SAND2014- 15554PE

Realizing Exascale Performance for
Uncertainty Quantification

Eric Phipps (etphipp@sandia.gov),
H. Carter Edwards, Jonathan Hu

Sandia National Laboratories
and
Clayton Webster
Oak Ridge National Laboratory

EX14 SIAM Workshop on Exascale Applied Mathematics
Challenges and Opportunities

July 6, 2014

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Sandia National Laboratories
Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. ﬂl‘



mailto:etphipp@sandia.gov
mailto:etphipp@sandia.gov

Can Exascale Solve the UQ Challenge?

- UQ means many things
— Best estimate + uncertainty, model validation, model calibration, ...

* A key to many UQ tasks is forward uncertainty propagation
— Given uncertainty model of input data (aleatory, epistemic, ...)
— Propagate uncertainty to output quantities of interest

* There are many forward uncertainty propagation approaches
— Monte Carlo, stochastic collocation, polynomial chaos, stochastic Galerkin,

* Key challenge:

— Accurately quantifying rare events and localized behavior in high-
dimensional uncertain input spaces

— Can easily require O(104-10¢) expensive forward simulations
— Often can only afford O(102) on today’s petascale machines
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Achieving Exascale Performance Requires New
Approaches

UQ approaches usually implemented as an outer loop
— Repeated calls of deterministic solver
— Coarse-grained distributed memory parallelism over samples
— Can we achieve a 1000x increase in available uncertainty propagation in this manner?

No increase in clock-speed
— Must increase parallelism

Little increase in total node count, dramatic increase in node-level parallelism
— Must evaluate multiple samples in parallel on each node

Node memory increase of 0.1-0.01 of floating-point capacity
— Parallel sample evaluations must share data when possible (threads)

No decrease in latency, latency hiding through instruction-level parallelism & out-of-order
execution replaced by hardware multi-threading and vectorization

— Simulations must exhibit good data locality and expose sufficient fine-grained parallelism

— Extremely challenging for many simulation algorithms, e.g., sparse linear algebra on complex
(unstructured) domains

UQ is a highly structured calculation
— Expose new dimensions of fine-grained parallelism through embedded approaches
« Embedded sample propagation

+ Stochastic Galerkin
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Polynomial Chaos Expansions (PCE)

» Steady-state finite dimensional model problem:

Find u(£) such that f(u,&¢) =0, £: Q2 — T C RM, density p

* (Global) Polynomial Chaos approximation:

u(©) =€) = Y uithi(®), (i) = / i ()i (9)p(y)dy = b1 (1)?)

— Multivariate orthogonal polynomials
— Typically constructed as tensor products with total order at most N
— Can be adapted (anisotropic, local support)

* Non-intrusive polynomial chaos (NIPC, NISP):

k)a f(uay) 0

U; =

/F a(y) s (1) p(y)dy ~

1
(¥7) <w )i

— Sparse-grid quadrature methods for scalability to moderate stochastic dimensions
— Need to be careful to ensure quadrature rule preserves discrete orthogonality

+ SPAM (Constantine, Eldred, Phipps, CMAME, 2012)

* Method is equivalent to stochastic collocation
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Simultaneous ensemble propagation 4’@

- PDE:

f(u,y) =0 l X

* Propagating m samples — block diagonal (nonlinear) system:

F(U,Y):O, U:Zei®ui, Y:Zei®yi7 F:Zez®f(uzayz)

« Commute Kronecker products (just a reordering of DoFs):

Fc(UcaYc) = 0, e = Zui®ez’7 V= Zyi®ei7 e = Z f(u'w yz)®ez

« Each sample-dependent scalar replaced by length-m array
— Automatically reuse non-sample dependent data
— Sparse accesses amortized across ensemble
— Math on ensemble naturally maps to vector arithmetic
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Potential Speed-up for PDE Assembly

import(u) // halo exchange
for e = 0 to Ngjey, do

// Sparse gather of global solution
for : = 0 to N,,ode dO

I = Nodelndex(e,t)

Ue(2) = u(I)

end for

// Evaluate element residual/Jacobian
fe = local_residual(u,)
Je = local _jacobian(u,)

// Sparse scatter into global residual/Jacobian
for : = 0 to IN,,0qe doO
I = Nodelndex(e,z)
atomic_add(f(I), fe(2))
for 5 = 0 to N, 04e do
J = ElemGraph(e,z,j)
atomic_add(J(I,J), Je(2,7))
end for
end for
end for

- Halo exchange

— Amortize MPI latency across

ensemble

 Gather

— Reuse node-index map

(mesh)

— Replace sparse with
contiguous loads

* Local residual/Jacobian
— Vectorized math

» Scatter

— Reuse node-index map and
element graph (mesh)

— Replace sparse with
contiguous stores

i
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Potential Speed-up for Sparse Solvers

* Ingredients to sparse linear « Sparse matrix-vector
system solvers (CG, products
GMRES, ...) — Amortize MPI latency in halo
— Sparse matrix-vector exchange
products — Reuse matrix graph
A.row(i+1) — Replace sparse with
y@)= Y Awals(l)z(A.col(l)) contiguous loads

— Vector arithmetic
I=A.row(7)

— Dot-products * Dot-products

— Preconditioners — Amortize MPI latency
* Relaxation-based
(Jacobi, Gauss-Seidel, ...)

 Incomplete factorizations * Preconditioners

(ILU, IC, ...) — Sparse mat-vecs

» Polynomial (Chebyshev, — Sparse ]
factorizations/triangular-

+ Multilevel solves
(Algebraic/Geometric — Smaller, more unstructured
multigrid) matrices
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Stokhos: Trilinos Tools for Embedded

UQ Methods

Provides “ensemble scalar type”

— C++ class containing an array with length fixed at compile-time

— Overloads all math operations by mapping operation across array

a={ai,...,an}, b={bi,...,bn}, c=axb={a1Xb1,...,anXby}

— Uses expression templates to fuse loops '
d=axb+c={a1 Xby+ci,...;am X by +cn}

http://trilinos.sandia.gov

Enabled in simulation codes through template-based generic progamming

— Template C++ code on scalar type

— Instantiate template code on ensemble scalar type

Integrated with Kokkos (Edwards, Sunderland, Trott) for many-core parallelism
— Specializes Kokkos data-structures, execution policies to map vectorization parallelism

across ensemble

— For CUDA, currently requires manual modification of parallel launch to use customized

execution policies

Integrated with Tpetra-based solvers for hybrid (MPI+X) parallel linear algebra

— Exploits templating on scalar type

— Optimized linear algebra kernels for ensemble scalar type

— Krylov solvers (Belos), Incomplete factorization preconditioners (Ifpack2), algebraic

multigrid preconditioners (MuelLu)

i
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Techniques Prototyped in FENL Mini-App

Simple nonlinear diffusion equation

—kVu+u?=0
— 3-D, linear FEM discretization
— 1x1x1 cube, unstructured mesh

— KL-like random field model for diffusion coefficient http://trilinos.sandia.gov

Hybrid MPI+X parallelism
— Traditional MPI domain decomposition using threads within each domain

Employs Kokkos for thread-scalable
— Graph construction
— PDE assembly

Employs Tpetra for distributed linear algebra
— CG iterative solver (Belos package)
— Smoothed Aggregation AMG preconditioning (MueLu)

Supports embedded ensemble propagation via Stokhos through entire assembly and

solve
— Samples generated via tensor product & Smolyak sparse grid quadrature

m
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Ensemble Assembly Speed-Up
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Ensemble MPI Halo-Exchange Speed-Up

Halo Exchange -- Sandy Bridge
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Ensemble Matrix-Vector Product Speed-Up

Sandy Bridge (16 threads)
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Sandy Bridge
1 MPI Rank/Node, 16 Threads/Rank
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Problem with current implementation
that will be fixed soon

Ensemble AMG-Preconditioned CG Speed-Up

Blue Gene/Q
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Stochastic Galerkin method (Ghanem and many, many others...):

P

LABORATORY DIRECTED RESEARCH 8 DEVELOPMENT

Embedded Stochastic Galerkin UQ Methods

1
()

/F F(a(y), ) i()p(y)dy =0, i=0,...,P

Method generates new coupled spatial-stochastic nonlinear problem (intrusive)

P P
FU) =0, Uzzez’@uia F:Zei®fi
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ou  —
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— Many fewer stochastic degrees-of-freedom for comparable level of accuracy

Challenges:

Spatial sparsity

— Computing SG residual and Jacobian entries in large-scale, production simulation codes
— Solving resulting systems of equations efficiently, particularly for nonlinear problems

Stokhos package provides tools for implementing SG methods for large-scale
systems

— Integrates with Kokkos, Tpetra for multicore, MPI parallelism

— Techniques demonstrated in FENL
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Structure of Galerkin Operator

« Operator traditionally organized with outer-stochastic, inner-spatial

structure

— Allows reuse of deterministic solver data structures and preconditioners
— Makes sense for sparse stochastic discretizations

P
At'r‘a,d — Z Gk R Ak

k=0

P
Acom — ZA’C ®Gk

k=0

Stochastic sparsity
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Spatial sparsity

Spatial sparsity

Stochastic sparsity

* For nonlinear problems, makes sense to commute this layout to outer-
spatial, inner-stochastic

— Leverage emerging architectures to handle denser stochastic blocks

m
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Commuted SG Matrix Multiply

P P P
Yy om = Aom X" — Zyi ®e; = (Z Ak ® Gk) (Z Tj ® ej)
=0

1=0 k=0
* Two level algorithm
— Outer: sparse (CRS) matrix-vector multiply algorithm
— Inner: sparse stochastic Galerkin product

Ra(l) ={m | Ao(l,m) # 0} Rc(i) ={(4,k) | C(i,35,k) # 0}

stochastic stochastic stochastic stochastic triple
basis bases sum basis basis product

y(i, ) = > > Ak, m)x(3,m)C(i, j, k)

meRa(l) (4,k)ERc(2)

FEM FEM bases FEM FEM
basis sum basis basis
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Commuted SG Mat-Vec Speed-Up

Speedup Relative to Matrix-Free (Original)
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« Simple 3D linear FEM matrix (size n = 32x32x32)
* N = polynomial order (larger N, denser blocks)

 Significant speedup of polynomial approach over original algorithm

— Performance driven by reading Cijk tensor from memory
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Challenges and Opportunities

Significant effort to refactor simulation codes
— Codes will likely be refactored anyway for exascale
— Introduce abstraction at scalar level through template-based generic programming

Solvers/preconditioners optimized for embedded uncertainty propagation
— Effective stochastic Galerkin preconditioners
— Reuse preconditioning/solver information across ensemble array
* Whole preconditioner
* Reuse multi-grid hierarchy/aggregrates
* Recycle Krylov bases

Increased cache pressure
— Can’t make SG/ensemble array too big

Memory access patterns of SG Cijk tensor
— Partitioning, balancing, reordering for cache

— Can we generate it “on-the-fly” without reading from global memory (potentially eliminate
bandwidth limit)?

Propagating samples together requires commonality in solution process
— Often need to refine UQ discretization near localized behavior/discontinuities/bifurcations
— How to group samples to exploit commonality when you have it, and separate samples when

you don’t?

i
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Kokkos: A Manycore Device Performance Portability Library for
C++ HPC Applications’

« Standard C++ library, not a language extension
— Core: multidimensional arrays, parallel execution, atomic operations
— Containers: Thread-scalable implementations of common data

structures (vector, map, CRS graph, ...) @—!9 .

— LinAlg: Sparse matrix/vector linear algebra

* Relies heavily on C++ template meta-programming to introduce
abstraction without performance penalty http://trilinos.sandia.gov

— Execution spaces (CPU, GPU, ...)

— Memory spaces (Host memory, GPU memory, scratch-pad, texture
cache, ...)

— Layout of multidimensional data in memory

— Scalar type "H.C. Edwards, D. Sunderland, C. Trott (SNL)

Application & Library Domain Layer

Kokkos Sparse Linear Algebra

Kokkos Containers

Kokkos Core

Back-ends: OpenMP, pthreads, Cuda, vendor libraries ...  |uois



http://trilinos.sandia.gov

Tpetra: Foundational Layer / Library for Sparse Linear
Algebra Solvers on Next-Generation Architectures’

» Tpetra: Sandia’s templated C++ library for
distributed memory (MPI) sparse linear algebra

Builds distributed memory linear algebra on top of
Kokkos library

Distributed memory vectors, multi-vectors, and sparse | ./ilinos.sandia.qov

matrices
Data distribution maps and communication operations

Fundamental computations: axpy, dot, norm, matrix-
vector multiply, ...

Templated on “scalar” type: float, double, automatic
differentiation, polynomial chaos, ensembiles, ...

= Higher level solver libraries built on Tpetra

Preconditioned iterative algorithms (Belos)
Incomplete factorization preconditioners (Ifpack2,
ShyLU)

Multigrid solvers (MuelLu)

All templated on the scalar type

M. Heroux, M. Hoemmen, et al (SNL)

i
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Ensemble CG Speed-Up

Sandy Bridge Blue Gene/Q
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Problem with current implementation
that will be fixed soon
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SG Linear Systems

« Stochastic Galerkin Jacobian:

OF t 1
— A= GLRAL, A =
U I;::O kR AL, ke <¢’%

« Stochastic Galerkin Newton linear systems:

P P P
AAU = -F — (Z Gr ® Ak) (Z ex @ Auk> =— ) ex®fr, ex=1I(:,k) € RFT!

k=0 k=0 k=0

» Solution methods:
— Form SG matrix directly (expensive)
— “Matrix-free” approach for iterative linear solvers:

P P P
Y =AX — Zei@)yi: (Zsz@Ak) (Zej ®33j>
3=0

1=0 k=0

of N Y
] e B 0wy, Guling) =

P P il
= yi=) ) Aww;Cijrs Cije = Gk(3,]) = wzzgxw

j=0 k=0

» Sparsity determined by triple product tensor
* Only requires operator-apply for each operator PCE coefficient

» Organize algorithm to minimize operator-vector applies
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-
" Multicore-CPU: One-level Concurrency

y(i,1) =

[ thread paraliel

« Each FEM row “owned” by a CPU thread
— 2 rows per core on Sandy Bridge
« Owning CPU thread computes y(:,1)

— (j,k) loop vectorized (auto-vectorization or intrinsics) for
SIMD parallelism

— Vector width = 4 (AVX) on Sandy Bridge

(1) Sandia National Laboratories




Intel Sandy Bridge CPU
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« Simple 3D linear FEM matrix (size n = 32x32x32)
* N = polynomial order (larger N, denser blocks)
 Significant speedup of polynomial approach over original algorithm
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Manycore-GPU: Two-level Concurrency

thread-block 1 thread-block
parallel shared memory

y(i,1) =1 > > Ak, L, m)x(j, m)C(s, j, k)

|

meRa(l) (4,k)ERC ()
thread-warp thread thread-block
parallel parallel shared memory

* Multiple levels of concurrency:
— Each FEM row owned by a thread-block
— Each warp within a thread-block owns an “i”

— Warps within a thread perform SG multiply in parallel, executing FEM

multiply loop serially
» Sparse tensor stored in GPU global memory

— Reduce sparse tensor reads by blocking FEM column loop (“m” loop)

— Heuristic to choose block size based on stochastic discretization size to
balance shared memory usage (reduces occupancy) and tensor reads

— Pack (i,j) indices into single 32-bit integer

m
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NVIDIA K40 GPU
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« Simple 3D linear FEM matrix (size n = 32x32x32)
* N = polynomial order (larger N, denser blocks)

 Significant speedup of polynomial approach except for larger
stochastic discretizations

— Too much shared memory usage per CUDA block reduces occupancy
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Manycore-Accelerator: Two-level
Concurrency

core parallel 1

core L1 cache
memory

y(i,1) =1 > > A(k,l,m)z(j, m)C(i, j, k)

(j’k)eNC’ (7')

|

vector
parallel

hyperthread
parallel

core L1 cache
memory

 Map GPU to accelerator architecture:

— GPU thread -> vector lane
— Thread warp -> hyperthread

— Thread block -> core

» Use essentially same algorithm as for GPU, except
— Automatic caching of A, x entries instead of shared-memory loads
— Fixed block size for blocking of FEM column loop (“m” loop)

— No packing of (i,j) indices

i
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Intel Xeon Phi 7120P Accelerator
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« Simple 3D linear FEM matrix (size n = 32x32x32)
* N = polynomial order (larger N, denser blocks)

 Significant speedup of polynomial approach except for larger
stochastic discretizations

— Calculation falls out of L1 cache
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~“ Performance driven by C(i,j,k) tensor

y(i,0) = )| > A(k,l,m)az(j, m)C (i, §, k)

meRA (1) (4,k)ERCc(7)

* Precompute and store C

* Given I,m, load A(:,I,m), y(:,1),
x(:,m) into cache

* Iterate over non-zero C(i,j,k)
entries

» Sparse accesses of A, x, but in
fast cache

— Very fast for GPU

* Lots of reuse of A, x entries

« Can load A, x for multiple values
of I,m to reduce reads of C

(1) Sandia National Laboratories




