited branched species
 Aromatics

“Ideal” Biofuels Share Similar Fuel Properties with 
Conventional Hydrocarbons

Peralta-Yahya et al., Nature, 488, 2012. 
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Aromatic Biofuel: Cymene (iso-propyltoluene)

limonene
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http://www.jbei.org/index.shtml


900 K

ortho-Effect Implications on Autoignition

Minetti et al. 
Comb. Flame, 121 (2000) 
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Resonance Structures and Implications on the ortho- Effect
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Resonance Structures and Implications on the ortho- Effect
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Objectives:

(1) Characterize the ortho- effect in cymene oxidation 
as a function of temperature

(2) Determine influence from resonance of initial R radical 
on the ortho- effect in cymene oxidation
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Experimental and Computational Approach



Experimental Approach – Studying R + O2 Chemistry using 
Multiplexed Photoionization Mass Spectrometry (MPIMS)
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Osborn et al., Rev. Sci. Inst. (2008)
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Experimental Approach – Studying R + O2 Chemistry using 
Multiplexed Photoionization Mass Spectrometry (MPIMS)

Number Densities (molecules/cm3):
RH: 1.0 1013 O2: 2.1 1016

Cl2: 2.6 1013 He: 1.2 1017

Initial Conditions: 
O2/RH ~ 2000
O2/Cl2 ~ 1000
RH/Cl ~ 26

450 – 700 K
8 Torr



Probing of Molecular Beams
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Organization of Results

(1) Comparison of mass spectra (p-, m-, o-cymene)

(2) Temperature-dependence of ortho- effect in cymene oxidation

(3) Comparisons of PIE spectra (o-cymene)

(4) PES calculations (CBS-QB3): o-cymenyl + O2



Results – ortho- Effect in Cymene Oxidation



Results – Cyclic Ether Formation from Cymene ortho- Effect 

Mass Spectra from Cl-Initiated Oxidation of
p-, m-, o-cymene; 500 K, 8 Torr
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Results – Cyclic Ether Formation from Cymene ortho- Effect 
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Results – Cyclic Ether Formation from Cymene ortho- Effect 
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Results – Influence of Temperature 
on Cymene ortho- Effect
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ortho- effect in cymenes 
diminishes above 700 K



Results – R + O2 Potential Energy Surfaces



Computational Approach  

Calculations of saddle points on R + O2 surfaces 
(CBS-QB3 level of theory) 
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Potential Energy Surface – primary benzylic-cymenylperoxy

-60

-40

-20

0

20

-23.2

-5.2

6.2
2.7

-18.3

-52.7

R + O
2

-48.6

E
ne

rg
y

 (
kc

al
 /

m
ol

)

-8.1

-4.8

 Resonance-stabilized R preferentially form resonance-stabilized QOOH
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Potential Energy Surface – alkylic cymenylperoxy
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 Competition between resonance-stabilized QOOH pathways



Results – Influence of Temperature, Resonance-
Stabilization on Cymene ortho- Effect
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Results – Influence of Temperature, Resonance-Stabilization 
on Cymene ortho- Effect

O

450 – 650 K > 650 K

cyclic ether pathways 
involving resonance-
stabilized R, QOOH
favored below 650 K

cyclic ether pathways 
involving non-
resonance-stabilized R 
favored above 650 K



Concluding Remarks



• orhto- effects are influenced by temperature and resonance-stabilization 

– R + O2 ⇌ ROO equilibria

– ROO ⟶ QOOH barriers

– resonance-stabilized QOOH

Concluding Remarks



• orhto- effects are influenced by temperature and resonance-stabilization 

– R + O2 ⇌ ROO equilibria

– ROO ⟶ QOOH barriers

– resonance-stabilized QOOH

• Fuel structure of polysubstituted aromatics controls the degree of influence of 
resonance and temperature (e.g. o-xylene)

Concluding Remarks
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Spin Densities – Tertiary QOOH / Primary Benzylic R



Spin Densities – Primary Benzylic QOOH / Alkyl R



Spin Densities – Primary Benzylic QOOH / Tertiary Benzylic R



RH

R Alkene + R

O2

ROO·

·QOOH

O2

·OOQOOH

Ketohydroperoxide + OH

Low-Temperature Branching

Alkene + HO2 (Ignition Inhibiting)

Cyclic Ether + OH (Ignition Promoting)

-Scission Products + OH

T
e
m

p
e
ra

tu
re

R



RH

R Alkene + R

O2

ROO·

·QOOH

O2

·OOQOOH

Ketohydroperoxide + OH

Low-Temperature Branching

Alkene + HO2 (Ignition Inhibiting)

Cyclic Ether + OH (Ignition Promoting)

-Scission Products + OH

T
e
m

p
e
ra

tu
re

R

+ O2

ROO·

O

O



RH

R Alkene + R

O2

ROO·

·QOOH

O2

·OOQOOH

Ketohydroperoxide + OH

Low-Temperature Branching

Alkene + HO2 (Ignition Inhibiting)

Cyclic Ether + OH (Ignition Promoting)

-Scission Products + OH

T
e
m

p
e
ra

tu
re

O

OH

·QOOH

R

+ O2

ROO·

O

O



RH

R Alkene + R

O2

ROO·

·QOOH

O2

·OOQOOH

Ketohydroperoxide + OH

Low-Temperature Branching

Alkene + HO2 (Ignition Inhibiting)

Cyclic Ether + OH (Ignition Promoting)

-Scission Products + OH

T
e
m

p
e
ra

tu
re

O

OH

·QOOH

O

– OH

Cyclic Ether

R

+ O2

ROO·

O

O


