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Toward estlmatmg the extinction frequency in turbulent

non-premixed flames with a simple stochastic model
John C. Hewson

Summary

* Unsteady extinction characterized by extinction impulse: time
integrated dissipation rate exceeding steady extinction value.

* Critical dissipation impulse related to S-curve characteristics.

* Frequency of a given extinction impulse magnitude has been

Simple Stochastic Model for the Dissipation Rate

Ornstein-Uhlenbeck process can be used to simulate lognormal
dissipation rate fluctuations.
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* Works well for large dissipation rate fluctuations Hewson, Combust. Flame, 160: 887- Probixs

characteristic of high Reynolds humber turbulence.
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