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= Kokkos programming model

= Albany Greenland Ice Sheet Model (FELIX)
= Kokkos implementation of the FELIX model
= Performance results

= Conclusion and future plans
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Performance portability has become a critical issue

parallel code needs to be executed correctly and performant
despite variation in the architecture, operating system and
software libraries.

\

Approach: Kokkos programming model
C++ library, which provide performance portability across diverse
devices with different memory models.







Kokkos™ programming model ).

= Kokkos - c++ library to provide scientific and

engineering codes with an intuitive manycore
performance portable programming model.

v’ Standard C++, Not a language extension
v’ Uses C++ template meta-programming

v" Provides portability across manycore devices
(Multicore CPU, NVidia GPU, Intel Xeon Phi
(potential: AMD Fusion) )

v Abstract data layout for non-trivial data
structures

* Trilinos package 6



Kokkos™ programming model ).
= Kokkos:

v" Single code base
v’ Support for all current (and future) hardware

v" Flexible run configurations MPI-Only
<> MPI + Threads
<> MPI + GPU
<> MPI + GPU + Threads

v' Close to optimal performance (i.e. performance of a
specialized code)

v Use vendor compilers
v' Simple code

* Trilinos package 7



Kokkos™ programming model ).

A programming model with two major components:

= Data access abstraction

v" Change data layout at compile time without changing access syntax =>
Optimal access pattern for each device

v' Data padding and alighment is transparent
Access traits for portable support of hardware specific load/store
units

= Parallel dispatch

v’ Express algorithms with parallel_for, parallel_reduce etc.

Using functor concept (functor: construct allowing an object to be invoked or called as if it
were an ordinary function)

v' Transparently mapped onto back-end languages
(e.g. OpenMP, CUDA, Pthreads ...)
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Greenland Ice-Sheet model ) S,

Scatter Stokes<Residual>
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Greenland Ice-Sheet model

(Kokkos implementation)
CLoop over the number of worksets)

v

Copy solution vector to the Device

Copy residual vector to the Host
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Kokkos_functor example: Jacobian @
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template<typename EvalT, typename Traits>
KOKKOS_INLINE_FUNCTION
void Jacobian<EvalT, Traits>:: operator () (const int i) const

template<typename EvalT, typename Traits>

Void Jacobian<EvalT, Traits>::evaluateFields(typename {
Traits::EvalData d) for(int gp = 0; gp < NuMQPs; gp++) {
{ for(int row = 0; row < numDims; row++){
for(int cell = 0; cell < worksetNumCells; cell++) { for(int col = 0; col < numDims; col++){
for(int gp = 0; gp < nuMQPs; qp++) { for(int node = 0; node < numNodes; node++){
for(in’F row = 0; row < numDi_ms; row++){ jacobian(cell, qp, row, col) +=
for(int col = 0; col < numDims; col++){ coordVec(cell, node, row)
for(int node = 0; node < numNodes; node++){ *basisGrads(node, qp, col);
jacobian(cell, gp, row, col) += // node
coordVec(cell, node, row)
*basisGrads(node, gp, col); }// col
} // node H/ row
}/ col Y/ ap
Y/ row
Y/ ap }
} template<typename EvalT, typename Traits>

Void Jacobian<EvalT, Traits>::evaluateFields(typename
Traits::EvalData d)

{

Kokkos::parallel_for (worksetNumCells, *this);

}
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2 GIS Kokkos implementations: @,

parallel_for
Separated version &=
11:10
parallel_for
StokesFOResid<Residual>
parallel_for
ViscosityFO<Residual> 10:3 SuokesFOBodyForc«Re@
6:5 0:4 9:8 10:2
parallel_for parallel_for parallel_

v
@wGrad[ntcrm]ation<Rc@ @[mem]alion<RcsiiuD <DOFGrad]nterpolation<ResidD

parallel_for
QToPhysicalFramKResi(D 40 42 30 32 87 2

parallel_for. parallel_for — parallel fo
/(_,
Gather Solution<Residual> - Gather Surface Height<Residual> ComputeBasisFunctions<Residual>
2:1

parallel_for

Gather Coordinate Vector<ResicD
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2 GIS Kokkos implementations: @,
Fused version

Scatter Stokes<Residual>

11:10

parallel_for

StokesFOResid<Residual>

10:6 10:9
ViscosityFO<Residual> 10:4 10:3 StokesFOBodyForce<Residual>
6:5 6:4 9:8 10:2

DOFVecGradlnterpolation<Residual>
M apToPhysicalFramc<@

Gather Solution<Residual>

Y
@lmcm‘)lm ion<R@ DOFGradInterpolation< R@

ComputeBasisFunctions<Residual> /D

@urﬁme Height<Residual>

Gather Coordinate Veclor(RiidlD
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Performance results (fused version)t&:.

1

—=Nvidia K20 fused
0.1

-—MIC fused
0.01
—Sandy Bridge fused

time, sec

0.001

—|nitial code (1 core)

0.0001

10 100 1000 10000
# of elements

** “Nvidia K20 GPU” and “Initial Implementation” results were obtained on Shannon, “Intel MIC” were

obtained on Compton 18



Separated vs Fused versions ) .

1
- = Nvidia K20 separated
0.1 _»° —Nvidia K20 fused

o

@ == MIC separated

Y 0.01

£ -7 ——MIC fused

0.001 - = Sandy Bridge separated
—Sandy Bridge fused
0.0001 . . .
10 100 1000 10000

# of elements

** “Nvidia K20 GPU” and “Initial Implementation” results were obtained on Shannon, “Intel MIC” were 19

obtained on Comgton



Atomics vs. “+=" h) S

Nvidia GPU (k40) Intel Xeon Phi
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Another Example: Aeras code* — e
(Albany-based)
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Residual Jacobian
10 100
1 / 10 //
8 0.1 e Seriall 8 1 /
QO )
wm|ntel Phi
£ 0.01 e o
==|ntel SandyBridge
0.001 0.01
0.0001 0.001
10 1000 100000 10 100 1000 10000 100000
# of elements per workset # of elements per workset

* Shallow Water test




Conclusion and future work ) e,

Conclusions:
= Kokkos Ice Sheet model (FE Assembly):

= shows good performance
= portable across modern HPC architecture

= Using “Atomics” approach does not introduce significant
overheads.

Ongoing work:

= Porting entire Albany application development environment
to Kokkos .

= Porting Trilinos Linear Algebra Libraries to Kokkos
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