
Photos placed in
horizontal position
with even amount

of white space
between photos

and header

Photos placed in horizontal
position

with even amount of white
space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Position Talk: Auto-Tuning
for Unreliable HPC

Keita Teranishi

Sandia National Laboratories, Livermore, CA

iWAPT 2014, July 1st, 2014

Eugene, Oregon, U.S.A.

SAND2014-15458PE

Our Luxury in Life is OVER (wrt FT/Resilience)

The privilege to think of a computer as a
reliable, digital machine.

2

Next generation platforms (NGPs) will
have significant increases in concurrency

3

System Parameter 2011 2018 Factor Change

System Peak 2 Pf/s 1 Ef/s 500

Power 6 MW ≤20 MW 3

System Memory 0.3 PB 32-64 PB 100-200

Total Concurrency 225K 1 BX10 1B X100 40000-400000

Node Performance 125 GF 1 TF 10 TF 8-80

Node Concurrency 12 1000 10000 83-830

Network Bandwidth 1.5 GB/s 100 GB/s 1000 GB/s 66-660

System Size (nodes) 18700 1000000 100000 50-500

I/O Capacity 15 PB 30-100 PB 20-67

I/O Bandwidth 0.2 TB/s 20-60 TB/s 10-30

NGPs will experience errors/faults much
more frequently than petascale systems

 Significant increase in number
of components

 Shrinking of semiconductor
(CMOS) will reach the size of a
few atoms per wire

 Insufficient improvements in
mean time between failures
(MTTF) for each component

 Majority of failures: single
node

 Today’s rate: ~2-10 a day

 2020: every 30-60 minutes?

4

Number of PEs

M
ea

n
 t

im
e

to
 f

at
al

 e
rr

o
r

(h
o

u
rs

)

(Courtesy of John Daly)

Example – S3D production runs

 24-hour tests using Titan (125k cores)

 9 process/node failures over 24 hours

 Failures are promoted to job failures, causing all
125k processes to exit.

As a result, checkpoint (5.2 MB/core) has to be done to
the PFS

 Checkpoint data: 55 s Total: 1.72 %

 Restarting processes: 470 s Total: 5.67 %

 Loading checkpoint: 44 s Total: 1.38 %

 Rollback overhead: 1654 s Total: 22.63 %

 Total overhead due to fault tolerance: 31.40 %

 Courtesy of Hemanth Kolla.

 Exploring Automatic Online Failure
Recovery for Scientific Applications at
Extreme Scales, M. Gamell, M, Parashar,
D. Katz, H. Kolla and J. Chen, to appear in
SC14.

We are already dealing
with the (un)reliability of

HPC systems, TODAY!

Resilience Problems: Already Here, Already Being
Addressed, Algorithms & Co-design Are Key

 Already impacting performance: Performance variability.
 HW fault prevention and recovery introduces variability.

 Latency-sensitive collectives impacted.

 MPI non-blocking collectives + new algorithms address this.

 Localized failure:
 Now: local failure, global recovery.

 Needed: local recovery (via persistent local storage).

 MPI FT features + new algorithms: Leverage algorithm reasoning.

 Soft errors:
 Now: Undetected, or converted to hard errors.

 Needed: Apps handle as performance optimization.

 MPI reliable messaging + PM enhancement + new algorithms.

 Key to addressing resilience: algorithms & co-design.

6

Four Resilient Programming Models

 Skeptical Programming. (SP)

 Relaxed Bulk Synchronous (rBSP)

 Local-Failure, Local-Recovery (LFLR)

 Selective (Un)reliability (SU/R)

 Old models
 BSP

 Reliable digital systems

 Checkpoint/Restart Toward Resilient Algorithms and Applications
Michael A. Heroux
arXiv:1402.3809v2 [cs.MS]

SKEPTICAL PROGRAMMING

8

What is Needed for Skeptical Programming?

 Skepticism
 (Rough) Probabilistic model of computer arithmetic

 Meta-knowledge:

 Algorithms,

 Mathematics,

 Problem domain.

 Nothing else, at least to get started.

Skeptical Programming
I might not have a reliable digital machine

10Evaluating the Impact of SDC in Numerical Methods
J. Elliott, M. Hoemmen, F. Mueller, SC’13

Skeptical programming can mitigate silent
errors & offer new co-design options

 Even at commodity scale, ECC memory & ECC processors show the rising
need for error correction

 With increasing scale and with power limitations, errors can occur “silently”
without indication that something is wrong

 Numerical algorithms already deal with error from truncation, etc.; specially
designed algorithms can mitigate silent bit flips as well

 These robust stencil algorithms not only address scale-up of current silent-
error rates, but may enable new “lossy” architecture options with more
power-efficient accelerators or reduced latency

ECC memory

Example: “Robust stencils” discard
outliers to mitigate bit flips in PDE solving

 A simple 1D advection
equa�on ∂u/∂t = ∂u/∂x
illustrates the behavior
of finite-difference
schemes

 The robust stencil here
computes a second-order update at
position i from
one of these subsets after discarding
the most
extreme value:

 { i− 3, i− 2, i − 1, i, i + 1, i+ 2, i+ 3 }

 { i− 3, i− 2, i − 1, i, i + 1, i+ 2, i+ 3 }

 { i− 3, i− 2, i − 1, i, i + 1, i+ 2, i+ 3 }

Bit-flip injection at machine level
confirms effectiveness of our robust stencil

 Focus on silent-error models affecting floating-point

 Relaxing FP correctness may benefit designs (e.g., GPUs)

 Test: During C++ PDE simulation, asynchronously perform raw memory bit
flips in the FP solution array

 Can also be a proxy for processor bit flips that corrupt FP ops

 Compare brute-force triple modular redundancy (TMR)

Here, the robust
stencil provides
substantial bit-flip
tolerance at lower
cost than TMR

Acceptable (3× intrinsic discretization error)

Courtesy of Jackson Mayo, Rob Armstrong and Jaideep Ray

RELAXED BULK SYNCHRONOUS
PROGRAMMING (RBSP)

14

Performance Variability is a Resilience
Issue

 Ideal:
equal work +
equal data access =>
equal execution time.

 Reality:
 Lots of variation.

 Variations increasing.

• First impact of unreliable HW?

– Vendor efforts to hide it.

– Slow & correct vs. fast & wrong.

• Result:

– Unpredictable timing.

– Non-uniform execution across cores.

• Blocking collectives:

– tc = maxi{ti}
• Also called “Limpware”:

– Haryadi Gunawi, University of Chicago

– http://www.anl.gov/events/lights-case-
limping-hardware-tolerant-systems

15

Latency-tolerant Algorithms + MPI 3:
Recovering scalability

Up is good

Hiding global communication latency in the GMRES algorithm on massively parallel machines,
P. Ghysels T.J. Ashby K. Meerbergen W. Vanroose, Report 04.2012.1, April 2012,
ExaScience Lab Intel Labs Europe

16

What is Needed to Support Latency Tolerance?

 MPI 3 (SPMD):
 Asynchronous global and neighborhood collectives.

 A “relaxed” BSP programming model:
 Start a collective operation (global or neighborhood).

 Do “something useful”.

 Complete the collective.

 The pieces are coming online.

 With new algorithms we can recover some scalability.

 Is MPI-X the right direction?

Fritz: Simulation of a task-DAG programming
model for scaling amid failures

Each process holds a subset of state.
Process holdings overlap entirely for
redundant in-memory recovery.

Failures & delays propagate from
process to process as state
dependencies are communicated.

Each process holds a subset of state.
Process holdings overlap entirely for
redundant, in-memory recovery.

Si
m

u
la

ti
o

n
 s

te
p

The movie shows a sequence of horizontal slices through the diagram on the left. Each slice indicates to which simulation step each process
has advanced.

Sim
u

latio
n

 step

Sim
u

latio
n

 step

rank

Task-DAGs provide resilience

Delay scaling of Fritz shows promise under a
Poisson failure model

12.74

12.745

12.75

12.755

12.76

12.765

12.77

C
o
m

p
le

tio
n

ti
m

e
[s

]
(f

o
r

1
0
,0

0
0

s
im

u
la

tio
n

s
te

p
s
)

Rank

Fault injected early:
rank 20, run ~1% complete

Fault injected midway:
rank 150, run 10% complete

Fault injected late:
rank 280, run ~98% complete

Load imbalance and jitter

cause eventual decoherence
of completion times.

Task dependencies between
ranks force relationships

between completion times;
faults magnify this effect.

12.775

12.78

12.785

12.79

0 50 100 150 200 250 300

Snapshot of three failure + recovery delays induced on
different processes at different simulation time steps

DHARMA: Distributed Heterogeneous Adaptive
Resilient Management & Applications

21

Typical AMT Runtime ArchitectureTask Graph

 Asynchronous Many Task (AMT) programming models show potential for
sustaining performance despite node degradation/failure

 Work-stealing enables load balancing

 Failed tasks can be re-executed

 Natural fit for rBSP 
 Achieves scalability and resiliency together!

21

Node 0Node 0

Global
Address
Server

Work
queue

Local
storage

Workers

Node 1Node 1

Global
Address
Server

Work
queue

Local
storage

Workers

Node nNode n

Global
Address
Server

Work
queue

Local
storage

Workers

Transport Layer

Extreme Scale viability of collective communication for resilient task
scheduling and work stealing, Jeremiah Wilke, John Floren, Hemanth Kolla,
KT, Janine Bennett, Nicole Slanttengren, FTXS-14 (See the slides).

AMT has several challenges

 Recovery (beyond checkpoint/restart) is challenging

 Enormous distributed coherency problem

 Care is required to identify lost tasks due to work-stealing and
asynchrony

22

Typical AMT Runtime ArchitectureTask Graph

Node 0Node 0

Global
Address
Server

Work
queue

Local
storage

Workers

Node 1Node 1

Global
Address
Server

Work
queue

Local
storage

Workers

Node nNode n

Global
Address
Server

Work
queue

Local
storage

Workers

Transport Layer

LOCAL FAILURE LOCAL RECOVERY

23

Enabling Local Recovery from Local Faults

 Current recovery model:
Local node failure,
global kill/restart.

 Different approach:
 App stores key recovery data in persistent local (per MPI rank) storage

(e.g., buddy, NVRAM),
and registers recovery function.

 Upon rank failure:

 MPI brings in reserve HW, assigns to failed rank, calls recovery fn.

 App restores failed process state via its persistent data (& neighbors’?).

 All processes continue.

24

LFLR Algorithm Opportunities & Challenges

 Enables fundamental algorithms work to aid fault recovery:
 Straightforward app redesign for explicit apps.

 Enables reasoning at approximation theory level for implicit apps:
 What state is required?

 What local discrete approximation is sufficiently accurate?

 What mathematical identities can be used to restore lost state?

 Enables practical use of many exist algorithms-based fault tolerant
(ABFT) approaches in the literature.

 Lots of requirements from runtime, middleware and OS
1. Runtime that allows a program to continue on the remaining processes after a process

failure

2. Resource management to assign compute processes for local recovery

3. Redundant storage for data persistence and recovery

4. Tools and framework to build application specific recovery schemes and reason the
failure caused by process/node loss

25

LFLR Framework allows building resilience apps

26

 Software framework to integrate existing apps with resilience
capability
 The remaining processes stay alive with single process/node failures
 Extend data structures and classes to inherit the resilience runtime
 Multiple implementation options for recovery

 Roll-back, roll-forward, asynchronous, algorithm specific, etc.

 Active Hot Spare Process for recovery

Local Failure Local Recovery: LFLR Enabled MiniFE

 Implemented a software framework
to enable LFLR.
 Software components to support 4

major requirements for LFLR

 The LFLR-enabled MiniFE code
achieves scalable recovery from real
process failures on 2,048 processes.

 Implemented application specific
recovery through the LFLR
framework.
 Significant reduction in the redundant

data and commit (checkpoint) for
MiniFE.

 Frequent calls of commit amortize the
relatively high overhead of restore.

27

0.01

0.1

1

10

100

1000

0 256 512 768 1024 1280 1536 1792 2048

Ex
e

cu
ti

o
n

 T
im

e
in

 S
e

co
n

d
s

of Processes (cores)

Execution Time: 20 time step resilient minIFE

All Solve+Failure Recovery

All Solve without Recovery

 Single Linear Solve

LFLR Overhead

MPI-ULFM Overhead

0.001

0.01

0.1

1

10

100

1

10

100

1000

10000

512 1024 1536 2048

Ex
e

cu
ti

o
n

 T
im

e
 f

o
r

C
o

m
m

it
/r

e
st

o
re

D
at

a
Si

ze
 p

e
r

 P
ro

ce
ss

 in
 M

B

Global Mesh Size (X=Y=Z)

Redundant Storeage of MinIFE: 2,048 Processes

Data Size :Store All

Data Size:
Regenrate Matrix

Commit/Restore:
Store All

Restore: Regenrate
Matrix

Commit:
Regenerate Matrix

Towards Local Failure Local Recovery Model
Using MPI-ULFM, KT and Michael Heroux, to
appear in EuroMPI/Asia 2014.

SELECTIVE (UN)RELIABILITY

28

Every calculation matters

 Small PDE Problem: ILUT/GMRES
 Correct result:35 Iters, 343M FLOPS
 2 examples of a single bad op.
 Solvers:

 50-90% of total app operations.
 Soft errors most likely in solver.

 Need new algorithms for soft errors:
 Well-conditioned wrt errors.
 Decay proportional to number of errors.
 Minimal impact when no errors.

Description Iters FLOP
S

Recursive
Residual
Error

Solution Error

All Correct
Calcs

35 343
M

4.6e-15 1.0e-6

Iter=2, y[1] +=
1.0
SpMV incorrect
Ortho
subspace

35 343
M

6.7e-15 3.7e+3

Q[1][1] += 1.0
Non-ortho
subspace

N/C N/A 7.7e-02 5.9e+5

29

Soft Error Resilience

• New Programming Model Elements:
• SW-enabled, highly reliable:

• Data storage, paths.
• Compute regions.

• Idea: New algorithms with minimal
usage of high reliability.

• First new algorithm: FT-GMRES.
• Resilient to soft errors.
• Outer solve: Highly Reliable
• Inner solve: “bulk” reliability.

• General approach applies to many
algorithms.

Fault-tolerant linear solvers via selective
reliability,
Patrick G. Bridges, Kurt B. Ferreira,
Michael A. Heroux, Mark Hoemmen
arXiv:1206.1390v1 [math.NA]

What is Needed for Selective Reliability?

 A lot, lot.

 A programming model.
 Expressing data/code reliability or unreliability.

 Algorithms.
 Basic approaches:

 Nest an unreliable algorithm in a reliable version of the same.

 Dispatch unreliable task subgraph from reliable graph node.

 Lots of runtime/OS infrastructure.
 Provision of reliable data, paths, execution.

 Portable interfaces to HW solutions.

 Hardware support?
 Special HW components that are

 slower and more reliable or

 faster and less reliable

#pragma robust-detect sentinel <variable = . . . >
{

<code>
}
#pragma robust-correct sentinel <variable = . . . >
{

<code>
}

Automatic duplicate/triplicate threads spawned by runtime system
Compiler injected code transformation for error detection/majority voting

Syntax:

Semantics:

Code Sections

Programming Model Extensions: Robustness | 15

Selective Reliability enabled by Programming
Language Extensions

A Programming Model for Resilience in
Extreme Scale Computing, Saurabh
Hukerikar, Pedro Diniz and Bob Lucas,
FTXS-12

FT-GMRES Algorithm

“Unreliably” computed.
Standard solver library call.
Majority of computational cost.

Captures true linear operator issues, AND
Can use some “garbage” soft error results.

Resilient Application Programming

 Standard approach:

 System over-constrains reliability

 “Fail-stop” model

 Checkpoint / restart

 Application is ignorant of faults

 New approach:

 System lets app control reliability

 Tiered reliability

 “Run through” faults

 App listens and responds to faults

33

What Auto-tuning can do?

 Auto-tuning can do:
 Parameter exploration and optimization

 Off-line and on-fly

 Code generation

 Code (method) selection

 Extend optimization space:
 Performance (execution time, memory and power usage)

 Reliability (e.g. 99% for 7 days)

 Error in output (against failure-free environment)

34

Auto-Tuning can explore complex models
of HPC resilience

 Exploitation of multiple resilient programming models

 What is the good combination?

 New Performance Tuning Methodologies

 Skeptical Programming + rBSP + Selective Reliability

 Auto-tuning facilitate to investigate some co-design
questions

 (Caveat) Both hard and soft failures are typically
emulated by software
 We cannot use neutron beam everyday

35

Runtime VS Off-line Tuning

 Runtime tuning requires a good infrastructure support
 Redundant threads and processes

 Threads (USC)

 Processes (SNL, Rutgers, TiTech&LLNL)

 Need middleware/system support

 Active Harmony (UMD)

 Compiler assisted tuning (applicable for off-line tuning)

 Rose-FTT (LLNL) and LLVM (LLNL, Utah)

 Off-line tuning requires a good fault model in addition to
emulated fault injections

36

Conclusions

 Resilience is an imminent issue in HPC

 4 Different Programming Models
 Skeptical Programming. (SP)

 Relaxed Bulk Synchronous (rBSP)

 Local-Failure, Local-Recovery (LFLR)

 Selective (Un)reliability (SU/R)

 Auto-tuners should explore these models to optimize
scalability, performance and resilience together.

37

Acknowledgement

 DoE NNSA ASC

 DoE Office of Science ASCR

 Michael Heroux and Mark Hoemmen (SNL, Albuquerque)

 Rob Armstrong, Janine Bennett, Robert Clay, John Floren,
Hemanth Kolla, Jackson Mayo, Jaideep Ray, Nicole
Slattengren and Jeremiah Wilke (SNL, Livermore)

 Marc Gamell and Manish Parashar (Rutgers U)

 Saurabh Hukerikar, Pedro Diniz and Bob Lucas (ISI, USC)

 James Elliott (NCSU)

 George Bosilca (U of Tennessee)

38

