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Motivations

● Glaciers and ice sheets influence the global climate, and vice­versa

● Melting of land ice determines the sea level rise 
 melting of the Greenland ice sheet:  7 m
 melting of the Antarctic ice sheet:  61 m

South Florida projection for a sea levels rise
 of 5m (dark blue) and 10m (light blue) 
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● The Fourth Report of the Intergovernmental Panel on Climate Change (IPCC 2007) 
declared that the current models and programs for ice sheets did not provide credible 
predictions
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Non linear viscosity:

with:

Viscosity is singular when ice is not deforming
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Ice Sheet Modeling

­ Ice flow equations (momentum and mass balance)

­ Model for the evolution of the boundaries 
(thickness evolution equation)

­ Temperature equation

Main components of an ice model:

­ Coupling with other climate components (e.g. ocean, atmosphere)



Stokes Approximations

FO, Blatter­Pattyn first order model2 (3D PDE, in horizontal 
velocities)

Zeroth order, depth integrated models:
SIA, Shallow Ice Approximation (slow sliding regimes) ,
SSA Shallow Shelf Approximation (2D PDE) (fast sliding regimes)

Higher order, depth integrated (2D) models: L1L23, (L1L1)...

“Reference” model: STOKES1

2Dukowicz, Price and  Lipscomb, 2010. J. Glaciol.

1Gagliardini and Zwinger, 2008. The Cryosphere.

3Schoof and Hindmarsh, 2010. Q. J. Mech.  Appl. Math.



First order equation.



(Numerical) Modeling Issues

● Computationally challenging, due to complexity of models, of geometries and large domains

­ design of linear/nonlinear solvers, preconditioners, etc.
­ mesh adaptivity especially close to the grounding line.

● Initialization / parameter estimation.

● Uncertainty quantification.

● Boundary conditions / coupling (e.g. with ocean)

­ Floating/calving
­ Basal friction at the bedrock,
­ Subglacial hydrology,
­ Heat exchange / phase change.



 

1Software currently developed under the DOE project PISCEES
2www.trilinos.sandia.org (albany), www.lifev.org
3Perego, Gunzburger, Burkardt, Journal of Glaciology, 2012

Implementation Overview (Felix)

● Felix (Finite Element Land Ice eXperiments) is a C/C++ finite element 
implementation of land ice models. It relies on Trilinos for data structure, for the 
solution of linear/nonlinear solvers and for adjoint/UQ capabilities.

● Models currently implemented are SIA, SSA, L1L2 and FO, which have been tested 
against Ismip­Hom experiments and CISM simulations.

● The nonlinear systems are solved using Newton method with exact Jacobian + 
continuation of regularization parameters to increase robustness.

● It is interfaced with the land ice modulus of MPAS (climate library, implements ocean 
and atmosphere models). Realistic simulation done for ice2sea projects.

● Even if adjoint and UQ capabilities are in early development, Felix can leverage on 
several trilinos packages which introduce great flexibility. Among these we have:

   - Dakota, MOOCHO (Optimization / UQ)
   ­ Sacado (Automatic Differentiation)



 (w/ G. Stadler, UT, and S. Price, LANL)

Inverse Problem 
 Estimation of ice­sheet initial state

Available data/measurements: 
 ice extension and surface topography  
 surface velocity
 Surface Mass Balance (SMB: accumulation/melt rate)
 ice thickness H (very noisy) 

Fields to be estimated :
 ice thickness H
 basal friction β 

Additional information: 
 ice fulfills nonlinear Stokes equation 
 ice is almost at thermo­mechanical equilibrium

Assumption (for now): 
 given temperature field

Problem: what is the initial thermo­mechanical state of the ice sheet?

ice-sheet

bedrock
ocean

Hβ 

http://www.lifev.org/
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 G. Stadler (UT), M. P. and S. Price (LANL)

Inverse Problem
 Estimation of ice­sheet initial state

How to prescribe ice­sheet mechanical equilibrium: 

Bibliography*:

divergence flux

Surface Mass 
Balance

At equilibrium:

Boundary condition at ice­bedrock interface: 

Morlighem et al. A mass conservation approach for mapping glacier ice thickness, 2013



 G. Stadler (UT), M. P. and S. Price (LANL)

Inverse Problem
 Estimation of ice­sheet initial state

Problem: find initial conditions such that the ice is almost at thermo­mechanical 
equilibrium given the geometry and the SMB, and matches available observations. 

Common

Novel



­ Optimization:

Optimization Package Moocho (Trilinos).

Sequential Quadratic Programming using LBFGS for approximating the reduced Hessian.

The first derivatives of the constraint and the cost functional are provided by LifeV.

Inverse Problem
 Estimation of ice­sheet initial state

­ Settings of the preliminary experiments:

1) Constraint: FO model.

2) No coupling with temperature solver (temperature field is given).

3) Tikhonov regularization both for    and    .                                              .



Inverse Problem
 Estimation of ice­sheet initial state

Algorithm and Software tools used



Inverse Problem
 Estimation of ice­sheet initial state

Synthetic test case, settings and forward problem.

We add noise  to  the divergence  flux,  surface  velocity  and bedrock  topography obtained with  the 
forward simulation and use them as “true” SMB surface velocity and bedroc topography. 



  

Inverse Problem
 Estimation of ice­sheet initial state

Synthetic test case, inversion results, β and SMB.

Common appr. Novel appr. Target

SMB needed for equilibrium Target SMB

Recovered basal friction. Exact basal friction.



  

Inverse Problem
 Estimation of ice­sheet initial state

Synthetic test case, inversion results,thickness.

recovered thicknessrecovered thickness exact thickness

Common appr. Novel appr. Target



Grid and  RMS of velocity and thickness observations

Inverse Problem
 Estimation of ice­sheet initial state of Greenland ice sheet



Inverse Problem
 Estimation of ice­sheet initial state of Greenland ice sheet

common novel target

Inversion results: surface mass balance (SMB) 

computed surface velocity observed surface velocity



Inversion results: surface mass balance (SMB) 

Inverse Problem
 Estimation of ice­sheet initial state of Greenland ice sheet

common novel target

SMB needed for equilibrium      SMB from climate model



Estimated beta and change in topography.

Inverse Problem
 Estimation of ice­sheet initial state of Greenland ice sheet

recovered basal friction difference between recovered 
and observed thickness

common novel



Development(?): parameter reduction based on physical knowledge.
(e.g. include basal hydrology model)

Bayesian Inversion 
(w/ M. Eldred, J. Jakeman, I Kalashnikova, A. Salinger, L. Swiler)

Difficulty in UQ approach: “Curse of dimensionality”. The parameter 
space has O(30,000) parameters (or more).

● Reduce the dimension of the parameter space. 

Method of choice: Karhunen­Loeve Expansion (KLE).
In our experiment, we reduce the dimension of parameter space to 5.

Reduction of parameter space dimension
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• 5 KLE modes capture 95% of covariance energy  
(parallel C++/Trilinos code Anasazi).

Bayesian Inversion 
(w/ M. Eldred, J. Jakeman, I Kalashnikova, A. Salinger, L. Swiler)

Reduction of parameter space dimension: Greenland modes

Only spatial correlation has been considered. 

Ongoing development: Use eigenvectors of the inverse of the Hessian of the cost functional 
as modes.
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• Mismatch (ALBANY):
 

• Build Surrogate Model. Polynomial chaos expansion (PCE) was 
formed for the mismatch over random variables using uniform 
prior distributions.  DAKOTA. 

• Inversion/Calibration. Markov Chain Monte Carlo (MCMC) 
was performed on the PCE with 100K samples  QUESO. 

Bayesian Inversion 
(w/ M. Eldred, J. Jakeman, I Kalashnikova, A. Salinger, L. Swiler)

Compute model surrogate and invert

Development(?): use simple physical model (e.g. L1L2 or SIA)  as the surrogate model.



True  field Reconstructed  field 

Bayesian Inversion 
(w/ M. Eldred, J. Jakeman, I Kalashnikova, A. Salinger, L. Swiler)

Numerical Results

Posterior distributions for the 5 KLE coefficients:

MAP solution:  ξ = (­0.16, ­0.08, 0, 0, 0)

Truth Reconstructed

# 
sa

m
p l

e s

ranges of ξ  ranges of ξ  



Deterministic
beta [kPa yr/m]

Bayesian
beta [kPa yr/m]

Bayesian Inversion 
(w/ M. Eldred, J. Jakeman, I Kalashnikova, A. Salinger, L. Swiler)

Numerical ResultsTruth Reconstructed



Thank you for your attention
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