
Photos placed in horizontal position
with even amount of white space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

A Performance-Portable Implementation of the
Albany Ice Sheet Model: Kokkos Approach

Irina Demeshko, H. Carter Edwards, Michael A.Heroux, Eric T. Phipps, Andrew G. Salinger

Algorithms and Abstractions for Assembly in PDE Codes, July 10, 2014

SAND2014-15482PE

Outline

 Introduction

 Kokkos programming model

 Albany Greenland Ice Sheet Model (FELIX)

 Kokkos implementation of the FELIX model

 Performance results

 Conclusion and future plans

2

Introduction

3

Tianhe-2 (National SuperComputer
Center in Guangzhou)
Intel Xeon E5-2692+ Intel Xeon Phi TITAN (ORNL)

Cray XK7 , Opteron 6274 NVIDIA
K20x

Sequoia (DOE/NNSA/LLNL)
BlueGene/Q, Power BQC,
Custom

Performance portability has become a critical issue
parallel code needs to be executed correctly and performant
despite variation in the architecture, operating system and
software libraries.

4

Approach: Kokkos programming model
C++ library, which provide performance portability across diverse
devices with different memory models.

5

Kokkos* programming model
 Kokkos - C++ library to provide scientific and

engineering codes with an intuitive manycore
performance portable programming model.

 Standard C++, Not a language extension

 Uses C++ template meta-programming

 Provides portability across manycore devices
(Multicore CPU, NVidia GPU, Intel Xeon Phi
(potential: AMD Fusion))

 Abstract data layout for non-trivial data
structures

6* Trilinos package

Kokkos* programming model
 Kokkos :

 Single code base

 Support for all current (and future) hardware

 Flexible run configurations MPI-Only
 MPI + Threads

 MPI + GPU

 MPI + GPU + Threads

 Close to optimal performance (i.e. performance of a
specialized code)

 Use vendor compilers

 Simple code

7* Trilinos package

Kokkos* programming model

A programming model with two major components:

 Data access abstraction
 Change data layout at compile time without changing access syntax =>

Optimal access pattern for each device

 Data padding and alignment is transparent
Access traits for portable support of hardware specific load/store
units

 Parallel dispatch
 Express algorithms with parallel_for, parallel_reduce etc.

Using functor concept (functor: construct allowing an object to be invoked or called as if it

were an ordinary function)

 Transparently mapped onto back-end languages

(e.g. OpenMP, CUDA, Pthreads …)

8

Albany Greenland Ice Sheet
model

9

Albany Greenland Ice Sheet Model
(FELIX project)

 An unstructured-grid finite element ice sheet
code for land-ice modeling.

 Project objective:

 Provide sea level rise prediction

 Run on new architecture machines (hybrid
systems).

– 50% time spent in FE Assembly

– 50% time spent in Linear Solves

10

Funding Source: SciDAC

Collaborators: SNL, ORNL, LANL, LBNL, UT, FSU, SC, MIT, NCAR

Sandia Staff: A. Salinger, I. Kalashnikova, M. Perego,
R. Tuminaro, J. Jakeman, M. Eldred

Greenland Ice-Sheet model

11

Greenland Ice-Sheet model
(Kokkos implementation)

12

Device:

Copy solution vector to the Device

Copy residual vector to the Host

Loop over the number of worksetsLoop over the number of worksets

Kokkos_functor example: Jacobian

template<typename EvalT, typename Traits>

KOKKOS_INLINE_FUNCTION

void Jacobian<EvalT, Traits>:: operator () (const int i) const

{

for(int qp = 0; qp < numQPs; qp++) {

for(int row = 0; row < numDims; row++){

for(int col = 0; col < numDims; col++){

for(int node = 0; node < numNodes; node++){

jacobian(cell, qp, row, col) +=
coordVec(cell, node, row)

*basisGrads(node, qp, col);

} // node

} // col

} // row

} // qp

}

//***

template<typename EvalT, typename Traits>

Void Jacobian<EvalT, Traits>::evaluateFields(typename
Traits::EvalData d)

{

Kokkos::parallel_for (worksetNumCells, *this);

}

13

template<typename EvalT, typename Traits>
Void Jacobian<EvalT, Traits>::evaluateFields(typename
Traits::EvalData d)
{
for(int cell = 0; cell < worksetNumCells; cell++) {

for(int qp = 0; qp < numQPs; qp++) {
for(int row = 0; row < numDims; row++){

for(int col = 0; col < numDims; col++){
for(int node = 0; node < numNodes; node++){

jacobian(cell, qp, row, col) +=
coordVec(cell, node, row)
*basisGrads(node, qp, col);

} // node
} // col

} // row
} // qp

} // cell
}

2 GIS Kokkos implementations:

14

parallel_for

parallel_forparallel_for parallel_for

parallel_for

parallel_for

parallel_for

parallel_forparallel_for

parallel_for

parallel_for

parallel_for

Separated version

2 GIS Kokkos implementations:

15

Fused version

parallel_for

Performance
results

16

Evaluation environment:

Compton:

 42 nodes:
 Two 8-core Sandy Bridge Xeon E5-2670 @ 2.6GHz

(HT activated) per node,

 24GB (3*8Gb) memory per node,

 Two Pre-production KNC (Intel MIC) 2 per node (57
cores per each)

Shannon:

 32 nodes:
 Two 8-core Sandy Bridge Xeon E5-2670 @ 2.6GHz

(HT deactivated) per node,

 128GB DDR3 memory per node,

 2x NVIDIA K20x per node
17

Performance results (fused version)

18

0.0001

0.001

0.01

0.1

1

10 100 1000 10000

ti
m

e
,
s

e
c

of elements

Nvidia K20 fused

MIC fused

Sandy Bridge fused

Initial code (1 core)

• ** “Nvidia K20 GPU” and “Initial Implementation” results were obtained on Shannon, “Intel MIC” were
obtained on Compton

Separated vs Fused versions

19

0.0001

0.001

0.01

0.1

1

10 100 1000 10000

ti
m

e
,
s

e
c

of elements

Nvidia K20 separated

Nvidia K20 fused

MIC separated

MIC fused

Sandy Bridge separated

Sandy Bridge fused

• ** “Nvidia K20 GPU” and “Initial Implementation” results were obtained on Shannon, “Intel MIC” were
obtained on Compton

Atomics vs. “+=”

20

0.0001

0.001

0.01

0.1

1

10 100 1000 10000

ti
m

e
,
s
e
c

of elements

Nvidia GPU (k40)

atomics separated

atomics fused

"+=" separated

"+=" fused

0.001

0.01

0.1

1

10 100 1000 10000

ti
m

e
,
s
e
c

of elements

Intel Xeon Phi

atomics separated

atomics fused

"+="separated

"+=" fused

0.0001

0.001

0.01

0.1

1

10 100 1000 10000

ti
m

e
,
s
e
c

of elements

Sandy Bridge

atomics separated

atomics fused

"+=" separated

"+=" fused

Another Example: Aeras code*
(Albany-based)

21

0.0001

0.001

0.01

0.1

1

10

10 1000 100000

ti
m

e
,

s
e
c

of elements per workset

Residual

Seriall

GPU

Intel Phi

Intel SandyBridge

0.001

0.01

0.1

1

10

100

10 100 1000 10000 100000

ti
m

e
,s

e
c

of elements per workset

Jacobian

* Shallow Water test

Conclusion and future work

Conclusions:

 Kokkos Ice Sheet model (FE Assembly):
 shows good performance

 portable across modern HPC architecture

 Using “Atomics” approach does not introduce significant
overheads.

Ongoing work:

 Porting entire Albany application development environment
to Kokkos .

 Porting Trilinos Linear Algebra Libraries to Kokkos

22

