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Can Exascale Solve the UQ Challenge?

• UQ means many things
– Best estimate + uncertainty, model validation, model calibration, …

• A key to many UQ tasks is forward uncertainty propagation
– Given uncertainty model of input data (aleatory, epistemic, …)
– Propagate uncertainty to output quantities of interest

• There are many forward uncertainty propagation approaches
– Monte Carlo, stochastic collocation, polynomial chaos, stochastic Galerkin, 

…

• Key challenge:
– Accurately quantifying rare events and localized behavior in high-

dimensional uncertain input spaces
– Can easily require O(104-106) expensive forward simulations
– Often can only afford O(102) on today’s petascale machines



Achieving Exascale Performance Requires New 
Approaches

• UQ approaches usually implemented as an outer loop
– Repeated calls of deterministic solver
– Coarse-grained distributed memory parallelism over samples
– Can we achieve a 1000x increase in available uncertainty propagation in this manner?

• No increase in clock-speed
– Must increase parallelism

• Little increase in total node count, dramatic increase in node-level parallelism
– Must evaluate multiple samples in parallel on each node

• Node memory increase of 0.1-0.01 of floating-point capacity
– Parallel sample evaluations must share data when possible (threads)

• No decrease in latency, latency hiding through instruction-level parallelism & out-of-order 
execution replaced by hardware multi-threading and vectorization

– Simulations must exhibit good data locality and expose sufficient fine-grained parallelism
– Extremely challenging for many simulation algorithms, e.g., sparse linear algebra on complex 

(unstructured) domains

• UQ is a highly structured calculation
– Expose new dimensions of fine-grained parallelism through embedded approaches

• Embedded sample propagation
• Stochastic Galerkin



Polynomial Chaos Expansions (PCE)

• Steady-state finite dimensional model problem:

• (Global) Polynomial Chaos approximation:

– Multivariate orthogonal polynomials
– Typically constructed as tensor products with total order at most N
– Can be adapted (anisotropic, local support)

• Non-intrusive polynomial chaos (NIPC, NISP):

– Sparse-grid quadrature methods for scalability to moderate stochastic dimensions
– Need to be careful to ensure quadrature rule preserves discrete orthogonality

• SPAM (Constantine, Eldred, Phipps, CMAME, 2012)
• Method is equivalent to stochastic collocation



Simultaneous ensemble propagation

• PDE:

• Propagating m samples – block diagonal (nonlinear) system:

• Commute Kronecker products (just a reordering of DoFs):

• Each sample-dependent scalar replaced by length-m array
– Automatically reuse non-sample dependent data
– Sparse accesses amortized across ensemble
– Math on ensemble naturally maps to vector arithmetic



Potential Speed-up for PDE Assembly

• Halo exchange
– Amortize MPI latency across 

ensemble

• Gather
– Reuse node-index map 

(mesh)
– Replace sparse with 

contiguous loads

• Local residual/Jacobian
– Vectorized math

• Scatter
– Reuse node-index map and 

element graph (mesh)
– Replace sparse with 

contiguous stores



Potential Speed-up for Sparse Solvers

• Sparse matrix-vector 
products
– Amortize MPI latency in halo 

exchange
– Reuse matrix graph
– Replace sparse with 

contiguous loads
– Vector arithmetic

• Dot-products
– Amortize MPI latency

• Preconditioners
– Sparse mat-vecs
– Sparse 

factorizations/triangular-
solves

– Smaller, more unstructured 
matrices

• Ingredients to sparse linear 
system solvers (CG, 
GMRES, …)
– Sparse matrix-vector 

products

– Dot-products
– Preconditioners

• Relaxation-based 
(Jacobi, Gauss-Seidel, …)

• Incomplete factorizations 
(ILU, IC, …)

• Polynomial (Chebyshev, 
…)

• Multilevel 
(Algebraic/Geometric 
multigrid)



Stokhos:  Trilinos Tools for Embedded 
UQ Methods

• Provides “ensemble scalar type”
– C++ class containing an array with length fixed at compile-time
– Overloads all math operations by mapping operation across array

– Uses expression templates to fuse loops

• Enabled in simulation codes through template-based generic progamming
– Template C++ code on scalar type
– Instantiate template code on ensemble scalar type

• Integrated with Kokkos (Edwards, Sunderland, Trott) for many-core parallelism
– Specializes Kokkos data-structures, execution policies to map vectorization parallelism 

across ensemble
– For CUDA, currently requires manual modification of parallel launch to use customized 

execution policies

• Integrated with Tpetra-based solvers for hybrid (MPI+X) parallel linear algebra
– Exploits templating on scalar type
– Optimized linear algebra kernels for ensemble scalar type
– Krylov solvers (Belos), Incomplete factorization preconditioners (Ifpack2), algebraic 

multigrid preconditioners (MueLu)

http://trilinos.sandia.gov 

http://trilinos.sandia.gov


Techniques Prototyped in FENL Mini-App

• Simple nonlinear diffusion equation

– 3-D, linear FEM discretization
– 1x1x1 cube, unstructured mesh
– KL-like random field model for diffusion coefficient

• Hybrid MPI+X parallelism
– Traditional MPI domain decomposition using threads within each domain

• Employs Kokkos for thread-scalable
– Graph construction
– PDE assembly

• Employs Tpetra for distributed linear algebra
– CG iterative solver (Belos package)
– Smoothed Aggregation AMG preconditioning (MueLu)

• Supports embedded ensemble propagation via Stokhos through entire assembly and 
solve

– Samples generated via tensor product & Smolyak sparse grid quadrature

http://trilinos.sandia.gov 

http://trilinos.sandia.gov


Ensemble Assembly Speed-Up

0

0.5

1

1.5

2

2.5

3

4 8 12 16 20 24 28 32En
se

m
b

le
A

ss
em

b
ly

Sp
ee

d
-U

p

Ensemble Size

Sandy Bridge (16 threads)

16x16x16

32x32x32

64x64x64

0

0.2

0.4

0.6

0.8

1

1.2

1.4

4 8 12 16 20 24 28 32En
se

m
b

le
A

ss
em

b
ly

Sp
ee

d
-U

p

Ensemble Size

Blue Gene/Q (64 threads)

16x16x16

32x32x32

64x64x64

0

0.5

1

1.5

2

2.5

3

3.5

16 32 48 64En
se

m
b

le
A

ss
em

b
ly

Sp
ee

d
-U

p

Ensemble Size

NVIDIA K20X GPU

16x16x16

32x32x32

64x64x64

0

0.5

1

1.5

2

2.5

3

3.5

8 16 24 32 40 48En
se

m
b

le
A

ss
em

b
ly

Sp
ee

d
-U

p

Ensemble Size

Intel Xeon Phi (224 Threads)

16x16x16

32x32x32

64x64x64



Ensemble MPI Halo-Exchange Speed-Up
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Ensemble Matrix-Vector Product Speed-Up

0

0.5

1

1.5

2

2.5

3

3.5

4

4 8 12 16 20 24 28 32

En
se

m
b

le
M

at
-V

ec
Sp

ee
d

-U
p

Ensemble Size

Blue Gene/Q (64 threads)

16x16x16

32x32x32

64x64x64

0

0.5
1

1.5

2
2.5

3
3.5

4
4.5

4 8 12 16 20 24 28 32

En
se

m
b

le
M

at
-V

ec
Sp

ee
d

-U
p

Ensemble Size

Sandy Bridge (16 threads)

16x16x16

32x32x32

64x64x64

0

0.5
1

1.5

2
2.5

3
3.5

4
4.5

16 32 48 64

En
se

m
b

le
M

at
-V

ec
Sp

ee
d

-U
p

Ensemble Size

NVIDIA K20X GPU

16x16x16

32x32x32

64x64x64

0

1

2

3

4

5

6

7

8

8 16 24 32 40 48

En
se

m
b

le
M

at
-V

ec
Sp

ee
d

-U
p

Ensemble Size

Intel Xeon Phi (224 Threads)

16x16x16

32x32x32

64x64x64



Ensemble AMG-Preconditioned CG Speed-Up

Problem with current implementation 
that will be fixed soon
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• Stochastic Galerkin method (Ghanem and many, many others…):

• Method generates new coupled spatial-stochastic nonlinear problem (intrusive)

• Advantages:
– Many fewer stochastic degrees-of-freedom for comparable level of accuracy

• Challenges:
– Computing SG residual and Jacobian entries in large-scale, production simulation codes

– Solving resulting systems of equations efficiently, particularly for nonlinear problems

• Stokhos package provides tools for implementing SG methods for large-scale 
systems

– Integrates with Kokkos, Tpetra for multicore, MPI parallelism

– Techniques demonstrated in FENL

Stochastic sparsity Spatial sparsity

Embedded Stochastic Galerkin UQ Methods



Structure of Galerkin Operator

• Operator traditionally organized with outer-stochastic, inner-spatial 
structure
– Allows reuse of deterministic solver data structures and preconditioners
– Makes sense for sparse stochastic discretizations

• For nonlinear problems, makes sense to commute this layout to outer-
spatial, inner-stochastic
– Leverage emerging architectures to handle denser stochastic blocks



Commuted SG Matrix Multiply

• Two level algorithm

– Outer: sparse (CRS) matrix-vector multiply algorithm

– Inner: sparse stochastic Galerkin product

stochastic 
basis

stochastic 
basis

FEM 
basis

FEM 
basis

FEM 
basis

stochastic 
basis

triple 
product

stochastic 
bases sum

FEM bases 
sum



Commuted SG Mat-Vec Speed-Up

• Simple 3D linear FEM matrix (size n = 32x32x32)
• N = polynomial order (larger N, denser blocks)
• Significant speedup of polynomial approach over original algorithm

– Performance driven by reading Cijk tensor from memory
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Challenges and Opportunities

• Significant effort to refactor simulation codes
– Codes will likely be refactored anyway for exascale
– Introduce abstraction at scalar level through template-based generic programming

• Solvers/preconditioners optimized for embedded uncertainty propagation 
– Effective stochastic Galerkin preconditioners
– Reuse preconditioning/solver information across ensemble array

• Whole preconditioner
• Reuse multi-grid hierarchy/aggregrates
• Recycle Krylov bases

• Increased cache pressure
– Can’t make SG/ensemble array too big

• Memory access patterns of SG Cijk tensor
– Partitioning, balancing, reordering for cache
– Can we generate it “on-the-fly” without reading from global memory (potentially eliminate 

bandwidth limit)?

• Propagating samples together requires commonality in solution process
– Often need to refine UQ discretization near localized behavior/discontinuities/bifurcations
– How to group samples to exploit commonality when you have it, and separate samples when 

you don’t?



Auxiliary Slides



Application & Library Domain Layer

Kokkos: A Manycore Device Performance Portability Library for 
C++ HPC Applications*

• Standard C++ library, not a language extension
– Core:  multidimensional arrays, parallel execution, atomic operations
– Containers:  Thread-scalable implementations of common data 

structures (vector, map, CRS graph, …)
– LinAlg:  Sparse matrix/vector linear algebra

• Relies heavily on C++ template meta-programming to introduce 
abstraction without performance penalty

– Execution spaces (CPU, GPU, …)

– Memory spaces (Host memory, GPU memory, scratch-pad, texture 
cache, …)

– Layout of multidimensional data in memory

– Scalar type

Back-ends: OpenMP, pthreads, Cuda, vendor libraries ...

Kokkos Sparse Linear Algebra

Kokkos Containers

Kokkos Core

http://trilinos.sandia.gov 

*H.C. Edwards, D. Sunderland, C. Trott (SNL)

http://trilinos.sandia.gov


Tpetra: Foundational Layer / Library for Sparse Linear 
Algebra Solvers on Next-Generation Architectures*

• Tpetra: Sandia’s templated C++ library for 
distributed memory (MPI) sparse linear algebra
– Builds distributed memory linear algebra on top of 

Kokkos library
– Distributed memory vectors, multi-vectors, and sparse 

matrices
– Data distribution maps and communication operations
– Fundamental computations: axpy, dot, norm, matrix-

vector multiply, ...
– Templated on “scalar” type: float, double, automatic 

differentiation, polynomial chaos, ensembles, …

 Higher level solver libraries built on Tpetra
– Preconditioned iterative algorithms (Belos)
– Incomplete factorization preconditioners (Ifpack2, 

ShyLU)
– Multigrid solvers (MueLu)
– All templated on the scalar type

http://trilinos.sandia.gov 

*M. Heroux, M. Hoemmen, et al (SNL)

http://trilinos.sandia.gov


Ensemble CG Speed-Up
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SG Linear Systems

• Stochastic Galerkin Jacobian:

• Stochastic Galerkin Newton linear systems:

• Solution methods:
– Form SG matrix directly (expensive)
– “Matrix-free” approach for iterative linear solvers:

• Sparsity determined by triple product tensor 
• Only requires operator-apply for each operator PCE coefficient
• Organize algorithm to minimize operator-vector applies



• Each FEM row “owned” by a CPU thread
– 2 rows per core on Sandy Bridge

• Owning CPU thread computes 
– (j,k) loop vectorized (auto-vectorization or intrinsics) for 

SIMD parallelism
– Vector width = 4 (AVX) on Sandy Bridge

Multicore-CPU: One-level Concurrency

SIMD within a multicore-CPU thread
thread parallel



Intel Sandy Bridge CPU

• Simple 3D linear FEM matrix (size n = 32x32x32)
• N = polynomial order (larger N, denser blocks)
• Significant speedup of polynomial approach over original algorithm
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• Multiple levels of concurrency:
– Each FEM row owned by a thread-block
– Each warp within a thread-block owns an “i”
– Warps within a thread perform SG multiply in parallel, executing FEM 

multiply loop serially

• Sparse tensor stored in GPU global memory
– Reduce sparse tensor reads by blocking FEM column loop (“m” loop)
– Heuristic to choose block size based on stochastic discretization size to 

balance shared memory usage (reduces occupancy) and tensor reads
– Pack (i,j) indices into single 32-bit integer

Manycore-GPU:  Two-level Concurrency

thread-block 
parallel

thread-warp 
parallel

thread 
parallel

serial 
within a 
thread

thread-block 
shared memory

thread-block 
shared memory

GPU global 
memory



NVIDIA K40 GPU

• Simple 3D linear FEM matrix (size n = 32x32x32)
• N = polynomial order (larger N, denser blocks)
• Significant speedup of polynomial approach except for larger 

stochastic discretizations
– Too much shared memory usage per CUDA block reduces occupancy
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• Map GPU to accelerator architecture:
– GPU thread -> vector lane
– Thread warp -> hyperthread
– Thread block -> core

• Use essentially same algorithm as for GPU, except
– Automatic caching of A, x entries instead of shared-memory loads
– Fixed block size for blocking of FEM column loop (“m” loop)
– No packing of (i,j) indices

Manycore-Accelerator:  Two-level 
Concurrency

core parallel

hyperthread
parallel

vector 
parallel

serial 
within a 
thread

core L1 cache 
memory

core L1 cache 
memory

Accelerator 
global memory



Intel Xeon Phi 7120P Accelerator

• Simple 3D linear FEM matrix (size n = 32x32x32)
• N = polynomial order (larger N, denser blocks)
• Significant speedup of polynomial approach except for larger 

stochastic discretizations
– Calculation falls out of L1 cache
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Performance driven by C(i,j,k) tensor

• Precompute and store C

• Given l,m, load A(:,l,m), y(:,l), 
x(:,m) into cache

• Iterate over non-zero C(i,j,k) 
entries

• Sparse accesses of A, x, but in 
fast cache

– Very fast for GPU

• Lots of reuse of A, x entries

• Can load A, x for multiple values 
of l,m to reduce reads of C


