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SERIIUS – Solar Energy Research 
Institute for India and the U.S. 
 Create disruptive technologies in PV and CSP 
 Identify critical technical, economic, and policy issues for solar 

energy development in India 
 Overcome technology barriers through bi-national 

collaboration between India and the U.S. 
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SERIIUS Task CSP-1 
High-Temperature Receivers for sCO2 power cycles 



5 

 High potential efficiency 
 50% thermal-to-electric 

 Compact power conversion 
 Liquid-like densities with CO2 

Compressor wheel for 150 kWe sCO2 Brayton 
cycle (SAND2010-0172) 

Sandia sCO2 turbo-alternator-compressor 
(Conboy et al., 2013) 

He Turbine 
(300 MWe)  

1 m 

Steam Turbine (250 MWe)  S-CO2  
(300 MWe) 

Supercritical CO2 Brayton Cycle 



Project Objectives 

 Identify high-temperature solar receiver designs compatible 
with sCO2 power cycles 
 Direct CO2 heating 
 Indirect CO2 heating 

 Desired capacity for SERIIUS program is 100 kWe to 1 MWe 
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Direct sCO2 Receiver Configuration 
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Direct Volumetric Receiver 
(Buck et al., 2002, JSEE) 
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Direct Volumetric Receiver 

 Sagar Khivsara et al., ES-FuelCell2014-6482 
 “Development of a Ceramic Pressurized Volumetric Solar Receiver for 

Supercritical CO2 Brayton Cycle” 
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Josh Christian, SNL 



Direct Tubular Receiver 
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Heller et al. (2006, 2009) 



Direct Tubular Receiver Designs 
(SERIIUS – Jesus Ortega, SNL; Samia Afrin, UTEP, ES-FuelCell2014-6376) 

12 

 

1.8 m 1 m 

27.74 cm 

 

 
0.180 m 

2 
m

 

   



Thermal Structural Analyses 

 Neises et al., ES-
FuelCell2014-6603 
 “Structural Design 

Considerations for 
Tubular Power 
Tower Receivers 
Operating at 650 
C” 
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Indirect sCO2 Receiver Configuration 
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Indirect Receiver Designs 

 Indirect Volumetric Receiver 
 Indirect Tubular Receiver 
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Julich Volumetric Receiver 
(www.dlr.de) 

Solar Two Tubular 
Molten Salt Receiver 



Falling Particle Receiver 
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Summary 
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Receiver Design Benefits Challenges / Research Needs 

Direct Receivers 

Volumetric CO2 
Receiver 

Capable of achieving high 
temperatures, simple and flexible 
construction, direct heating of CO2 

Window under high pressure, material 
durability, flow instability, hot spots, 
radiative heat loss, low thermal efficiency, 
storage, transients 

Indirect Receivers 

Volumetric Air 
Receiver 

Capable of achieving high 
temperatures with air in open loop, 
simple and flexible construction 

Material durability, flow instability, hot 
spots, radiative heat loss, low thermal 
efficiency, requires additional heat 
exchangers to store energy and to 
exchange heat with CO2 

Tubular CO2 
Receiver 

Proven technology for direct steam 
and molten salt, direct heating of 
CO2 

Thermal cycling and fatigue of tubes, 
material compatibility, pressure 
limitations, flux limits,  storage, transients 

Tubular Receiver 
(molten salt or 
liquid metal) 

Proven technology for direct steam 
and molten salt, direct storage of 
heat transfer fluid 

Thermal cycling and fatigue of tubes; 
material compatibility; pressure 
limitations; flux limits;  requires fluid/CO2 
heat exchanger, reactivity 

Falling Particle 
Receivers 

Capable of achieving high 
temperatures, reduced flux 
limitations, direct storage of 
particles 

Radiative and convective heat losses, 
particle attrition, requires particle/CO2 
heat exchanger 
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