

Toward estimating the extinction frequency in turbulent non-premixed flames with a simple stochastic model

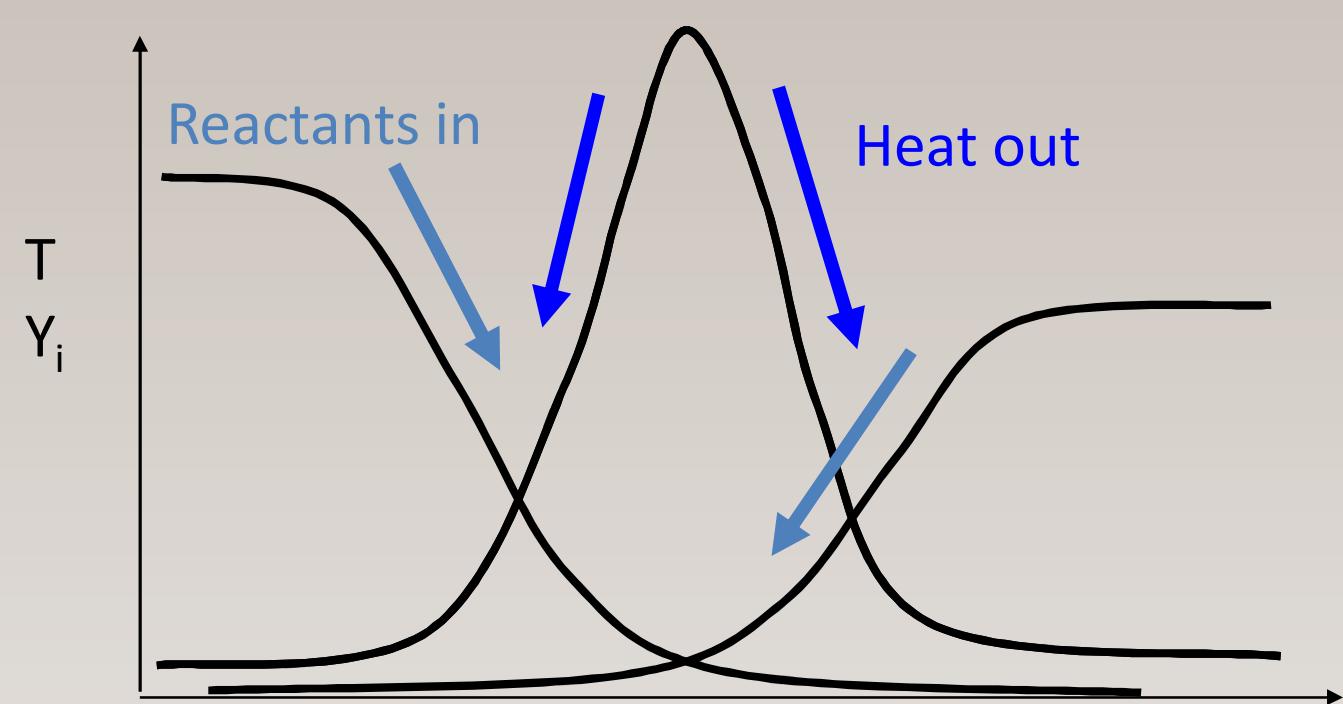
John C. Hewson

Summary

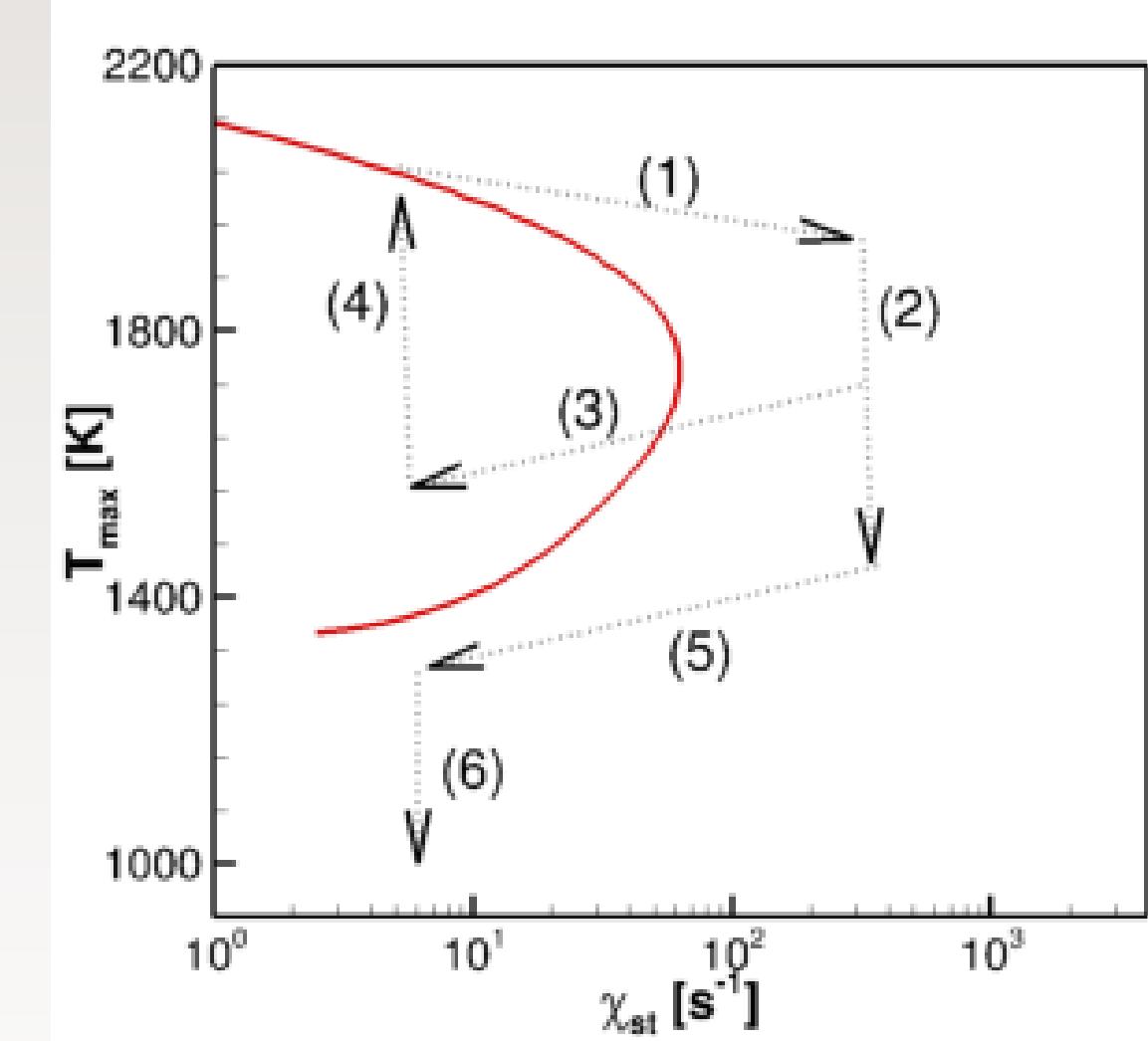
- Unsteady extinction characterized by extinction impulse: time integrated dissipation rate exceeding steady extinction value.
- Critical dissipation impulse related to S-curve characteristics.
- Frequency of a given extinction impulse magnitude has been estimated using a simple Ornstein-Uhlenbeck stochastic process model. Results suggest power law scalings in impulse magnitude and $\text{Prob}(\chi = \chi_q)$ when results are appropriately normalized.

Unsteady Extinction by Dissipation Impulse

- Extinction occurs if chemistry is slower than mixing, if heat losses exceed heat release.
- Critical dissipation rate** above which *steady* solutions are not possible: χ_q
- Turning point of S-curve at χ_q .



- In unsteady turbulent flows, dissipation rates can exceed χ_q briefly without extinguishing flame – depends on whether flame state is above or below unstable middle branch.
- Path 1,2,3,4 versus 1,2,5,6.



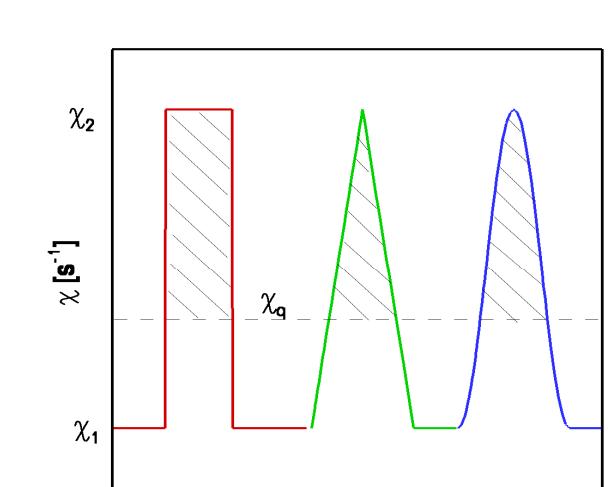
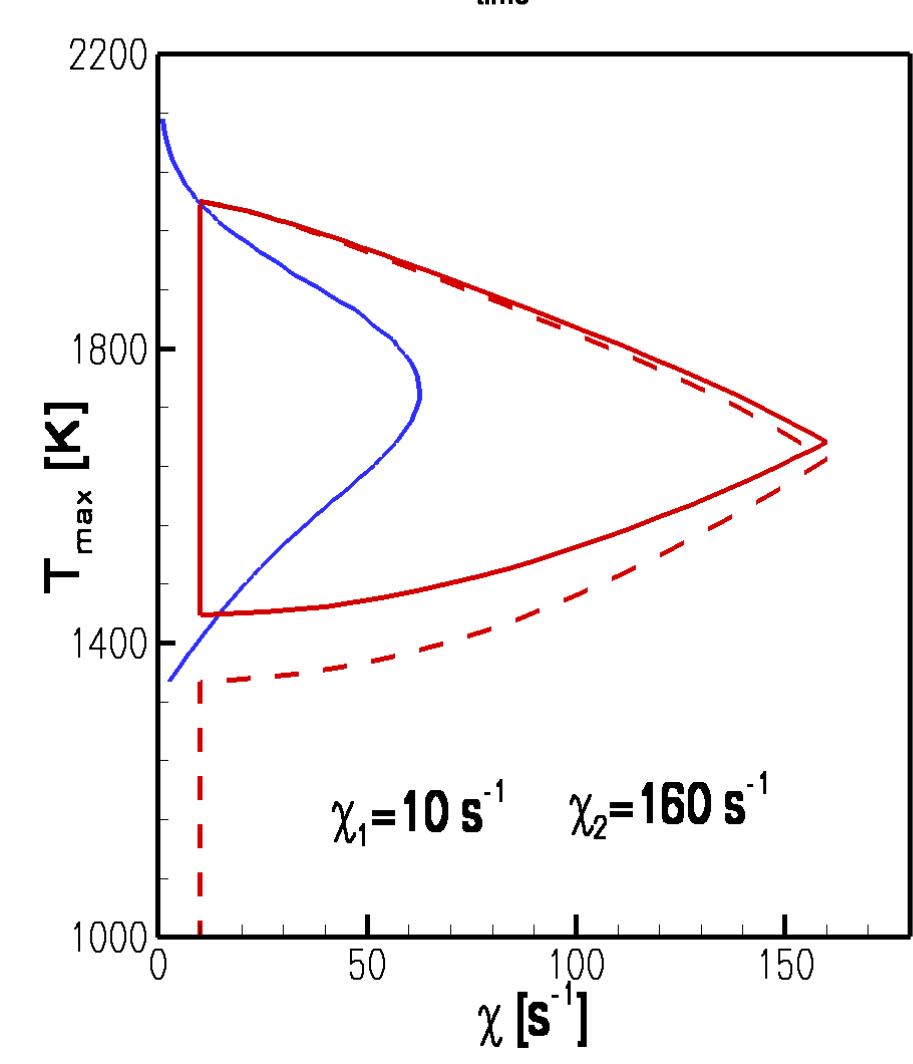
- Unsteady extinction criterion:** $\frac{dT}{dt} = \frac{\chi}{2} \frac{d^2T}{dZ^2} - \left(\sum_i \frac{\omega_i h_i}{\rho c_p} \right)_{\max}$
- Motivated by trajectories in T - χ phase space (S-curve).
- Consider time when $\chi > \chi_q$
- Set reaction rate at χ_q (max) rate.
- Estimate heat loss from **dissipation impulse** to get temperature decrement:

$$\frac{T_2 - T_\infty}{T_1 - T_\infty} = \exp(-\Xi)$$

$$\frac{T_2 - T_\infty}{T_1 - T_\infty} = \exp\left(-\frac{\chi}{2} \frac{d^2T}{dZ^2}\right)$$

$$\approx \frac{(\chi - \chi_q)}{2} \frac{d^2T}{dZ^2}$$

$$\approx \frac{(\chi_q - \chi)(T - T_\infty)}{Z_{st} (1 - Z_{st}) \varepsilon}$$



- Critical value corresponds to T_2 on middle branch.

$$\Xi_q = \ln \left(\frac{T_1 - T_\infty}{T_m - T_\infty} \right)$$

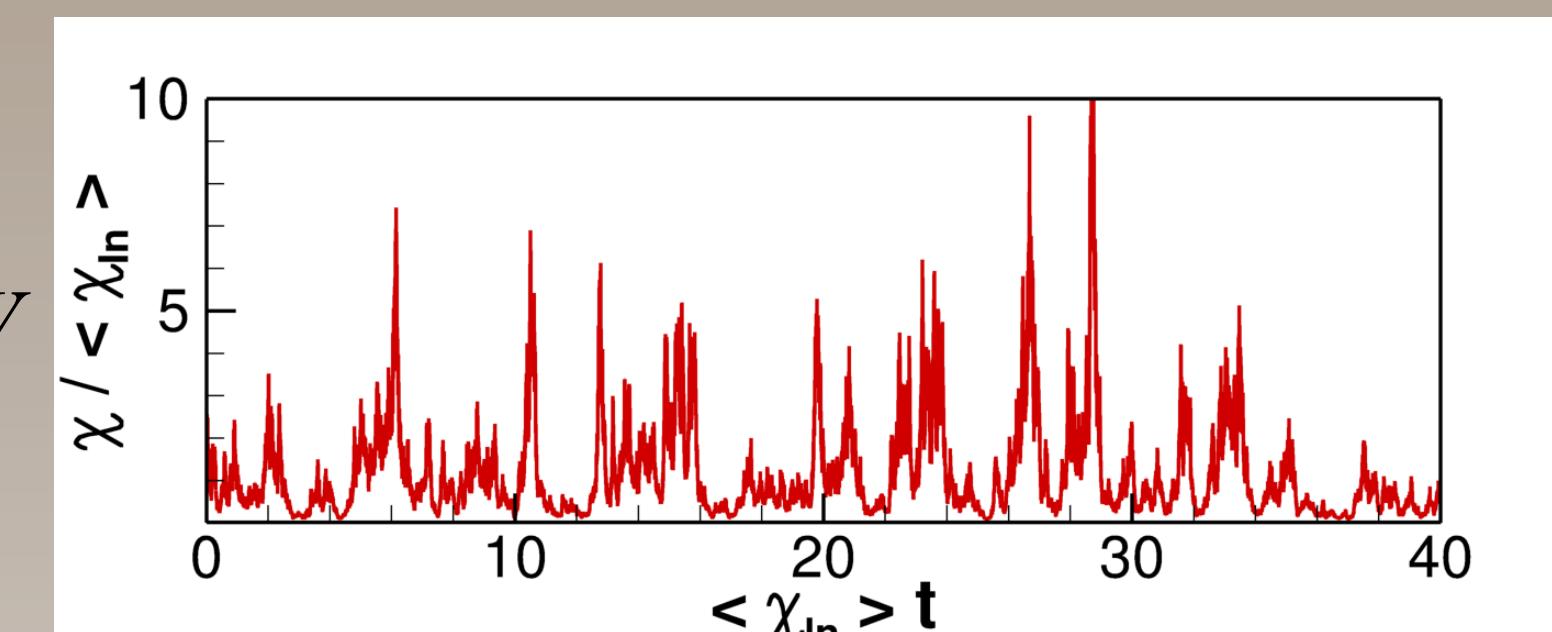
- Works well for large dissipation rate fluctuations characteristic of high Reynolds number turbulence.

Simple Stochastic Model for the Dissipation Rate

Ornstein-Uhlenbeck process can be used to simulate lognormal dissipation rate fluctuations.

$$d \ln \chi^* = -\left(\ln \chi^* + \frac{\sigma^2}{2} \right) dt^* + \sqrt{2\sigma} dW$$

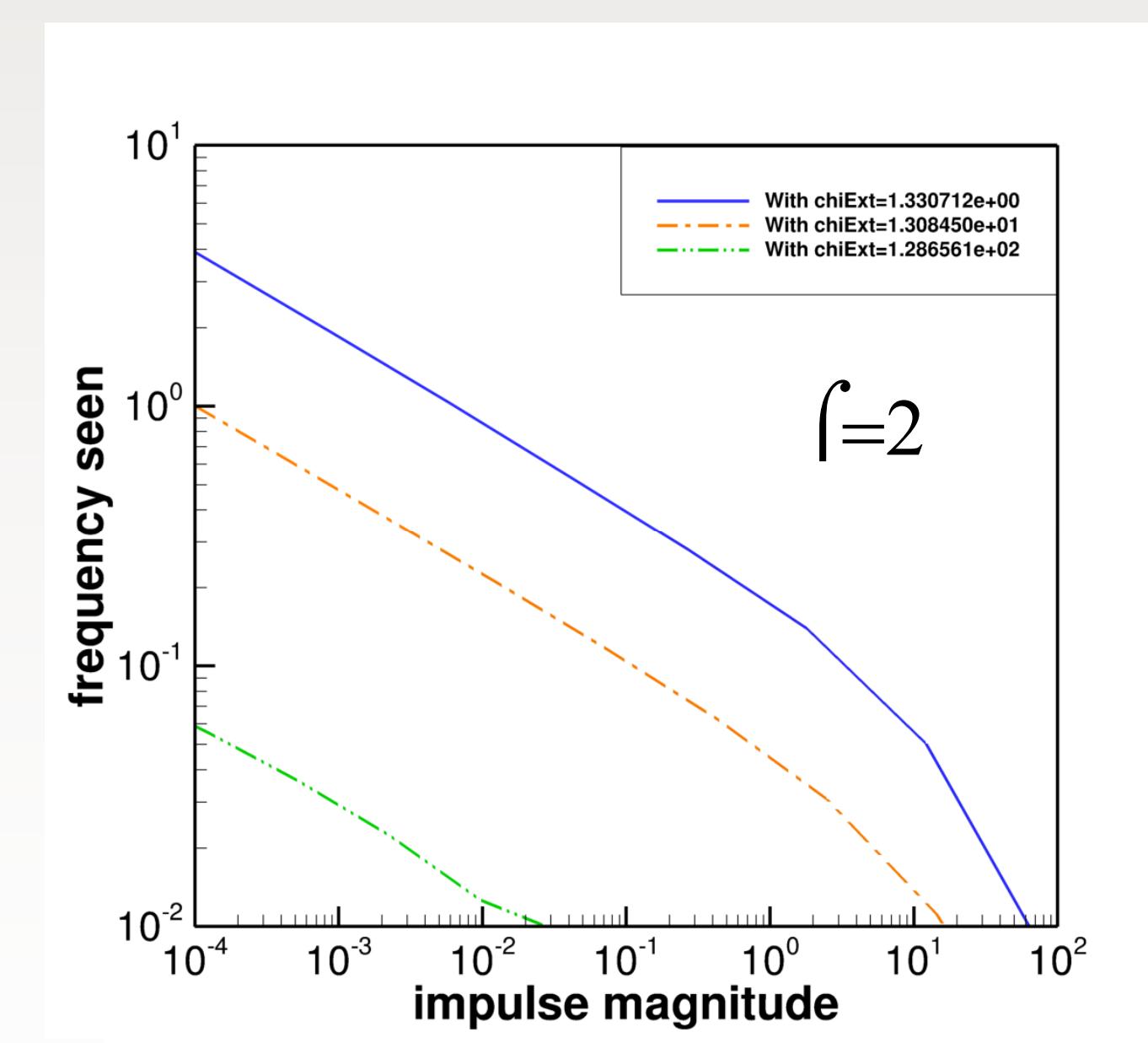
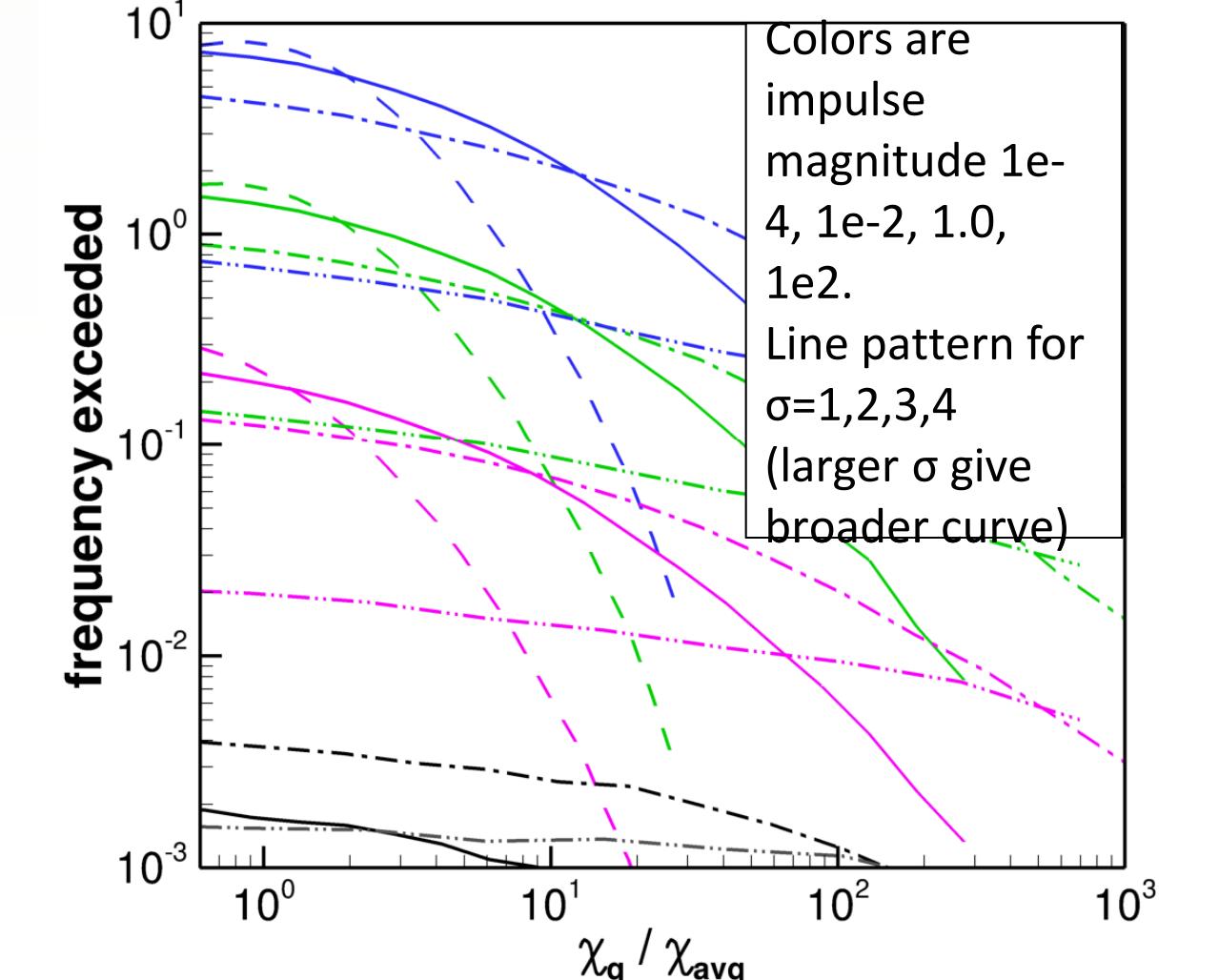
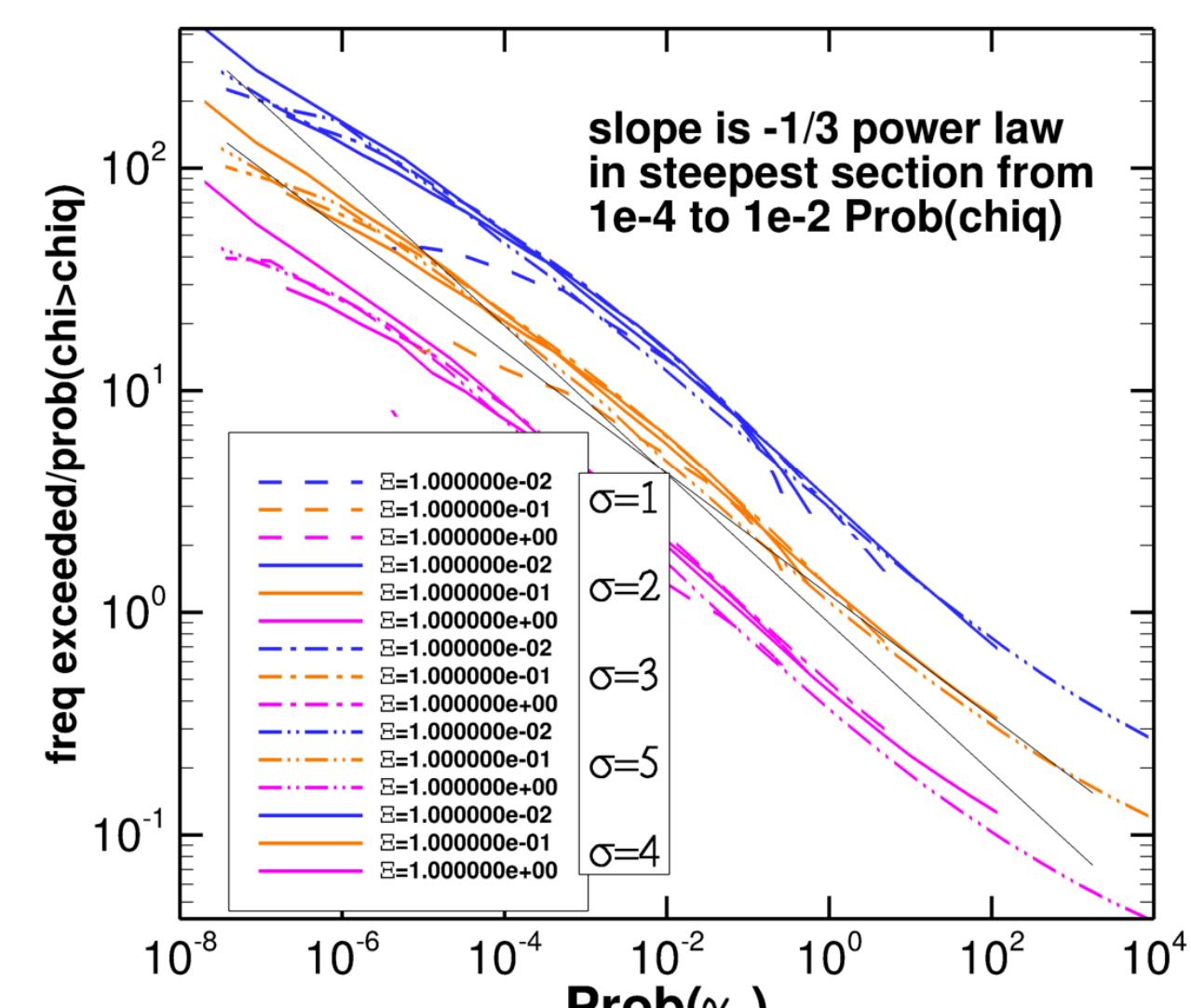
$$\chi^* = \chi / \langle \chi \rangle, \quad t^* = t / \tau_\chi$$



- Normalized dissipation impulse: $\Xi^* = \int_{\chi > \chi_q} (\chi^* - \chi_q^*) dt^* = \left[\frac{2Z_{st}(1 - Z_{st})}{A \langle \chi \rangle \tau_\chi} \right] \Xi$

Statistics of the Dissipation Impulse

- Based on assumption of OU evolution, compute statistics for various $\sigma_{\ln \chi}, \chi_q / \langle \chi \rangle, \Xi^*$
 - Select values for Ξ^* based on S-curve (10⁻² to 1 are reasonable values).
 - Integrate dissipation impulse: $\chi - \chi_q$ when $\chi > \chi_q$.
 - Determine statistics as function of $\sigma_{\ln \chi}, \chi_q / \langle \chi \rangle$.
- Reporting **cumulative frequency** Ξ^* **exceeds given value** in t^* units as function of $\chi_q / \langle \chi \rangle$.
- Frequency Ξ^* exceeds given value decreases with increasing magnitude (larger gap in S-curve temperatures).
 - Power law scaling for $\Xi^* < 1$.
- As $\chi_q / \langle \chi \rangle$ increases (harder to extinguish) the frequency exceeded decreases.
- Reduction in frequency strongest for smaller σ (when large dissipation rates less frequent).
- Normalize rate by $\text{Prob}(\chi > \chi_q)$ (cumulative distribution) as measure of time and magnitude of $\chi - \chi_q$ when $\chi > \chi_q$.
- Normalized frequency then decreases approximately as power law in $\text{Prob}(\chi = \chi_q)$.



Reference for dissipation impulse:

Hewson, *Combust. Flame*, 160: 887-897, 2013.