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1 Introduction

This document is a summary of the mathematical models that are used in the
DARPA TRADES project for the solid rocket motor design challenge. It is
hoped that this brief description of these models will be of use to those that are
working on the project.

2 Overview

Consider the schematic of a cross section of a model of a solid rocket motor as
shown in Figure 1. The model consists of two volumes: a combustion chamber
which consists of a solid propellant and a gas, and an attached nozzle. Let the
walls of the motor case be denoted by Fw. The volume of propellant contained
within is denoted by Qp(t). There is a cavity, C2f (t), within the motor, which
contains a gas. The gas and the solid are separated by a surface which we denote
Fp (t). Let Fe and rd denote artificial boundaries in the exit and inlet planes of
the nozzle, respectively. rw, Fe and rd do not change with time.

We assume that the system is at some known, quiescent state, so that at
time t = 0, C2p(t), 12 f (t), and Fp(t) are well-defined. At a certain later time,
the propellant is ignited, and the mass of the combustion products enter Cif (t)
as the surface Fp (t) recedes. This increase in the mass of /if creates a pressure
increase and causes the motor to generate thrust. Given Fv,, the problem is to
design the initial shape of S2p, or equivalently, Fp, to produce the desired thrust
as a function of time.

2.1 Conservation of mass

The principle of conservation of mass within a time-dependent control volume
C2(t) with boundary 8s-2M may be written as a mathematical equation in integral

Sandia National Laboratories is a multimission laboratory managed and operated by National
Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of Energy's National Nuclear Security Adminis-
tration under contract DE-NA0003525. SAND2019-XXXX

SAND2019-1818R



ru,

re

i

Figure 1: A representation of a cross section of a solid rocket motor. The
centerline is given by the x axis. The propellant volume, C22) , is not necessarily
axisymmetric.

form:

at f p dV = — f frt ds , (1)
OM 80(t)

where p is the density of gas in 12(t), and rh is the mass flux through the
boundary.

Let a combustion chamber consist of a cavity with an initial volume 170,
bounded by a closed surface

as2(t) = rp(t) U Fd (2)

where Fp(t) is the time-varying surface of the solid propellant, and Fd denotes
an arbitrary dividing surface between the chamber and the nozzle that does not
change with time. If we are only interested in the average properties within the
cavity, we can introduce the average density

V = dV
f sZ(t)

fiNop dV
fi =  V

Now the mass conservation equation (1) may be written as

dt (fiV) = — f rid, dS — f rh, dS ,
rp rd

(3)

(4)

(5)

(6)

where it should be understood that rp = 1' p(t), and that dt(). indicates that a
quantity is differentiated with respect to time, its only variable.

2.2 A quasi-steady gas model

For the class of propellants considered in this work, the burn rate is on the order
of 1 centimeter per second. When the gas leaves the exit plane of the nozzle, it
has been accellerated to a few thousand meters per second. Therefore the time
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scales associated with the surface recession are much longer than the response
time of the gas in the nozzle, and a quasi-steady assumption might be useful
under certain circumstances. In this case,

dtic5V = 0

and the lack of a capacitance term in the equations allows the mass flow across
the propellant surface to be equated to the mass flow across rd, which is chosen
to be the cross-sectional surface at the nozzle throat. The resulting model is
described by Kibbey [1], and we can write it as follows.

.1- Th ds = f Th dS = a.pt 1 c*
P(t) rd

(7)

where is the area of the throat, c,k is a known constant characteristic velocity
of the nozzle, and pt is the unknown pressure inside the chamber. Equation
(7) follows from the fact that there is an analytic solution for the quasi one-
dimensional equations for the isentropic flow of an ideal gas in a nozzle[2]. Under
these conditions, pt is a value that does not vary in space, but may vary in time.

The mass flux into the combustion chamber is modeled as

= (x, y, z) (P)Pr (8)

In (8), pp is the given density of the propellant, z) is a known reference
burn rate distribution, a = 0.38 and pr is a known reference pressure. For
propellants of interest in this study, 2.5 mm/s < rr < 15.25 mm/s, and Pr =
3.447 x 106 Pa. If we substitute (8) into (7) we get a nonlinear equation for the
pressure in the combustion chamber. We can solve this equation using Newton's
method. Define the residual

a

f = Ppi'r(x, y, z) (.7) d — a.ptIc. = 0
rP (t) Pr

(9)

Application of Newton's method to (9) leads to

a f 

" 

_
-f (10)

(Vt t

_
ppi.r(x,y, z)cEPtc'-1 

f

Opt frp(t) 13,9.` 
dS a,lc, (11)

After obtaining the chamber pressure pt, the thrust, T, can be computed ac-
cording to

T = Isga.ptIc. (12)

where g is the constant accelleration of gravity and 4, is the known, constant
specific impulse of the rocket in question.

When evaluating (9), the main difficulty is associated with computing the
surface integral over Fp (t). In general, Fp(t) is a complex surface that varies
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in all three space dimensions, as well as time. For the general case, a surface
evolution model such as a level set method is needed. We discuss such an
approach in Section 3, but for now it is instructive to consider a much simpler
case.

2.3 Cylindrical combustion chambers

If we restrict our attention to the case where Fp is a cylindrical surface of
initial radius 7-0 and length L, then the evaluation of (9) is greatly simplified.
We also neglect any burning of the circular end surface so that L is assumed
to be constant. If we assume that the propellant is of a single type so that
rr(x, y, z) = rp is a constant value, then we may write

.
L.,,(o ppi-r(x, y, z) (1 d '-' s 27Lr(t)ppi-p (

Pr 
Pt) a (13)

Pr 

Then we may write (9) and (11) as

(f = 27Lr(t)ppi-p —Pt — a.pt 1 c. = 0 (14)
Pr

0 f —
2T-Lr(t)pp 7,2, 

ailr 1
  a,, 1 c. (15)apt P79.

where the radius is given by

2.4 Optimization

3 Surface model

a

r(t) = ro + i-pt (16)

Multiple types of level set functions have been used to describe implicit inter-
faces. One common approach is to use a signed distance function. The magni-
tude of the function indicates the distance from the nearest interface, and the
sign indicates which side of the interface. Another approach, used in conserative
level set methods, is to use the hyperbolic tangent of the signed distance func-
tion. This second approach is taken here, to take advantage of the relationship
with density methods for optimization. The level set function, '0, is given in
terms of the signed distance function, 0 according to

0=1 (1+ tanh (1) . (17)
2 2€

This function smoothly transitions from 0 to 1 over a region of thickness of
0 (6). The level set value of IP = 2 indicates the location of the interface. The
level set equation evolves using a standard advection equation,

00
Ot 
+u•vo= 0

4
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where the velocity,
u = en

is in terms of the scalar speed, e, and the level set normal direction,

VO

n = IVO.

Plugging these into the advection equation gives,

00

at + e IVO = 0.

(19)

(20)

(21)

As in all level set methods, this advection equation moves the interface with
the given speed but does not maintain the desired properties of the function.
In the case of signed distance functions, the signed distance property must be
restored through reinitialization. Here, the hyperbolic tangent property must be
restored. Specifically we seek a reinitialization equation for restoring a propterty
of the gradient of a function that satisfies Eq. 17:

c/0 _ tp (i — 0) (22)
cicb E •

If 0 is a signed distance function, then it satifies the property, I VOi = 1. This
means that lp should satisfy the property,

Ivo 
= 

IP (1 - 0) 
E

(23)

Multiple papers have been written on the topic of reinitializing signed distance
function and hyperbolic tangent-based level set functions. Because the hyper-
bolic tangent function was proposed in the context of conservative level set
methods, conservative forms have been proposed for the reinitialization equa-
tion. Conservative forms are written in flux form that allows for a conservative
formulation that guarantees that the integral of the level set field over the do-
main is the same before and after the reinitialization. Care must be taken, how-
ever, when implementing the fluxes to simultaneously maintain monotonicity
and conservation. In the current application we are considering surface reces-
sion. While we seek to conserve mass in a convergent way, we are not seeking
to conserve volume. Consequently, we propose a simpler, non-conservative form
for the reinitialization equation:

alp0, + (0 — 0 (1701 '°" 'P), ) = o. (24)

Here T is a pseudo-time variable. Equation 24 is solved to steady state to
restore the hyperbolic tangent gradient property to the level set function. In
the end each time step involves the explicit evolution of level set field followed by
marching the explicit reinitialization equation to steady state. With backward
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Euler time integration, mass lumping this involves the an explicit equation for
the predicted level set field, on+1,

14+1 on At f edV

f dy

followed by a correction, or reinitialization, in which the iteration is initialized
with or° = oin±' and then the explicit equation

= AT (0/: 21) (f lvfV-V tPli' (1— On)

(25)

(26)

is used until steady-state is reached. This iteration produces the update level
set field, 1Pin+1 2/11:=°°. In practice this iteration can be terminated when the
updates are small compared to the change in the level set field over the time
step.

The hyperbolic tangent form of the level set function is useful for evaluating
volume and surface integrals of the evolving domains. The mass of the material
on the "positive side of the interface can be obtained using

mp(t) = f pdV = f latPdV
s-22(t)

The integral of a quantity, y over the interface can be obtained using,

1., ,(0-ydS = f YIVOIdV

(27)

(28)

4 An unsteady gas model

4.1 Governing equations

The fluid region St f has been isolated from Figure 1 and is shown in Figure 2. At
any given location x, 5-2f has cross-sectional area a(x). Furthermore, a(x) has
perimeter f(x). We consider an ideal gas, and invoke the quasi-one-dimensional
flow approximation, which states that the flow properties are uniform at any
given cross section, e.g. see [2]. If the flow inside the nozzle is further assumed
to be inviscid, then we may write the quasi-one-dimensional Euler equations as

at (pa) + ax(pua) = rht(x) (29)

at (Pua) + ax [(pu2 + p) a] paxa (30)

at (Peta) + ax [u (Pet + p) a] = —Act + iiit(x)ep (31)

where u is the velocity in the x direction, p is the density of the gas, p is the
pressure of the gas, and et is the total specific energy. The mass flux through
Fp is given by

p

m = Pp' r ;77
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Figure 2: The gas region is denoted Itf and is bounded by the propellant
surface, Fp, the nozzle wall, Fr), and the nozzle exit plane, Fe. Fp is a function
of time, but Fn is not.

and the time rate of change of the cross-sectional area is computed according
to

)
ata = ,e(x)i.,.. (— 

P c' (32)
Pr

We have chosen to neglect any contribution of momentum carried across Fp
by the propellant. The first term on the right hand side of (31) is the work done
on the gas as the cross-sectional area expands. The second term represents the
energy of the propellant gasses that cross Fp.

For an ideal gas, the following relations hold:

p = pRT (33)

e = ci,T (34)

where e is the specific internal energy and T is the temperature. For a given
gas, the constant, R and specific heat at constant volume, a t, , are known. For
completeness, we introduce the enthalpy

h = e + pl p

h = cpT

(35)

(36)

and specific heat at constant pressure, cp. The specific total energy is defined
as

21
2

et = e + 2 (37)

Equations (29)-(31) are a hyperbolic system of equations, which for the
purpose of analyzing them as a system, we will write as

atc1+ OxF = S (38)
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where
pa

q= pua
peta

pua

(39)

F = (pu2 + p)a (40)
u(pet p)a

and
frti(x) )

S = paxa
(

(41)
—pata + rid(x)ep )

To prove that (38) is in fact a hyperbolic system, we begin by writing it in
quasilinear form:

atq + Aaxq = S (42)

where we have introduced the flux Jacobian

0 1 0
OF

A = = -y-3 2 —(7— 3)u ry — 1
)

(43)2
(

aq --yuet+ — 1)Tt3 -Yet
^y- 23( 1)u

TU2

and 7 is the ratio of specific heats for the gas. After some algebra, it may be
shown that the eigenvalues of (43) are

Ai u (44)

A2 u c (45)

A3 = u — c (46)

where we have introduced the speed of sound, c = — 1)e. Clearly the
eigenvalues A1-A3 are always real, therefore (38) is indeed a hyperbolic system.

4.2 Characteristics variable form

Because the eigenvalues are real and distinct, there is a full set of linearly inde-
pendent eigenvectors, and we can diagonalize the matrix A. After some algebra,
it can be shown that right eigenvectors may be given as the columns of the modal
matrix

1 1 1
V2(ry-1) V2(7-1)
u±c u—c

M =  (47)V2(7-1) V2(7-1)
7Cv

u2/2 u2/2+c2/(^y-1)+cu u2/2+c2/(1,-1)—cu

V2(7-1) V2(7-1)
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The rows of M-1 contain the left eigenvectors, namely

where

,Vat" (1 (7-2c1P'2)

-au (1 (-Y2u) /(2c)

au (1 + (111)u) /(2c)

a =

If we premultiply (42) by M-1,

,Va;'('-y - 1)u/c2

a (1 (1"-1)u) /(2c)

a (1 + 

(7-c

el)u) /(2c)

27(7 - 1)c,

p

we obtain

M-latq + M-1AMM-
18

xci M-1S

-/,'" (7 - 1)/c2

a(7 - 1)/(2c2)

a(7 - 1)/(2c2)

(48)

Note that (47) and (48) diagonalize the flux Jacobian: we can write

Al 0 0
A = M-1AM = 0 A2

(
0

0 0 A3

If we define

(49)

(50)

(54 = M-15q = —
4
5q

Oct

then we can write the quasi-one-dimensional equations in decoupled form as

atei+ Aaxei= (51)

where S M'S. The variables q are known as the characteristics variables and
they are associated with the propagation of waves. Assuming that u is positive
when running downstream (in the direction of increasing x), for a subsonic
flow, u < c and we have one wave running upstream with a speed of A3, and two
waves running downstream with speeds of Al and A2. For supersonic flows, all
three eigenvalues are positive, therefore all three waves run downstream. When
discretizing a hyperbolic system, it is crucial to incorporate these wave speeds
in the discretization and the boundary conditions.

In order to concentrate on the strategy we use to couple the combustion
chamber model with the nozzle model, we defer discussing the discretization
until Section 4.6. There are other forms of the governing equations that are
useful, which are obtained by a change of dependent variable. We review these
forms next.

4.3 Primitive variable form

We define a set of nonconservative primitive variables

(pa )
v = ua (52)

pa
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After applying the chain rule, to (42), we obtain

1.9 v + A Oci a
Ov t Ov x

v = S

or, after multiplication by the inverse of the transformation matrix,

Otv + A.Oxv = S

where

À = av A aq
Oq Ov

(53)

(54)

g 
= Ovs

(55)
Oq

Direct differentiation of (52) yields

Oq

Ov —

( 1 0 0
u p 0
-1U2 pu 11 (-y — 1)
2

(56)

The inverse of this matrix may be written as

av
1 0 0

—
aq

It can be verified by direct

( —u I p l I P 0
(-y — 1)u2 —(-y —1)u -y — 1 )
matrix multiplication that

(57)

p 0
A = 0 u 11 p

(u
(58)

0 7p u

0
Š ( e(y — 1)Oxa (59)

—1/13(7 — 1)Oxa

4.4 Entropy variable form

When a hyperbolic system is written in entropy variable form, it has special
properties that make it amenable to analysis. For example, the flux Jacobians
become symmetric. To begin, the entropy is defined as the convex function

where

H = H(q) = —ps (60)

s = 
ln( T

-y

R 

1 7',, } 
Rln (11

Pr 
(61)
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where Tr and pr are the reference values for temperature and density. The
entropy variables are defined as

(all)t 1( —et + eeY + 1 — s)
u (62)w

' aq' T —1

With the variables w defined, we can write q in terms of w as

—1u3
q = pT tv2

(
(63)

1 — w31(2w3)

Next, we compute the Jacobian

aq
1 u et- PAo ( u (7 — 1)e + u2 u(u2/2 + -ye)

et u(u2/2 + -ye) u4 1 4 + -yue + -ye2 
) (64)

—aw c 1 (-y 
=

r )

Note that A0 is symmetric, and positive definite[3]. We now perform a change
of dependent variables from q to w on (42) and obtain

Aoatw + A- axw = S (65)

where A = AA0 is symmetric. The development that follows does not depend
upon the precise functional form of A, therefore we do not present it here. The
interested reader is referred to Shakib[3]. We do need the matrix A.0-1 = Oq aw
however and so we write it here as

u4/4 +-ye2 —u3/2 u2/2 — e

rs-0
A-1 

— 
et, 
2 —u3/2 u2 + e —u

Pe u2/2 — e —u 1

4.5 Boundary conditions

4.5.1 Inlet

(66)

At an inlet to cif, we enforce a subsonic inflow boundary condition. There
are two incoming waves associated with Al and A2, therefore we specify two
boundary conditions. We choose to specify the total pressure

ey _ l ) -y-1

Pt = P (1, 2+ 
m2

and total energy, et. In (67), we have introduced the Mach number,

M = lul
c

(67)

Note that specifying pt and et leaves the velocity (and therefore the mass flux)
to be obtained as part of the solution.
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4.5.2 Exit

At a given point in time, the exit flow may be subsonic or supersonic. In the
supersonic case, there is no boundary condition to enforce, because all waves are
leaving the domain. In the subsonic case, there is one incoming wave associated
with A3, therefore we specify one boundary condition. We choose to specify the
pressure.

4.6 Time discretization

We will initially use a forward Euler explicit time discretization strategy to
solve all time-dependent equations because an explicit time integrator is easy to
implement on GPUs, and it might be that, because of the GPU implementation,
the larger number of timesteps will be offset by the high flop rates obtained by
running on the device. Thus, we have

A(fiV) = —At (pdudadr — At f nTit (68)

A(PetV) —At (vdudEtadr — At f 

n

Thht dS (69)
r,„

where, e.g.,
A(pv) = (fiv).+' - (mon

and the superscript On indicates that the expression is to be evaluated at time
level n. As described in Section 2, the solution at n = 0 is known. For brevity
of notation, we will omit the superscript On unless it is necessary to specify the
time level of evaluation for clarity.

Similarly, we semidiscretize (38) in time and apply the method of weighted
residuals over the nozzle volume to obtain

x, , ace
0tAq dx = At[— otaxF dx + fxe 

OtS dx] (70)
xo xo xo

where xo is the location where Fp intersects the x axis and x, is the location of
Fe, and 0 is an admissible weighting function. After integrating the flux term
on the right hand side of (70) by parts, we obtain

xe xexe
OtAqdx = AtHtFlx, + OFIxo f axotFdx + f otsdx] (71)xo xoixo

4.7 Space discretization

Next, we discretize (71) in space using the method of finite elements, and con-
struct the weight 0 using a basis '0 that is local to each element Qe. For
Galerkin's method, and an element having N nodes, we approximate q as

q ElPt.cti on 52,
3

j=1
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where 03 is the Lagrange basis function associated with node j and qj is the
corresponding nodal value. A fully discrete approximation to our quasi-one-
dimensional flow equations may now be written as

Let

so that

E E ofoi = At [Ee fne ax Fdx+
e

E f 01Sdx — + OtFlxo]
e ne

faZi = fie0it0i dx

E E CoZiAqj = At [E f ax0itF dx+
e j e

f 0itS dx + + OtF601
e c2e

(72)

(73)

It is well known that Galerkin's method is inadequate for hyperbolic problems.
Accordingly, we introduce a stabilized version of (73),

E E eziAqi = At (-0Fixe OtFlx0)
e

At E Li ax01F dx + f 01S dx—
e ne

(74)

L axotAT (Ghq)dx — f vaelpt Deqdx]e 
The fourth term on the right hand side of (74) is a residual-based, streamline-
upwind stabilization term that depends on T, which is the matrix of intrinsic
time scales. The last term in the equation is a discontinuity-capturing operator
(DCO) with a nonlinear viscosity coefficient

v = min (V, 2(lul +OM (75)

LhqtA0-1Lhq

pR + Dewt Ao Dew
v (76)

where De() indicates the discrete derivative with respect to the computational
coordinates, i.e.

De() = DexDx()

Note that the numerator of (76) has units of entropy over time squared, and
the denominator has units of entropy, so that v has units of 1/time.
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To define the discrete residual, Lhq, which appears in (74), we begin with
the continuous residual in entropy variable form

Gq = .Cw = .A.- 00tw + If9xw(q) — S = 0

But we also have that
atci + OxF(q) — S = 0

or
S = Otq + OxF(q)

Upon substitution of (79) into (77), we see that

al = Aoatw + ADxw(q) — Otq — OxF(q) = 0

since

ikoatw = at€1

we may write

(77)

(78)

(79)

(80)

Lq =19xw(q) — OxF(q) = 0 (81)

We may therefore compute the discrete residual as

Ghq = ADxw(q) — DxF(q) = 0 (82)

The advantage of writing the residual in this way is that it avoids both the
evaluation of the time derivative and the source term.

Finally, the matrix of intrinsic time scales is given by

7 = 1DxeA1-1 (83)

= M 1DgA-1 1 M-1 (84)

We remark that for the one-dimensional linear Lagrange basis, if we choose a
master element such that E [-1, 1], and the element mapping is isoparametric,
then 1,0g1 = 2/f, where £ is the length of the element in physical coordinates,
x. Hence, we may write

1
lul

T = -
2
M ( 0

0

0
1 

I u-Fel
0

(85)

To avoid issues associated with division by zero at sonic and stagnation points,
we recognize that the product AT is needed, where

t t

2
AT = 

2 
-MAM-1M1A1-1M-1 = -M sgn (A) M-1 (86)

where sgn(x) is the signum of x and

sgn(u) 0
( 

0
sgn (A) = 0 sgn(u + c) 0

0 0 sgn(u — c)
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Summarizing, the finite element formulation is given by (74) , with the DCO
given by (75) and AT given by (86). The calculation of I) as shown in (76)
involves the spatial gradient of the primitive variables, v, in the numerator, and
the spatial gradient of the entropy variables, w, in the denominator.

4.8 Discrete boundary conditions

It is possible to examine the signs of at a boundary and apply the appropriate
boundary condition type. We do this at the nozzle exit because we want the
flow to be able to evolve from subsonic to supersonic. At x = x0 we enforce a
subsonic inflow condition.

We apply boundary conditions on (74) weakly. This means that we must
evaluate the fluxes and F Ix° at a state that is consistent with the prescribed
boundary data and the outgoing waves. We find this state by solving a local
nonlinear problem. This process is perhaps best illustrated by example.

4.8.1 Subsonic inflow

Recall from Section 4.5.1 that there are two incoming waves and we choose to
specify the total pressure and total energy. The outgoing wave is associated
with A3. We specify pt = pt and et = et. Accordingly, we form the system of
equations

Pt Pt
et — Et
(

= (87)

(5d3

and perform a Newton iteration over the index k using

apt

aq 131; Pt
aet 

)k

(kik = _ 4 _ et (88)
aq

13 (50

where 13 is the third left eigenvector given by the third row of (48), and we have
used the fact that 843 = 138q. We compute (5d/3' according to

j 1(qk go) (89)

The row vector act is a very complicated expression because (67) has a complex
dependence on q. Since the flow is subsonic, for the purposes of the iteration
strategy, we compute the derivative a* using the incompressible approximation

Pt = P Pu2 /2

We emphasize that this approximation is only done for the left hand side of
(88). This leads to the row vector

a
opt = (('y — 2)u2 /2, (2 — -y)u, Y — 1) (90)

15



We also have
Oet
aq
= (—etl 1,, 0, VP) (91)

We start the iteration by computing p° and e° using the state of the gas as
known at the most current solution and update using

qk+l = qk 6qk

4.8.2 Subsonic outflow

At a subsonic outflow, there are two outgoing waves and one incoming wave,
which is associated with A3. In this case, we specify the exit pressure, pe, and
solve

(11 )k Sql
12 o Clk = — (sd,
Oct Pk Pe

with

(92)

act 
= ((-y — 1)u2/2, —(ry — 1)u, Y — 1) (93)

In (92), (5411' and (541 are computed in the manner suggested by (89).

4.8.3 Supersonic outflow

At a supersonic outflow, there are no incoming waves, and so the solution is
unconstrained: the fluxes at the boundary are computed using the most recently
known state.
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