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Introduction – ionic switching materials
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Summary of Anion based switching materials –
valence change switching

Most are oxides

Very few 
non-oxides

Even though non-
oxide materials: 1) 
bigger pool 
2) may even have 
better 
performance

J. Joshua Yang et al., Nature Nanotechnology 8, 13 (2013) 
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New materials

May provide

1)Better compatibility with industry electrode materials[1]

2) Better control of conduction filament formation.[2]

[1] B. J. Choi et al. Appl. Phys. A, 109, 1 (2012)
[2] B. J. Choi et al. Nano Lett. 13, 3213 (2013)
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MOTIVATIONS: A Full - Nitride Memristor

TiNAlN

TiN/AlN structure

1) TiN: fab preferred material

2) AlN and TiN: thermodynamic equilibrium between AlN and TiN

3) TiN: a large solubility of N  perfect electrode (serving as N reservoir)

4) AlN: only two stable solid phases perfect switching material (a conducting phase + an 
insulting phase,  same as Ta-O)
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Device performance: repeatable

• Nitride memristors reported 

• Stable and reproducible switching was observed after electro-forming

• Compliance current (Icomp) defines device resistance and IOFF

Choi et al. Appl. Phys. A 109, 1 (2012)

100 consecutive cycles

EF



9/18

• Sub-100ps switching observed

• Strongly nonlinear switching 
dynamics

Pulse sequence
Quasi-DC device 
resistance [k]

Initial 0.73

#3 (-2.0 V / 86 ps) 97.83 (OFF)

Bipolar device (2m x 2m) – OFF & ON switching

Device performance: ultra-fast real-time switching

Initial 83 M

#6 (+2.1 V / 87 ps) 2.56 k (ON)

#7 (+2.1 V / 87 ps) 0.73 k (ON)

Experimental setup: A. C. Torrezan et al. Nanotechnology 22, 485203 (2011)
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50nm x 50nm nanodevice

• OFF-switching current 10~20 µA
• High ON/OFF ratio (>100)

Low-energy device:
Lower current than TiOx and even TaOx
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Device performance: scalability and low energy
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Mechanism: Analogous to oxide

-2

-1

0

1

2

C
u

rr
e

n
t 
(m

A
)

-0.8 -0.4 0.0 0.4
Voltage (V)

10
-5

10
-4

10
-3

C
u

rr
e

n
t 

(A
)

0.6-0.6
Voltage (V)

TaOx

Pt

Ta

-1.0 -0.5 0.0 0.5

-100

-50

0

50

100  1
st
set

 Reset
 Set

C
u

rr
e

n
t 

(
A

)

Voltage (V)

-1.0 0.0 1.0
0

1

10

100

I 
(

A
)

V (V)

VO motion
Switching interface

Inert interface favorable!
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Strachan et al. Adv. Mater. 22, 3573 (2010)
Miao et al. Adv. Mater. 23, 5633 (2012)
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Mechanism: Al(N) channels

Pt

Pt

AlN

• Strongly localized heating

• Formation of N-deficient Al(N)  Localized channel

B. J. Choi et al. “Sub-100ps ultra-fast and energy-
conservative nitride memristors”, in preparation

Pt 30nm

-V: off

Al 15nm

AlN 6nm N-

Pt 30nm
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Variability II: from switching device to device

Origin: 
Different switching channels in 
different devices.

Engineered Materials

Solution:
Plant similar seeds (nanoclusters) 
of switching channels  in different 
devices 

facilitate similar switching 
channels formed in every device.
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Device performance: Reliable

B. J. Choi et al. Adv. Mater. 23, 3847 (2011)
B. J. Choi et al. Nano Lett. 13, 3213 (2013)
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• Excellent uniformity and high durability

• Much reliable than binary oxide switching
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Device performance: Scalable
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B. J. Choi et al. Nano Lett. 13, 3213 (2013)
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Mechanism: Pt templated memristive switching  

• Pt nanoparticle  rounder and bigger

• Joule heating and electric field 

• Ionic switching effects are highly probable

B. J. Choi et al. Nano Lett. 13, 3213 (2013) 
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• Nitride memristors demonstrated

• Fast switching (~85ps), scalability (50nm) with low energy 
consumption observed

• Switching at the more inert interface with localized conducting channel

• Switching interface is O-free after forming  Nitride Memristor!

• ASM (Artificial Switching Materials) are demonstrated 

• Highly reproducible and uniform switching is observed

• Scaling with excellent device yield  

• Possibly ANY metal into ANY insulator  

– New switching materials for memristive switching

Summary
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