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Purpose of Research

 Determine if shale facies
— Have distinct velocity characteristics
— Can be identified using sonic log data

e Determine the main controls on the
velocity



Importance of Research

* Improve interpretation of shale
heterogeneities for resource extraction
— Hydraulic fracturing
— Caprock integrity and mitigation



STUDY AREA & GEOLOGIC OVERVIEW
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METHODS



Methods

* Core-Related
- Conventional Core
- Petrography
- Stable Isotopes
- Electron Microprobe

* Log-Related
- Electric Log Interpretation gl
— Sonic, Gamma Ray, & Caliper Logs i

- Velocity Bench
— Precision Measurements




Electric Logs

1) Gamma Ray

— Measures natural gamma radioactivity of a

formation (API)
— Shales have higher gamma signatures than sandstones

2) Sonic/Acoustic Velocity
— Measures travel time through a formation (us/ft)

— Shales have longer travel times than sandstones

3) Caliper
— Measures the size of the borehole
— enlarged borehole can affect electric log measurements
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How Does the Sonic Log Work?

Upper Transmitter

I Compressional Wave Particle Motion
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Velocity Bench
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Transmitter Receiver
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Velocity Bench
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RESULTS & DISCUSSION
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Lithofacies Identification

 Seven detailed facies identified in the core

1)
2)
3)
4)

5)
6)
7)

Laminated, Muddy Sandstone (LMS)
Highly Bioturbated, Muddy Sandstone (HBMS)
Bioturbated, Sandy Mudstone (BSM)

Nonfossiliferous, Strongly Bioturbated Mudstone
(NSBM)

Moderately Bioturbated Mudstone (MBM)
Fossiliferous, Laminated Mudstone (FLM)
Bioturbated, Fossiliferous Mudstone (BFM)
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Comparing Velocity Bench to Sonic Log

* Possible controls for the velocity:
1) Sample Size/Quality of Wave Signature
2) Frequency

3) Orientation to Bedding & Degree of
Laminations/Bioturbation

4) Lithology
5) Degree of Cementation
6) Internal Fracturing of Samples
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Sample Orientation to Velocity Frequency Velocity Bench Sonic Log
Bedding (m/s) (Hz) Wavelength (mm) Wavelength (mm)
Perpendicular 3800 1 MHZ
Perpendicular 4100 20 kHz
Parallel 4800 1 MHz
Parallel 4200 20 kHz
U Sonic Log
A= (Low Frequency)

Sonic Log
(Low Frequency) Velocity Bench
(High Frequency)
FLM
Velocity Bench

LMS (High Frequency)
- i




Orientation to Bedding & Degree of Lamination/Bioturbation

LMS HBMS




Lithology

 Subtle differences in lithofacies not
identified by velocity bench

 Detailed lithofacies can be condensed

into three dominant lithologies

1) Muddy Sandstone

Muddy

LMS

Sandstone ‘

2) Sandy Mudstone .

3) Mudstone [ ]

HBMS

Sandy

Mudstone r

BSM

NSBM

MBM

Mudstone

FLM

BFM




PERPENDICULAR PARALLEL
. Sandstons PERPENDICULAR PARALLEL
® Compressional Slovmess (us/ft) ® Compressional Slowness (s/ft) - ) ) _
@ Shear Slowness (us/f) @ Shear Slowness (usil) T e b () ec I Saness (1sR) -gi?;ﬂsﬁmzfe
250 AT (us/ft) S0 250 AT (ue/ft) 50 0__ Lithology Percentage (%) 100 1 Degree of Biotusbation § ® Shear Slowaess (us) @ Shear Slowness (us'f) -
7000° 250 AT (58 ] AT(psi) S0 0 LiwlogyPercentage(®) 100 |  DemeecfBiotwbaticn 6
r 700 m——..:
)
J J '{i I
¢ |q | ™ ™
o] |
o | ]
st
L ®| ) °
1) n
F * -4, . |® i
W ]
Pl e rel ¢ ] d-o-ué oLl s .
e :ll ] T | 71000 " e 8l s
0% *9 o 1
4 %o “
- 'Y ot |
“ il 3
o [ [o o [ flo ol %
L] b | s
> A . 5
L o ] ® ] :
L) o {e . }
[ °
L]
L) d e L L ¥ sl % 30
Al MR OIS ol o
®
B e
5 ?4 5 i3
k Bk
L . ! PERPENDICULAR PARAITLEL
*l i ' ) = Sanistone
® o W) ec Slomness (') werd
- @ Shear Slowness (us/ft) @ Shear Slowness (us'f) = Carbonale
- 50 AT (psif) 30250 AT (usify) S0 0 LithologyPercentage(*%) 100 |  DegreeofBiomsbation 6
w;ﬁ’.i
[ - m frii}
73007
v AR
}'_l 0 i s
I [ LEE :
® |og " & " |‘ H
®|= ‘e - w LI
oot daliel . . b
o |® . J HE L
> o . L] []
. ns 7 c T8
o e s o o '
o0 . |:
=.' 8 7400° [ o '
— 0
1 o [4]™ % b I
0 .
3 '4:'
4 3% ‘I'" o) 75 5
. LIN L] ] !
l % | ‘ i 1
oo b
{ { ks LIRS
- ]
T
L L 7500° L




PERPENDICULAR

PARALLEL

PERPENDICULAR PARALLEL
* CompressionalSowoes ) Conpesol Sowaes 1) ~chsi
® Shear Slowaess us/F) ® Shear Slowaess (us/R) e
bi) AT () R AT (usf) S0 0 LtholosyPercenage (%) 100 | Degreeof Bionwhation 6
]
(] .
7l E
! s ¥ 05—
(BF H
o |9
o | §
st £
i E—nm———‘
’
» [ ]
! 715 $ 5
|
| B
" e m m—

st Pne g0 _ *
o
g

ns

2ol Tneb ol So Sl 9T 4, , eSS edgen

® gnoptersre s ot STa SN

E [ Muddy Sandstons
aCIeEs
, Sandstone (Dominans) ] I Seady Madstone
@ Compressional Slowness (us/ft) ® Compressional Slowness (us/f) = Clay/Shale [ Modstons
@ Shear Stowness (us/f) ® Shear Slowness (us/f) == Carbonate
250 AT (us/ft) 50 250 AT (us/ft) 50 0__ Lithology Percentage (%) 100 | Degree of Biotosbation 6
7000" [T
= ) -
© JRy e |®
= J::I?‘ L]
[ lePlei | ¢ o |4
— e lll ) e 7100 ‘ ]
. Il
Y T
% 'ﬁ% ;
® :
] .- K o |
™ ™ 2 ‘ ——
o . — ]
-
° o .
"3} : i e
. [ ] 1. [ ] ‘ -
o *le o ¢
. [ ] I
ﬁﬁﬁﬁﬂTﬁ ﬁ? P
-
- 4 i
ol | &
—
] hod
1I£ e
- |
| ! oo 7300’
D)
*‘ [ ] | ‘
| |
|
® @ %e |
7 |
Bepmti==d=Hol .f \
k) I: [
- - s o
.
. o [ !
L] ™ i .
° 74007
° &

e U

L

7500°

75 5
Dominant Facies ] MuddySandstone ~ [J] SandyMudstone  [J] Mudstone
PERPENDICULAR PARALLEL
. - . Sandstone
o sf) *c o =Clay/Shale
® Shear Slowness (us'f)  Shear Slowaess (us/f) —Cabomte
0 AT (uslf) 0250 AT (usif) S0 0 LuhologyPercetige () 100 | DegreeofBiomretion 6
m m 77
l' o g’
.
C ms 1‘ ¥ S ;
3 ) ﬂ
[]
r ‘ %
L]
: : 0 R R —
CHC r
I
] (AL s 4
IS ) T 1
o [} F
! [}
" ¢ 1
i - | |
o [of |™® PRY J
.
of
s s ms .
¢ o |o {
% | i g L
.|
'y B HE
! ’ M ¥
o fo
7 s




Cementation and Internal Fractures




Cementation and Internal Fractures
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Mechanical Facies

* Facies based on velocity fluctuations

1) Facies #1

— Most fluctuation observed between samples

2) Facies #2

— Least fluctuation observed between samples
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ldentification of Facies in Subsurface

* Can facies be regionally extrapolated from
Davis Federal 3 #15 data?

— Dominant Lithology
— Mechanical Facies
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Converting Surface Measurements
into the Subsurface

* Can velocity measurements at surface
conditions be approximated for the
subsurface?

— Gassmann Equation



Gassmann
Equation
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Conclusions

* Lithologic characteristics that have a major
Impact
— Lithology
— Degree of laminations/bioturbation
— Orientation to bedding

* Lithologic characteristics that do not have
Impact
— Degree of Cementation
— Internal Fracturing of Samples



Conclusions (continued...)

e Subtle details between some lithofacies do
not affect the velocity enough to distinguish

e Lithofacies and mechanical facies appear to
regionally correlate

* Gassmann Equation

— Compressional velocity is a good approximation
of subsurface

— Shear velocity is unclear



Suggestions for Future Research

* Triaxial testing under confining pressures
for lithofacies samples to compare to our
Gassmann calculations and the sonic log

e Measure velocities of lithofacies from

nearby shale cores and compare to our
results

- Compare to our cross-section
Interpretations
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