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Our Luxury in Life is OVER (wrt FT/Resilience)

The privilege to think of a computer as a
reliable, digital machine.




Next generation platforms (NGPs) will ) e,
have significant increases in concurrency

Scientific Grand Challenges

CROSSCUTTING TECHNOLOGIES FOR
COMPUTING AT THE EXASCALE

Factor Change

February 2-4, 2010 - Washington, D.C.

System Parameter

System Peak 2 Pf/s 1 Ef/s 500
Power 6 MW <20 MW 3 - '
System Memory 0.3PB 32-64 PB 100-200 :
Total Concurrency 225K 1 BX10 1B X100 :
Node Performance 125 GF 1TF 10 TF 8-80 B s
Node Concurrency 12 1000 10000 o Es
at the Exascale: L
Network Bandwidth 1.5GB/s 100 GB/s 1000 GB/s 66-660 SR
System Size (nodes) 18700 1000000 100000 50-500
15PB 30-100 PB 20-67

I/O Capacity

I/0 Bandwidth 0.2 TB/s 20-60 TB/s 10-30




NGPs will experience errors/faults much =
more frequently than petascale systems

Laboratories

Summary of Application Reliability as Measured from
System Data Across 21 Los Alamos Platforms (2006)

= Significant increase in number 1w ——
0 A OA
of components e g
¢ CX
= Shrinking of semiconductor i - gse
"“ha',, % o O Lambda
. . w0 A BN
(CMOS) will reach the size of a N

few atoms per wire

= |nsufficient improvements in
mean time between failures

—_
[=3
o

Mean time to fatal error (hours)

(MTTF) for each component i
= Majority of failures: single 0 A
n Od e 1 10 Nun].‘[]'(;er of PEs 1000 10000

(Courtesy of John Daly)

= Today’s rate: ~¥2-10 a day
= 2020: every 30-60 minutes?




Example — S3D production runs ) .

3901s 1617s 1612s <«— Recovery+rollback overhead —— 4439s 1928s 6025s

— —_— —_— — —_—

] ] ] (] ] i ] ] ] [
(] ] ] (] ] ] ] ]

0 1000‘0 ‘ 2000 31)000 40000 50000 ‘600’00 7’0000 ‘ 0000 86400
Execution wall time (s)

=  Courtesy of Hemanth Kolla.

= 24-hour tests using Titan (125k cores) =  Exploring Automatic Online Failure

= 9 process/node failures over 24 hours Recovery for Scientific Applications at
Extreme Scales, M. Gamell, M, Parashar,

=  Failures are promoted to job failures, causing all )
D. Katz, H. Kolla and J. Chen, to appearin

125k processes to exit.

SC14.
As a result, checkpoint (5.2 MB/core) has to be done to
the PFS
=  Checkpoint data: 55s Total: 1.72% | d d |
= processes: 470s Total: 5.67 % We are airea y ed Ing
. checkpoint: 44s Total: 1.38% Wlth the (un)re“abl“ty Of
= Rollback overhead: 1654s Total: 22.63 % |
=  Total overhead due to fault tolerance:|31.40 % H PC SySte mS; TO DAY .




Resilience Problems: Already Here, Already Being ) s,
Addressed, Algorithms & Co-design Are Key

Laboratories

= Already impacting performance: Performance variability.
= HW fault prevention and recovery introduces variability.
= Latency-sensitive collectives impacted.
= MPI non-blocking collectives + new algorithms address this.

" Localized failure:

= Now: local failure, global recovery.

= Needed: local recovery (via persistent local storage).

= MPI FT features + new algorithms: Leverage algorithm reasoning.
= Soft errors:

= Now: Undetected, or converted to hard errors.

= Needed: Apps handle as performance optimization.

= MPI reliable messaging + PM enhancement + new algorithms.

= Key to addressing resilience: algorithms & co-design.




Four Resilient Programming Models @

= Skeptical Programming. (SP)
= Relaxed Bulk Synchronous (rBSP)

= Local-Failure, Local-Recovery (LFLR)

= Selective (Un)reliability (SU/R)

= Old models
= BSP
= Reliable digital systems

" Checkpoint/Restart Toward Resilient Algorithms and Applications
Michael A. Heroux
arXiv:1402.3809v2 [cs.MS]




SKEPTICAL PROGRAMMING




What is Needed for Skeptical Programming? (8.

= Skepticism

= (Rough) Probabilistic model of computer arithmetic
= Meta-knowledge:

= Algorithms,

= Mathematics,

" Problem domain.

= Nothing else, at least to get started.




Skeptical Programming ) s

Laboratories

I might not have a reliable digital machine

- e e

» Expect rare faulty computations
» Use analysis to derive cheap “detectors” to filter large errors
» Use numerical methods that can absorb bounded error

Algorithm 1: GMRES algorithm GMRES

for/ =1 to do

r:=b—Ax~1 4 Theoretical Bounds on the e
q, :==r/ [l Arnoldi Process
for 3 =1 to restart do
wo i Ag, j [woll = lAq;ll < |A[l2]layll2
for i — 1 to j do 3 [woll < [[Al2 < [|A]lF
hij = Q- Wi From isometry of orthogonal projections,
w; = w; 1 — h; ;q;

) _ higl < 1Al Y,

hiv1, = |Iwl|,

qQj+1 -~ W/hj+1,j )
Find y = min||[Hyy — ||b||ei]],| ° h;; form Hessenberg Matrix

Evaluate convergence criteria * Bound only computed once, valid for entire solve

Optionally, compute x; = Q;y

end

Evaluating the Impact of SDC in Numerical Methods 10
J. Elliott, M. Hoemmen, F. Mueller, SC’13




Skeptical programming can mitigate silent
errors & offer new co-design options

mh

= Even at commodity scale, ECC memory & ECC processors show the rising

need for error correction

Sandia
National
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ECC memory

= With increasing scale and with power limitations, errors can occur “silently”

without indication that something is wrong

= Numerical algorithms already deal with error from truncation, etc.; specially

designed algorithms can mitigate silent bit flips as well

x-2 | x-1| X |x+1|x+2|—= x-2 X+1|x+2[—{ x-2 | x-1| X |x+1|x+2|—| x-2| x-1

Error Stable Correction
I Interpolation
X

x+1

x+2

i ,- W R PEN L - .
. . . - .

value

. - ‘m . . - ¢ ‘m . . - ‘.. . -

= These robust stencil algorithms not only address scale-up of current silent-
error rates, but may enable new “lossy” architecture options with more

power-efficient accelerators or reduced latency




Example: “Robust stencils” discard ) i
outliers to mitigate bit flips in PDE solving

Average glitches Lax—Wendroff

= Asimple 1D advection ey LnWemdroff T UHCE Robuststencil
equation ou/0t = du/dx

illustrates the behavior 0 Y f\ /\ A X {\
- V\/|| VA

of finite-difference 'R
schemes

N\ A
V\/

WIAN
ViV

= The robust stencil here 0.1
computes a second-order updat
position i from
one of these subsets after discal

the most

extreme value: 5
= {j-3, i-1, i+1, i+

= i-2, i i+2 }

= i-1, 0 i+1 }




Bit-flip injection at machine level =)
confirms effectiveness of our robust stencil

Laboratories

= Focus on silent-error models affecting floating-point
= Relaxing FP correctness may benefit designs (e.g., GPUs)
= Test: During C++ PDE simulation, asynchronously perform raw memory bit
flips in the FP solution array
= (Can also be a proxy for processor bit flips that corrupt FP ops

= Compare brute-force triple modular redundancy (TMR)

Relative memory use

3 1.000:
0.500+¢

2 . Standard Robust
mm
0.050¢

Standard Robust

Here, the robust
stencil provides

substantial bit-flip
0.010 tolerance at lower
0.005

) cost than TMR
0.001 | Acceptable (3x intrinsic discretization error)
10-10 10 1078 1077  107°

Standard Robust Error probability per bit per standard time step

ﬁ Courtesy of Jackson Mayo, Rob Armstrong and Jaideep Ray |

Relative runtime

from exact solution

90%ile RMS deviation

mm-lht.nm




RELAXED BULK SYNCHRONOUS
PROGRAMMING (RBSP)

14



Performance Variability is a Resilience
Issue

Laboratories

= |deal: * First impact of unreliable HW?
— Vendor efforts to hide it.

equal work +
— Slow & correct vs. fast & wrong.

equal data access =>
equal execution time.

_ * Result:
- L]
Reality: — Unpredictable timing.
" Lots of variation. — Non-uniform execution across cores.

= Variations increasing.
* Blocking collectives:
—t; = max{t;}
* Also called “Limpware™:

— Haryadi Gunawi, University of Chicago

— http://www.anl.gov/events/lights-case-
limping-hardware-tolerant-systems




Latency-tolerant Algorithms + MP13: .
Recovering scalability

Laboratories
AT AARAIWNT W NINT

. pa—

25 |- —>*— 1..GMRES
—&— pl.GMRES

p(1)-GMRES
o p(2)-GMRES
—e— p(3)-GMRES

Up is good

—rr—

1.5

x1000 iterations/s

o=

i | L I | i i

faTa) AD £0 on 100 1790 140 1£0 10N 200
Hiding global communication latency in the GMRES algorithm on massively parallel machines,
P. Ghysels T.J. Ashby K. Meerbergen W. Vanroose, Report 04.2012.1, April 2012,
ExaScience Lab Intel Labs Europe




What is Needed to Support Latency Tolerance? rh)

Laboratories

= MPI 3 (SPMD):
= Asynchronous global and neighborhood collectives.
= A “relaxed” BSP programming model:

= Start a collective operation (global or neighborhood).
= Do “something useful”.

= Complete the collective.

= The pieces are coming online.

= With new algorithms we can recover some scalability.

= |s MPI-X the right direction?




Sandia
m National
Laboratories

Fritz: Simulation of a task-DAG programming
model for scaling amid failures

o
o
C
S
©
35
£
(V)]
. Do T s T T T T s
® & ® ® & & & & O
state staté
Each process holds a subset of state. Failures & delays propagate from
Process holdings overlap entirely for process to process as state

redundant, in-memory recovery. dependencies are communicated.




Task-DAGs provide resili
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ence

Automaton Simulation

Display the state held by each process at its most recent simulation time for a given wall clock time.
Jump to time: (0.389721— 1.066166)

04744795585 () (Pause )
T A 0.4744795585
0.389721 1.066166
100
| T @
3
c
A =
/ \ Ta+r| 8
& @
3 3
el
/ At c
t =3
S
&
o
rank -
0 13(
darrk

The movie shows a sequence of horizontal slices through the diagram on the left. Each slice indicates to which simulation step each process
has advanced.




Delay scaling of Fritz shows promise under a
Poisson failure model

Fault injected early: Fault injected midway: Fault injected late:
12.79 rank 20, run ~1% complete rank 150, run 10% complete rank 280, run ~98% complete
) \ \ \ \ \ \
12785 — X X X
Task dependencies between
ranks force relationships
12.78 — between completion times; N
faults magnify this effect.
12.775 — Load imbalance and jitter ]

12.77

12.765

12.76

Completion time [s]
(for 10,000 simulation steps)

12.755

12.75

12.745 —

cause eventual decoherence
of completion times.

12.74
0

50 100 150 200 250 300
Rank

Snapshot of three failure + recovery delays induced on
different processes at different simulation time steps
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DHARMA: Distributed Heterogeneous Adaptive o
Resilient Management & Applications

Laboratories

= Asynchronous Many Task (AMT) programming models show potential for
sustaining performance despite node degradation/failure

= Work-stealing enables load balancing
= Failed tasks can be re-executed
= Natural fit for rBSP ©

= Achieves scalability and resiliency together!

Task Graph Typical AMT Runtime Architecture
Node O Node 1 Node n
Local Work Local Work Local Work
storage queue storage queue storage queue
(Y Y

Global N X R Global "X XK Global X X K

Address K XN
Server Workers

Address 2600 Address XN
Server Workers Server Workers

I I Transport Layer I

Extreme Scale viability of collective communication for resilient task
scheduling and work stealing, Jeremiah Wilke, John Floren, Hemanth Kolla,
KT, Janine Bennett, Nicole Slanttengren, FTXS-14 (See the slides).
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AMT has several challenges

= Recovery (beyond checkpoint/restart) is challenging

= Enormous distributed coherency problem

Sandia
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= Careisrequired to identify lost tasks due to work-stealing and

asynchrony

Task Graph

Typical AMT Runtime Architecture

Node O

Local
storage

Global
Address
Server

Work
gueue

Workers

Node 1

Node n

Local
storage

Global
Address
Server

Work
gueue

Workers

I I Transport Layer I




LOCAL FAILURE LOCAL RECOVERY
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1 ﬁggigﬁa]
Enabling Local Recovery from Local Faults (@i,

= Current recovery model:
Local node failure,
global kill/restart.

= Different approach:

= App stores key recovery data in persistent local

(e.g., buddy, NVRAM),

and registers recovery function.

= Upon rank failure:

oy
‘:’f N T
el T Iff ; . ,‘0‘?’\_“\\\
:E‘:%*‘t !ﬂﬁl)}?f? A SOTSITTEs
£

Wil

2

(pér MPI rank) storage

= MPI brings in reserve HW, assigns to failed rank, calls recovery fn.
= App restores failed process state via its persistent data (& neighbors’?).

= All processes continue.



LFLR Algorithm Opportunities & Challenges ™ =

= Enables fundamental algorithms work to aid fault recovery:

= Straightforward app redesign for explicit apps.

= Enables reasoning at approximation theory level for implicit apps:
= What state is required?
= What local discrete approximation is sufficiently accurate?
= What mathematical identities can be used to restore lost state?

= Enables practical use of many exist algorithms-based fault tolerant
(ABFT) approaches in the literature.

= Lots of requirements from runtime, middleware and OS
1.  Runtime that allows a program to continue on the remaining processes after a process
failure
2.  Resource management to assign compute processes for local recovery
3. Redundant storage for data persistence and recovery

4.  Tools and framework to build application specific recovery schemes and reason the
failure caused by process/node loss



National

LFLR Framework allows building resilience apps ™ e

= Software framework to integrate existing apps with resilience
capability
= The remaining processes stay alive with single process/node failures
= Extend data structures and classes to inherit the resilience runtime

= Multiple implementation options for recovery
= Roll-back, roll-forward, asynchronous, algorithm specific, etc.

= Active Hot Spare Process for recovery

Resilient Communicator (RC)

Parallel Execution Runtime (PER)




Local Failure Local Recovery: LFLR Enabled MiniFE [ =

Execution Time: 20 time step resilient minlIFE

= |mplemented a software framework
to enable LFLR.

= Software components to support 4
major requirements for LFLR

= The LFLR-enabled MiniFE code
achieves scalable recovery from real
process failures on 2,048 processes.

= |mplemented application specific
recovery through the LFLR
framework.

= Significant reduction in the redundant
data and commit (checkpoint) for
MiniFE.

= Frequent calls of commit amortize the
relatively high overhead of restore.

Towards Local Failure Local Recovery Model

1000
S
2 100
o
o
Q
w0
£ 10
]
£
% 1 @i All Solve+Failure Recovery _
'..g e==» Al Solve without Recovery
§ 01 «=/w= Single Linear Solve
i ’ @ | FLR Overhead
@y VIPI-ULFM Overhead
0.01
0 256 512 768 1024 1280 1536 1792 2048
Redundant Storeagc®bPIAFRAES KoM Processes
10000 100 o
@ :o: s Data Size :Store All
E
£ 10 S
@ 1000 £ _
o £ s Data Size:
3 o Regenrate Matrix
a 19
g 100 - ‘ﬁ ey Commit/Restore:
8 E Store All
7 -0l B
% .g e==jl= Restore: Regenrate
8 10 - 3 Matrix
- 001 %
w
== 4 == Commit:
Regenerate Matrix
1 - - 0.001

Using MPI-ULFM, KT and Michael Heroux, to

appear in EuroMPI/Asia 2014.

512 1024 1536 2048
Global Mesh Size (X=Y=2)
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SELECTIVE (UN)RELIABILITY
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Every calculation matters

H -
Residual
Error
All Correct 343 4.6e-15 1.0e-6
Calcs
Iter=2, y[1] +=
1.0 35 343 6.7e-15 3.7e+3
SpMV incorrect M
Ortho
subspace

Q[1][1] +=1.0 N/C N/A  7.7e-02 5.9e+5
Non-ortho
subspace

= Small PDE Problem: ILUT/GMRES
= Correct result:35 Iters, 343M FLOPS
= 2 examples of a single bad op.

= Solvers:
= 50-90% of total app operations.
= Soft errors most likely in solver.

= Need new algorithms for soft errors:
= Well-conditioned wrt errors.
= Decay proportional to number of errors.
=  Minimal impact when no errors.

Sandia
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Soft Error Resilience

 New Programming Model Elements:

« SW-enabled, highly reliable:
« Data storage, paths.
« Compute regions.

« Idea: New algorithms with minimal

usage of high reliability.

* First new algorithm: FT-GMRES.

* Resilient to soft errors.
« OQuter solve: Highly Reliable
* Inner solve: “bulk” reliability.

» General approach applies to many

algorithms.

Fault-tolerant linear solvers via selective
reliability,

Patrick G. Bridges, Kurt B. Ferreira,
Michael A. Heroux, Mark Hoemmen
arXiv:1206.1390v1 [math.NA]
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What is Needed for Selective Reliability®) .

= Alot, lot.
= A programming model.

= Expressing data/code reliability or unreliability.

= Algorithms.

= Basic approaches:
= Nest an unreliable algorithm in a reliable version of the same.
= Dispatch unreliable task subgraph from reliable graph node.

= Lots of runtime/OS infrastructure.
= Provision of reliable data, paths, execution.
= Portable interfaces to HW solutions.

= Hardware support?

= Special HW components that are
= slower and more reliable or
= faster and less reliable




Selective Reliability enabled by Programming
Language Extensions
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Code Sections
Syntax:

fpragma robust-detect sentinel <variable = . . . >
{
<code>
}
fpragma robust-correct sentinel <variable = . . . >

{

<code>

}

Semantics:

Automatic duplicate/triplicate threads spawned by runtime system
Compiler injected code transformation for error detection/majority voting

A Programming Model for Resilience in
Extreme Scale Computing, Saurabh

Hukerikar, Pedro Diniz and Bob Lucas,
FTXS-12




FT-GMRES Algorithm LS

Input: Linear system Ax = b and initial guess Xxp
I :=b— Axo, B :=||rol|2, g1 := o/
forj=1,2,... until convergence do

Inner solve: Solve for zj in g = Az;

Vi1 1= Az

ori=1.2....K006 > Orthogonalize v,
H(i,j) == qQ Vj+1, Vis1 == Vipr — QiH(1, )

end for

HG +1,j) = [[vjsl2
Update rank-revealing decomposition of H(1:j, 1:))

if H(j + 1,)) is less than some tolerance then
if H(1:/,1:j) not full rank then
Try recovery strategies

else
Converged; return after end of this iteration
end if
else
1 = Vir1 /HG +1,))
end if
yj :=argmin, [|H(1:j+1,1:j)y — Bei|2 > GMRES projected problem
— Xj:=Xo + [21, 22, . . ., Zj]y; > Solve for approximate Solution m—————————

- end for
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Resilient Application Programming

= Standard approach: = New approach:

System over-constrains reliability System lets app control reliability

“Fail-stop” model Tiered reliability

Checkpoint / restart “Run through” faults

Application is ignorant of faults = App listens and responds to faults




What Auto-tuning can do? ) .

=  Auto-tuning can do:

= Parameter exploration and optimization
= Off-line and on-fly

= Code generation

= Code (method) selection

= Extend optimization space:

= Performance (execution time, memory and power usage)
= Reliability (e.g. 99% for 7 days)
= Error in output (against failure-free environment)




Auto-Tuning can explore complex models
of HPC resilience
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= Exploitation of multiple resilient programming models
= What is the good combination?
= New Performance Tuning Methodologies

= Skeptical Programming + rBSP + Selective Reliability

= Auto-tuning facilitate to investigate some co-design
guestions

= (Caveat) Both hard and soft failures are typically
emulated by software

= We cannot use neutron beam everyday

35




Runtime VS Off-line Tuning ).

= Runtime tuning requires a good infrastructure support

= Redundant threads and processes
= Threads (USC)
= Processes (SNL, Rutgers, TiTech&LLNL)
= Need middleware/system support
= Active Harmony (UMD)
= Compiler assisted tuning (applicable for off-line tuning)
= Rose-FTT (LLNL) and LLVM (LLNL, Utah)

= Off-line tuning requires a good fault model in addition to
emulated fault injections




Conclusions )

= Resilience is an imminent issue in HPC

= 4 Different Programming Models
= Skeptical Programming. (SP)
= Relaxed Bulk Synchronous (rBSP)
= Local-Failure, Local-Recovery (LFLR)
= Selective (Un)reliability (SU/R)

= Auto-tuners should explore these models to optimize
scalability, performance and resilience together.
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