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Introduction
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Performance portability has become a critical issue 
parallel code needs to be executed correctly and performant
despite variation in the architecture, operating system and 
software libraries.
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Approach: Kokkos programming model 
C++ library, which provide performance portability across diverse 
devices with different memory models.
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Kokkos* programming model
 Kokkos - C++ library to provide scientific and 

engineering codes with an intuitive manycore
performance portable programming model.

 Standard C++, Not a language extension

 Uses C++ template meta-programming

 Provides portability across manycore devices 
(Multicore CPU, NVidia GPU, Intel Xeon Phi 
(potential: AMD Fusion) )

 Abstract data layout for non-trivial data 
structures

6* Trilinos package



Kokkos* programming model
 Kokkos :

 Single code base 

 Support for all current (and future) hardware 

 Flexible run configurations MPI-Only 
 MPI + Threads

 MPI + GPU

 MPI + GPU + Threads 

 Close to optimal performance (i.e. performance of a 
specialized code) 

 Use vendor compilers 

 Simple code 

7* Trilinos package



Kokkos* programming model

A programming model with two major components: 

 Data access abstraction 
 Change data layout at compile time without changing access syntax => 

Optimal access pattern for each device 

 Data padding and alignment is transparent
Access traits for portable support of hardware specific load/store 
units 

 Parallel dispatch
 Express algorithms with parallel_for, parallel_reduce etc.

Using functor concept (functor: construct allowing an object to be invoked or called as if it 

were an ordinary function)

 Transparently mapped onto back-end languages 

(e.g. OpenMP, CUDA, Pthreads …) 
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Albany Greenland Ice Sheet 
model
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Albany Greenland Ice Sheet Model  
(FELIX project)

 An unstructured-grid finite element ice sheet 
code for land-ice modeling.

 Project objective:

 Provide sea level rise prediction

 Run on new architecture machines (hybrid 
systems).

– 50% time spent in FE Assembly

– 50% time spent in Linear Solves
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Greenland Ice-Sheet  model 
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Greenland Ice-Sheet  model 
(Kokkos implementation)
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Device:

Copy solution vector to the Device

Copy residual vector to the Host

Loop over the number of worksetsLoop over the number of worksets



Kokkos_functor example: Jacobian
*************************************************

template<typename EvalT, typename Traits>

KOKKOS_INLINE_FUNCTION

void Jacobian<EvalT, Traits>:: operator () (const int i) const

{

for(int qp = 0; qp < numQPs; qp++) {

for(int row = 0; row < numDims; row++){

for(int col = 0; col < numDims; col++){

for(int node = 0; node < numNodes; node++){

jacobian(cell, qp, row, col) += 
coordVec(cell, node, row)

*basisGrads(node, qp, col);

} // node

} // col

} // row

} // qp

}

//*************************************************

template<typename EvalT, typename Traits>

Void Jacobian<EvalT, Traits>::evaluateFields(typename
Traits::EvalData d)

{

Kokkos::parallel_for (worksetNumCells, *this);

}
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template<typename EvalT, typename Traits>
Void Jacobian<EvalT, Traits>::evaluateFields(typename
Traits::EvalData d)
{
for(int cell = 0; cell < worksetNumCells; cell++) {

for(int qp = 0; qp < numQPs; qp++) {
for(int row = 0; row < numDims; row++){

for(int col = 0; col < numDims; col++){
for(int node = 0; node < numNodes; node++){

jacobian(cell, qp, row, col) += 
coordVec(cell, node, row)
*basisGrads(node, qp, col);

} // node
} // col

} // row
} // qp

} // cell
}



2 GIS Kokkos implementations:
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2 GIS Kokkos implementations:
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Fused version

parallel_for



Performance 
results
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Evaluation environment:

Compton: 

 42 nodes:
 Two 8-core Sandy Bridge Xeon E5-2670 @ 2.6GHz 

(HT activated) per node,

 24GB (3*8Gb) memory per node, 

 Two Pre-production KNC (Intel MIC) 2 per node (57 
cores per each)

Shannon:

 32 nodes:
 Two 8-core Sandy Bridge Xeon E5-2670 @ 2.6GHz 

(HT deactivated) per node,

 128GB DDR3 memory per node,

 2x NVIDIA K20x per node
17



Performance results (fused version)
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Separated vs Fused versions
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Atomics vs. “+=”
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Another Example: Aeras code* 
(Albany-based)
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Conclusion and future work

Conclusions:

 Kokkos Ice Sheet model (FE Assembly):
 shows good performance

 portable across modern HPC architecture

 Using “Atomics” approach does not introduce significant 
overheads.

Ongoing work:

 Porting  entire Albany application development environment
to Kokkos .

 Porting Trilinos Linear Algebra Libraries to Kokkos
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