
Realizing Exascale Performance for 
Uncertainty Quantification 

Eric Phipps (etphipp@sandia.gov), 
H. Carter Edwards, Jonathan Hu
Sandia National Laboratories

and
Clayton Webster

Oak Ridge National Laboratory

EX14 SIAM Workshop on Exascale Applied Mathematics 
Challenges and Opportunities

July 6, 2014

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia 
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of 
Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND2014-15554PE

mailto:etphipp@sandia.gov
mailto:etphipp@sandia.gov


Can Exascale Solve the UQ Challenge?

• UQ means many things
– Best estimate + uncertainty, model validation, model calibration, …

• A key to many UQ tasks is forward uncertainty propagation
– Given uncertainty model of input data (aleatory, epistemic, …)
– Propagate uncertainty to output quantities of interest

• There are many forward uncertainty propagation approaches
– Monte Carlo, stochastic collocation, polynomial chaos, stochastic Galerkin, 

…

• Key challenge:
– Accurately quantifying rare events and localized behavior in high-

dimensional uncertain input spaces
– Can easily require O(104-106) expensive forward simulations
– Often can only afford O(102) on today’s petascale machines



Achieving Exascale Performance Requires New 
Approaches

• UQ approaches usually implemented as an outer loop
– Repeated calls of deterministic solver
– Coarse-grained distributed memory parallelism over samples
– Can we achieve a 1000x increase in available uncertainty propagation in this manner?

• No increase in clock-speed
– Must increase parallelism

• Little increase in total node count, dramatic increase in node-level parallelism
– Must evaluate multiple samples in parallel on each node

• Node memory increase of 0.1-0.01 of floating-point capacity
– Parallel sample evaluations must share data when possible (threads)

• No decrease in latency, latency hiding through instruction-level parallelism & out-of-order 
execution replaced by hardware multi-threading and vectorization

– Simulations must exhibit good data locality and expose sufficient fine-grained parallelism
– Extremely challenging for many simulation algorithms, e.g., sparse linear algebra on complex 

(unstructured) domains

• UQ is a highly structured calculation
– Expose new dimensions of fine-grained parallelism through embedded approaches

• Embedded sample propagation
• Stochastic Galerkin



Polynomial Chaos Expansions (PCE)

• Steady-state finite dimensional model problem:

• (Global) Polynomial Chaos approximation:

– Multivariate orthogonal polynomials
– Typically constructed as tensor products with total order at most N
– Can be adapted (anisotropic, local support)

• Non-intrusive polynomial chaos (NIPC, NISP):

– Sparse-grid quadrature methods for scalability to moderate stochastic dimensions
– Need to be careful to ensure quadrature rule preserves discrete orthogonality

• SPAM (Constantine, Eldred, Phipps, CMAME, 2012)
• Method is equivalent to stochastic collocation



Simultaneous ensemble propagation

• PDE:

• Propagating m samples – block diagonal (nonlinear) system:

• Commute Kronecker products (just a reordering of DoFs):

• Each sample-dependent scalar replaced by length-m array
– Automatically reuse non-sample dependent data
– Sparse accesses amortized across ensemble
– Math on ensemble naturally maps to vector arithmetic



Potential Speed-up for PDE Assembly

• Halo exchange
– Amortize MPI latency across 

ensemble

• Gather
– Reuse node-index map 

(mesh)
– Replace sparse with 

contiguous loads

• Local residual/Jacobian
– Vectorized math

• Scatter
– Reuse node-index map and 

element graph (mesh)
– Replace sparse with 

contiguous stores



Potential Speed-up for Sparse Solvers

• Sparse matrix-vector 
products
– Amortize MPI latency in halo 

exchange
– Reuse matrix graph
– Replace sparse with 

contiguous loads
– Vector arithmetic

• Dot-products
– Amortize MPI latency

• Preconditioners
– Sparse mat-vecs
– Sparse 

factorizations/triangular-
solves

– Smaller, more unstructured 
matrices

• Ingredients to sparse linear 
system solvers (CG, 
GMRES, …)
– Sparse matrix-vector 

products

– Dot-products
– Preconditioners

• Relaxation-based 
(Jacobi, Gauss-Seidel, …)

• Incomplete factorizations 
(ILU, IC, …)

• Polynomial (Chebyshev, 
…)

• Multilevel 
(Algebraic/Geometric 
multigrid)



Stokhos:  Trilinos Tools for Embedded 
UQ Methods

• Provides “ensemble scalar type”
– C++ class containing an array with length fixed at compile-time
– Overloads all math operations by mapping operation across array

– Uses expression templates to fuse loops

• Enabled in simulation codes through template-based generic progamming
– Template C++ code on scalar type
– Instantiate template code on ensemble scalar type

• Integrated with Kokkos (Edwards, Sunderland, Trott) for many-core parallelism
– Specializes Kokkos data-structures, execution policies to map vectorization parallelism 

across ensemble
– For CUDA, currently requires manual modification of parallel launch to use customized 

execution policies

• Integrated with Tpetra-based solvers for hybrid (MPI+X) parallel linear algebra
– Exploits templating on scalar type
– Optimized linear algebra kernels for ensemble scalar type
– Krylov solvers (Belos), Incomplete factorization preconditioners (Ifpack2), algebraic 

multigrid preconditioners (MueLu)

http://trilinos.sandia.gov 

http://trilinos.sandia.gov


Techniques Prototyped in FENL Mini-App

• Simple nonlinear diffusion equation

– 3-D, linear FEM discretization
– 1x1x1 cube, unstructured mesh
– KL-like random field model for diffusion coefficient

• Hybrid MPI+X parallelism
– Traditional MPI domain decomposition using threads within each domain

• Employs Kokkos for thread-scalable
– Graph construction
– PDE assembly

• Employs Tpetra for distributed linear algebra
– CG iterative solver (Belos package)
– Smoothed Aggregation AMG preconditioning (MueLu)

• Supports embedded ensemble propagation via Stokhos through entire assembly and 
solve

– Samples generated via tensor product & Smolyak sparse grid quadrature

http://trilinos.sandia.gov 

http://trilinos.sandia.gov


Ensemble Assembly Speed-Up

0

0.5

1

1.5

2

2.5

3

4 8 12 16 20 24 28 32En
se

m
b

le
A

ss
em

b
ly

Sp
ee

d
-U

p

Ensemble Size

Sandy Bridge (16 threads)

16x16x16

32x32x32

64x64x64

0

0.2

0.4

0.6

0.8

1

1.2

1.4

4 8 12 16 20 24 28 32En
se

m
b

le
A

ss
em

b
ly

Sp
ee

d
-U

p

Ensemble Size

Blue Gene/Q (64 threads)

16x16x16

32x32x32

64x64x64

0

0.5

1

1.5

2

2.5

3

3.5

16 32 48 64En
se

m
b

le
A

ss
em

b
ly

Sp
ee

d
-U

p

Ensemble Size

NVIDIA K20X GPU

16x16x16

32x32x32

64x64x64

0

0.5

1

1.5

2

2.5

3

3.5

8 16 24 32 40 48En
se

m
b

le
A

ss
em

b
ly

Sp
ee

d
-U

p

Ensemble Size

Intel Xeon Phi (224 Threads)

16x16x16

32x32x32

64x64x64



Ensemble MPI Halo-Exchange Speed-Up

0

5

10

15

20

25

30

4 12 20 28

En
se

m
b

le
Sp

e
e

d
-U

p

Ensemble Size

Halo Exchange -- Sandy Bridge
1 MPI Rank/Node, 16 Threads/Rank

(~ 64x64x64 Mesh/Node)

2 Nodes

4 Nodes

8 Nodes

16 Nodes

0

5

10

15

20

25

4 12 20 28

En
se

m
b

le
Sp

e
e

d
-U

p

Ensemble Size

Halo Exchange -- BG/Q
1 MPI Rank/Node, 64 Threads/Rank

(~ 64x64x64 Mesh/Node)

2 Nodes

4 Nodes

8 Nodes

16 Nodes

32 Nodes

64 Nodes

128 Nodes



Ensemble Matrix-Vector Product Speed-Up

0

0.5

1

1.5

2

2.5

3

3.5

4

4 8 12 16 20 24 28 32

En
se

m
b

le
M

at
-V

ec
Sp

ee
d

-U
p

Ensemble Size

Blue Gene/Q (64 threads)

16x16x16

32x32x32

64x64x64

0

0.5
1

1.5

2
2.5

3
3.5

4
4.5

4 8 12 16 20 24 28 32

En
se

m
b

le
M

at
-V

ec
Sp

ee
d

-U
p

Ensemble Size

Sandy Bridge (16 threads)

16x16x16

32x32x32

64x64x64

0

0.5
1

1.5

2
2.5

3
3.5

4
4.5

16 32 48 64

En
se

m
b

le
M

at
-V

ec
Sp

ee
d

-U
p

Ensemble Size

NVIDIA K20X GPU

16x16x16

32x32x32

64x64x64

0

1

2

3

4

5

6

7

8

8 16 24 32 40 48

En
se

m
b

le
M

at
-V

ec
Sp

ee
d

-U
p

Ensemble Size

Intel Xeon Phi (224 Threads)

16x16x16

32x32x32

64x64x64



Ensemble AMG-Preconditioned CG Speed-Up

Problem with current implementation 
that will be fixed soon

1.0

2.0

3.0

4.0

5.0

1 2 4 8 16

En
se

m
b

le
Sp

ee
d

-U
p

Nodes

Sandy Bridge
1 MPI Rank/Node, 16 Threads/Rank

(~ 64x64x64 Mesh/Node)

PCG Solve
Ensemble = 16

PCG Solve
Ensemble = 32

AMG Setup
Ensemble = 16

AMG Setup
Ensemble = 32

1.0

3.0

5.0

7.0

9.0

1 2 4 8 16

En
se

m
b

le
Sp

ee
d

-U
p

Nodes

Intel Xeon Phi
1 MPI Rank/Node, 224 Threads/Rank

(~ 48x48x48 Mesh/Node)

PCG Solve
Ensemble = 16

PCG Solve
Ensemble = 32

AMG Setup
Ensemble = 16

AMG Setup
Ensemble = 32

1.0

2.0

3.0

4.0

5.0

1 2 4 8 16 32 64 128

En
se

m
b

le
Sp

ee
d

-U
p

Nodes

Blue Gene/Q
1 MPI Rank/Node, 64 Threads/Rank

(~ 64x64x64 Mesh/Node)

PCG Solve
Ensemble = 16

PCG Solve
Ensemble = 32

AMG Setup
Ensemble = 16

AMG Setup
Ensemble = 32

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 4 8 16

En
se

m
b

le
Sp

ee
d

-U
p

Nodes

NVIDIA K20X GPU
1 MPI Rank/Node

(~ 64x64x64 Mesh/Node)

PCG Solve
Ensemble = 16

PCG Solve
Ensemble = 32

AMG Setup
Ensemble = 16

AMG Setup
Ensemble = 32



• Stochastic Galerkin method (Ghanem and many, many others…):

• Method generates new coupled spatial-stochastic nonlinear problem (intrusive)

• Advantages:
– Many fewer stochastic degrees-of-freedom for comparable level of accuracy

• Challenges:
– Computing SG residual and Jacobian entries in large-scale, production simulation codes

– Solving resulting systems of equations efficiently, particularly for nonlinear problems

• Stokhos package provides tools for implementing SG methods for large-scale 
systems

– Integrates with Kokkos, Tpetra for multicore, MPI parallelism

– Techniques demonstrated in FENL

Stochastic sparsity Spatial sparsity

Embedded Stochastic Galerkin UQ Methods



Structure of Galerkin Operator

• Operator traditionally organized with outer-stochastic, inner-spatial 
structure
– Allows reuse of deterministic solver data structures and preconditioners
– Makes sense for sparse stochastic discretizations

• For nonlinear problems, makes sense to commute this layout to outer-
spatial, inner-stochastic
– Leverage emerging architectures to handle denser stochastic blocks



Commuted SG Matrix Multiply

• Two level algorithm

– Outer: sparse (CRS) matrix-vector multiply algorithm

– Inner: sparse stochastic Galerkin product

stochastic 
basis

stochastic 
basis

FEM 
basis

FEM 
basis

FEM 
basis

stochastic 
basis

triple 
product

stochastic 
bases sum

FEM bases 
sum



Commuted SG Mat-Vec Speed-Up

• Simple 3D linear FEM matrix (size n = 32x32x32)
• N = polynomial order (larger N, denser blocks)
• Significant speedup of polynomial approach over original algorithm

– Performance driven by reading Cijk tensor from memory

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500

Sp
e

e
d

u
p

R
e

la
ve

to
M

a
tr

ix
-F

re
e

(O
ri

gi
n

a
l)

Stochas c Discre za on Size P

Intel Sandy Bridge CPU
(n=32k, 16 threads)

Commuted (N=3)

Commuted (N=5)

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500

Sp
e

e
d

u
p

R
e

la
ve

to
M

a
tr

ix
-F

re
e

(O
ri

gi
n

a
l)

Stochas c Discre za on Size P

Intel Sandy Bridge CPU
(n=32k, 16 threads)

Commuted (N=3)

Commuted (N=5)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 100 200 300 400 500

Sp
e

ed
u

p
R

el
a

ve
to

M
at

ri
x-

Fr
ee

(O
ri

gi
n

al
)

Stochas c Discre za on Size P

NVIDIA Kepler K40 GPU
(n=32k)

Commuted (N=3)

Commuted (N=5)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 100 200 300 400 500

Sp
e

ed
u

p
R

el
a

ve
to

M
at

ri
x-

Fr
ee

(O
ri

gi
n

al
)

Stochas c Discre za on Size P

NVIDIA Kepler K40 GPU
(n=32k)

Commuted (N=3)

Commuted (N=5)



Challenges and Opportunities

• Significant effort to refactor simulation codes
– Codes will likely be refactored anyway for exascale
– Introduce abstraction at scalar level through template-based generic programming

• Solvers/preconditioners optimized for embedded uncertainty propagation 
– Effective stochastic Galerkin preconditioners
– Reuse preconditioning/solver information across ensemble array

• Whole preconditioner
• Reuse multi-grid hierarchy/aggregrates
• Recycle Krylov bases

• Increased cache pressure
– Can’t make SG/ensemble array too big

• Memory access patterns of SG Cijk tensor
– Partitioning, balancing, reordering for cache
– Can we generate it “on-the-fly” without reading from global memory (potentially eliminate 

bandwidth limit)?

• Propagating samples together requires commonality in solution process
– Often need to refine UQ discretization near localized behavior/discontinuities/bifurcations
– How to group samples to exploit commonality when you have it, and separate samples when 

you don’t?



Auxiliary Slides



Application & Library Domain Layer

Kokkos: A Manycore Device Performance Portability Library for 
C++ HPC Applications*

• Standard C++ library, not a language extension
– Core:  multidimensional arrays, parallel execution, atomic operations
– Containers:  Thread-scalable implementations of common data 

structures (vector, map, CRS graph, …)
– LinAlg:  Sparse matrix/vector linear algebra

• Relies heavily on C++ template meta-programming to introduce 
abstraction without performance penalty

– Execution spaces (CPU, GPU, …)

– Memory spaces (Host memory, GPU memory, scratch-pad, texture 
cache, …)

– Layout of multidimensional data in memory

– Scalar type

Back-ends: OpenMP, pthreads, Cuda, vendor libraries ...

Kokkos Sparse Linear Algebra

Kokkos Containers

Kokkos Core

http://trilinos.sandia.gov 

*H.C. Edwards, D. Sunderland, C. Trott (SNL)

http://trilinos.sandia.gov


Tpetra: Foundational Layer / Library for Sparse Linear 
Algebra Solvers on Next-Generation Architectures*

• Tpetra: Sandia’s templated C++ library for 
distributed memory (MPI) sparse linear algebra
– Builds distributed memory linear algebra on top of 

Kokkos library
– Distributed memory vectors, multi-vectors, and sparse 

matrices
– Data distribution maps and communication operations
– Fundamental computations: axpy, dot, norm, matrix-

vector multiply, ...
– Templated on “scalar” type: float, double, automatic 

differentiation, polynomial chaos, ensembles, …

 Higher level solver libraries built on Tpetra
– Preconditioned iterative algorithms (Belos)
– Incomplete factorization preconditioners (Ifpack2, 

ShyLU)
– Multigrid solvers (MueLu)
– All templated on the scalar type

http://trilinos.sandia.gov 

*M. Heroux, M. Hoemmen, et al (SNL)

http://trilinos.sandia.gov


Ensemble CG Speed-Up

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1 2 4 8 16

En
se

m
b

le
C

G
Sp

ee
d

-U
p

Nodes

Sandy Bridge
1 MPI Rank/Node, 16 Threads/Rank

(~ 64x64x64 Mesh/Node)

Ensemble = 16

Ensemble = 32

1.0

1.2

1.4

1.6

1.8

2.0

1 2 4 8 16 32 64 128

En
se

m
b

le
C

G
Sp

ee
d

-U
p

Nodes

Blue Gene/Q
1 MPI Rank/Node, 64 Threads/Rank

(~ 64x64x64 Mesh/Node)

Ensemble = 16

Ensemble = 32

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1 2 4 8 16

En
se

m
b

le
C

G
Sp

ee
d

-U
p

Nodes

Intel Xeon Phi
1 MPI Rank/Node, 224 Threads/Rank

(~ 48x48x48 Mesh/Node)

Ensemble = 16

Ensemble = 32

0.0

0.5

1.0

1.5

2.0

2.5

1 2 4 8 16

En
se

m
b

le
C

G
Sp

ee
d

-U
p

Nodes

NVIDIA K20X GPU
1 MPI Rank/Node

(~ 64x64x64 Mesh/Node)

Ensemble = 16

Ensemble = 32

Problem with current implementation 
that will be fixed soon



SG Linear Systems

• Stochastic Galerkin Jacobian:

• Stochastic Galerkin Newton linear systems:

• Solution methods:
– Form SG matrix directly (expensive)
– “Matrix-free” approach for iterative linear solvers:

• Sparsity determined by triple product tensor 
• Only requires operator-apply for each operator PCE coefficient
• Organize algorithm to minimize operator-vector applies



• Each FEM row “owned” by a CPU thread
– 2 rows per core on Sandy Bridge

• Owning CPU thread computes 
– (j,k) loop vectorized (auto-vectorization or intrinsics) for 

SIMD parallelism
– Vector width = 4 (AVX) on Sandy Bridge

Multicore-CPU: One-level Concurrency

SIMD within a multicore-CPU thread
thread parallel



Intel Sandy Bridge CPU

• Simple 3D linear FEM matrix (size n = 32x32x32)
• N = polynomial order (larger N, denser blocks)
• Significant speedup of polynomial approach over original algorithm

0

5

10

15

20

25

30

35

40

45

50

0 100 200 300 400 500

G
FL

O
P

/s

Stochas c Discre za on Size P

Intel Sandy Bridge CPU
(n=32k, 16 threads)

Commuted (N=3)

Commuted (N=5)

Original (N=3)

Original (N=5)

0

5

10

15

20

25

30

35

40

45

50

0 100 200 300 400 500

G
FL

O
P

/s

Stochas c Discre za on Size P

Intel Sandy Bridge CPU
(n=32k, 16 threads)

Commuted (N=3)

Commuted (N=5)

Original (N=3)

Original (N=5)

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500

Sp
e

e
d

u
p

R
e

la
ve

to
M

a
tr

ix
-F

re
e

(O
ri

gi
n

a
l)

Stochas c Discre za on Size P

Intel Sandy Bridge CPU
(n=32k, 16 threads)

Commuted (N=3)

Commuted (N=5)

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500

Sp
e

e
d

u
p

R
e

la
ve

to
M

a
tr

ix
-F

re
e

(O
ri

gi
n

a
l)

Stochas c Discre za on Size P

Intel Sandy Bridge CPU
(n=32k, 16 threads)

Commuted (N=3)

Commuted (N=5)



• Multiple levels of concurrency:
– Each FEM row owned by a thread-block
– Each warp within a thread-block owns an “i”
– Warps within a thread perform SG multiply in parallel, executing FEM 

multiply loop serially

• Sparse tensor stored in GPU global memory
– Reduce sparse tensor reads by blocking FEM column loop (“m” loop)
– Heuristic to choose block size based on stochastic discretization size to 

balance shared memory usage (reduces occupancy) and tensor reads
– Pack (i,j) indices into single 32-bit integer

Manycore-GPU:  Two-level Concurrency

thread-block 
parallel

thread-warp 
parallel

thread 
parallel

serial 
within a 
thread

thread-block 
shared memory

thread-block 
shared memory

GPU global 
memory



NVIDIA K40 GPU

• Simple 3D linear FEM matrix (size n = 32x32x32)
• N = polynomial order (larger N, denser blocks)
• Significant speedup of polynomial approach except for larger 

stochastic discretizations
– Too much shared memory usage per CUDA block reduces occupancy

0

20

40

60

80

100

120

140

160

180

0 100 200 300 400 500

G
FL

O
P

/s

Stochas c Discre za on Size P

NVIDIA Kepler K40 GPU
(n=32k)

Commuted (N=3)

Commuted (N=5)

Original (N=3)

Original (N=5)

0

20

40

60

80

100

120

140

160

180

0 100 200 300 400 500

G
FL

O
P

/s

Stochas c Discre za on Size P

NVIDIA Kepler K40 GPU
(n=32k)

Commuted (N=3)

Commuted (N=5)

Original (N=3)

Original (N=5)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 100 200 300 400 500

Sp
e

ed
u

p
R

el
a

ve
to

M
at

ri
x-

Fr
ee

(O
ri

gi
n

al
)

Stochas c Discre za on Size P

NVIDIA Kepler K40 GPU
(n=32k)

Commuted (N=3)

Commuted (N=5)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 100 200 300 400 500

Sp
e

ed
u

p
R

el
a

ve
to

M
at

ri
x-

Fr
ee

(O
ri

gi
n

al
)

Stochas c Discre za on Size P

NVIDIA Kepler K40 GPU
(n=32k)

Commuted (N=3)

Commuted (N=5)



• Map GPU to accelerator architecture:
– GPU thread -> vector lane
– Thread warp -> hyperthread
– Thread block -> core

• Use essentially same algorithm as for GPU, except
– Automatic caching of A, x entries instead of shared-memory loads
– Fixed block size for blocking of FEM column loop (“m” loop)
– No packing of (i,j) indices

Manycore-Accelerator:  Two-level 
Concurrency

core parallel

hyperthread
parallel

vector 
parallel

serial 
within a 
thread

core L1 cache 
memory

core L1 cache 
memory

Accelerator 
global memory



Intel Xeon Phi 7120P Accelerator

• Simple 3D linear FEM matrix (size n = 32x32x32)
• N = polynomial order (larger N, denser blocks)
• Significant speedup of polynomial approach except for larger 

stochastic discretizations
– Calculation falls out of L1 cache

0

5

10

15

20

25

30

35

40

45

50

0 100 200 300 400 500

G
FL

O
P

/s

Stochas c Discre za on Size P

Intel Xeon Phi 7120P Accelerator
(n=32k, 240 threads)

Commuted (N=3)

Commuted (N=5)

Original (N=3)

Original (N=5)

0

5

10

15

20

25

30

35

40

45

50

0 100 200 300 400 500

G
FL

O
P

/s

Stochas c Discre za on Size P

Intel Xeon Phi 7120P Accelerator
(n=32k, 240 threads)

Commuted (N=3)

Commuted (N=5)

Original (N=3)

Original (N=5)

0

2

4

6

8

10

12

0 100 200 300 400 500

Sp
ee

d
u

p
R

el
a

ve
to

M
at

ri
x-

Fr
ee

(O
ri

gi
n

al
)

Stochas c Discre za on Size P

Intel Xeon Phi 7120P Accelerator
(n=32k, 240 threads)

Commuted (N=3)

Commuted (N=5)

0

2

4

6

8

10

12

0 100 200 300 400 500

Sp
ee

d
u

p
R

el
a

ve
to

M
at

ri
x-

Fr
ee

(O
ri

gi
n

al
)

Stochas c Discre za on Size P

Intel Xeon Phi 7120P Accelerator
(n=32k, 240 threads)

Commuted (N=3)

Commuted (N=5)



Performance driven by C(i,j,k) tensor

• Precompute and store C

• Given l,m, load A(:,l,m), y(:,l), 
x(:,m) into cache

• Iterate over non-zero C(i,j,k) 
entries

• Sparse accesses of A, x, but in 
fast cache

– Very fast for GPU

• Lots of reuse of A, x entries

• Can load A, x for multiple values 
of l,m to reduce reads of C


