SAND2014- 15482P

A Performance-Portable Implementation of the
Albany Ice Sheet Model: Kokkos Approach

Irina Demeshko, H. Carter Edwards, Michael A.Heroux, Eric T. Phipps, Andrew G. Salinger
Algorithms and Abstractions for Assembly in PDE Codes, July 10, 2014

777, U.S. DEPARTMENT OF YA T =3
&@)5 EN ERGY ;ﬁ" v" m Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
g Hacona! Nolear Sectrkr Adwisletration Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Outline) &

" |ntroduction

= Kokkos programming model

= Albany Greenland Ice Sheet Model (FELIX)
= Kokkos implementation of the FELIX model
= Performance results

= Conclusion and future plans

Sandia
|l1 National

Laboratories

Tianhe-2 (National SuperComputer

Center in Guangzhou) w— |
Intel Xeon E5-2692+ Intel Xeon Phi TITAN (ORNL) Sequoia (DOE/NNSA/LLNL)

Cray XK7 , Opteron 6274 NVIDIA BlueGene/Q, Power BQC,
K20x Custom

Sandia
m National
Laboratories

Performance portability has become a critical issue

parallel code needs to be executed correctly and performant
despite variation in the architecture, operating system and
software libraries.

\

Approach: Kokkos programming model
C++ library, which provide performance portability across diverse
devices with different memory models.

Kokkos™ programming model).

= Kokkos - c++ library to provide scientific and

engineering codes with an intuitive manycore
performance portable programming model.

v’ Standard C++, Not a language extension
v’ Uses C++ template meta-programming

v" Provides portability across manycore devices
(Multicore CPU, NVidia GPU, Intel Xeon Phi
(potential: AMD Fusion))

v Abstract data layout for non-trivial data
structures

* Trilinos package 6

Kokkos™ programming model).
= Kokkos:

v" Single code base
v’ Support for all current (and future) hardware

v" Flexible run configurations MPI-Only
<> MPI + Threads
<> MPI + GPU
<> MPI + GPU + Threads

v' Close to optimal performance (i.e. performance of a
specialized code)

v Use vendor compilers
v' Simple code

* Trilinos package 7

Kokkos™ programming model).

A programming model with two major components:

= Data access abstraction

v" Change data layout at compile time without changing access syntax =>
Optimal access pattern for each device

v' Data padding and alighment is transparent
Access traits for portable support of hardware specific load/store
units

= Parallel dispatch

v’ Express algorithms with parallel_for, parallel_reduce etc.

Using functor concept (functor: construct allowing an object to be invoked or called as if it
were an ordinary function)

v' Transparently mapped onto back-end languages
(e.g. OpenMP, CUDA, Pthreads ...)

LN

Ay Greenland Ice S@get

A

Greenland Ice-Sheet model) S,

Scatter Stokes<Residual>

11:10
StokesFOResid<Residual>

10:6 10:9

ViscosityFO<Residual> 10:4 10:3 StokesFOBodyForce<Residual>

6:4 9:8 10:2

6:5
Y
DOFVecGradlInterpolation<Residual> @lmemlm ion<R@ DOFGradIntcrpolalion<R@
M apToPhysicalFramc<R@
Gather Solution<Residual>

Gather Coordinate Veclor<RiidD

ComputeBasisFunctions<Residual>

@urﬁm& Height<Residual>

2:1

Greenland Ice-Sheet model

(Kokkos implementation)
CLoop over the number of worksets)

v

Copy solution vector to the Device

Copy residual vector to the Host

Sandia
National _
Laboratories

Kokkos_functor example: Jacobian @

3k 3k sk sk 3k 3k 3k 3k 3k 3k 3k 3k 3k sk 3k 3k 3k 3k 3k 3k 3k 3k sk %k sk >k 3k 3k 3k %k %k %k %k %k 5k 3k 3k 3k %k %k %k %k %k %k k %k %k k k

template<typename EvalT, typename Traits>
KOKKOS_INLINE_FUNCTION
void Jacobian<EvalT, Traits>:: operator () (const int i) const

template<typename EvalT, typename Traits>

Void Jacobian<EvalT, Traits>::evaluateFields(typename {
Traits::EvalData d) for(int gp = 0; gp < NuMQPs; gp++) {
{ for(int row = 0; row < numDims; row++){
for(int cell = 0; cell < worksetNumCells; cell++) { for(int col = 0; col < numDims; col++){
for(int gp = 0; gp < nuMQPs; qp++) { for(int node = 0; node < numNodes; node++){
for(in’F row = 0; row < numDi_ms; row++){ jacobian(cell, qp, row, col) +=
for(int col = 0; col < numDims; col++){ coordVec(cell, node, row)
for(int node = 0; node < numNodes; node++){ *basisGrads(node, qp, col);
jacobian(cell, gp, row, col) += // node
coordVec(cell, node, row)
*basisGrads(node, gp, col); }// col
} // node H/ row
}/ col Y/ ap
Y/ row
Y/ ap }
} template<typename EvalT, typename Traits>

Void Jacobian<EvalT, Traits>::evaluateFields(typename
Traits::EvalData d)

{

Kokkos::parallel_for (worksetNumCells, *this);

}

15
-

2 GIS Kokkos implementations: @,

parallel_for
Separated version &=
11:10
parallel_for
StokesFOResid<Residual>
parallel_for
ViscosityFO<Residual> 10:3 SuokesFOBodyForc«Re@
6:5 0:4 9:8 10:2
parallel_for parallel_for parallel_

v
@wGrad[ntcrm]ation<Rc@ @[mem]alion<RcsiiuD <DOFGrad]nterpolation<ResidD

parallel_for
QToPhysicalFramKResi(D 40 42 30 32 87 2

parallel_for. parallel_for — parallel fo
/(_,
Gather Solution<Residual> - Gather Surface Height<Residual> ComputeBasisFunctions<Residual>
2:1

parallel_for

Gather Coordinate Vector<ResicD

14

2 GIS Kokkos implementations: @,
Fused version

Scatter Stokes<Residual>

11:10

parallel_for

StokesFOResid<Residual>

10:6 10:9
ViscosityFO<Residual> 10:4 10:3 StokesFOBodyForce<Residual>
6:5 6:4 9:8 10:2

DOFVecGradlnterpolation<Residual>
M apToPhysicalFramc<@

Gather Solution<Residual>

Y
@lmcm‘)lm ion<R@ DOFGradInterpolation< R@

ComputeBasisFunctions<Residual> /D

@urﬁme Height<Residual>

Gather Coordinate Veclor(RiidlD

15

Sandia
National
Laboratories

L 00L0% o1

o001uY
ST 0100110010
)\ Lb[— ;
s ¥ TOOUT 10 s
- o 10007 s 01_0.'
277 7.~

Sandia

Performance results (fused version)t&:.

1

—=Nvidia K20 fused
0.1

-—MIC fused
0.01
—Sandy Bridge fused

time, sec

0.001

—|nitial code (1 core)

0.0001

10 100 1000 10000
of elements

** “Nvidia K20 GPU” and “Initial Implementation” results were obtained on Shannon, “Intel MIC” were

obtained on Compton 18

Separated vs Fused versions) .

1
- = Nvidia K20 separated
0.1 _»° —Nvidia K20 fused

o

@ == MIC separated

Y 0.01

£ -7 ——MIC fused

0.001 - = Sandy Bridge separated
—Sandy Bridge fused
0.0001 . . .
10 100 1000 10000

of elements

** “Nvidia K20 GPU” and “Initial Implementation” results were obtained on Shannon, “Intel MIC” were 19

obtained on Comgton

Atomics vs. “+=" h) S

Nvidia GPU (k40) Intel Xeon Phi
1 1
0.1
o o 0.1
] 0.01 e 3tomics separated] e 3tomics separated
“E’ ' == gtomics fused QE, == atomics fused
= 0.001 =—"+=" separated = 0.01 - =—"+="separated
. =" fused e—"+=" fused
0.0001 . . . 0.001 - . . .
10 100 1000 10000 10 100 1000 10000
of elements # of elements
Sandy Bridge
1
0.1
o
] 0.01 e 3tomics separated
“E’ == gtomics fused
= =—"+=" separated
0.001
—"+=" fused
0.0001 . . .
10 100 1000 10000

of elements 20

Another Example: Aeras code* — e
(Albany-based)

Laboratories

Residual Jacobian
10 100
1 / 10 //
8 0.1 e Seriall 8 1 /
QO)
wm|ntel Phi
£ 0.01 e o
==|ntel SandyBridge
0.001 0.01
0.0001 0.001
10 1000 100000 10 100 1000 10000 100000
of elements per workset # of elements per workset

* Shallow Water test

Conclusion and future work) e,

Conclusions:
= Kokkos Ice Sheet model (FE Assembly):

= shows good performance
= portable across modern HPC architecture

= Using “Atomics” approach does not introduce significant
overheads.

Ongoing work:

= Porting entire Albany application development environment
to Kokkos .

= Porting Trilinos Linear Algebra Libraries to Kokkos

22

