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Pigment Localization is Dynamic

« Photosynthetic and metabolic activity is regulated in
response to changing environmental parameters

™ — Protein abundance Physiology &
Genes —  metabolic
— Protein localization function

« Traditional biochemical assays determine average
parameters, but
- Generally made on model species
- No insight into stochastic response
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osYn1y dynamics and the cellular level

Single Cell Measurements

« Key information on populations _ Tomographic
- Screening for unique phenotypes e ———
- Population dynamics

« Subcellular resolution possible

« Exquisite spatial resolution offered by
electron microscopy |
- Recent extensions to tomography B oo

Liberton M et al. Plantphysiol 2011;155:1656-1666
©2011 by American Society of Plant Biologists

But the need remains to probe pigment
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Motivation

Spatially and Temporally Resolved

Biochemical Information at the Cellular Level

Confocal
Fluorescence
- 8 Raman
~ 8 Microscopy

Light Microscopy

Each pixel in the image is a
combination of 3 (RGB) colors
(morphology, refractive properties)
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Chemical Image

Multivariate
Curve
Resolution

Spectral/Hyperspectral Imaging

Each pixel in the image is a
spectrum relating to chemical
and/or molecular structure within
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Hyperspectral Imaging of
Single Cells

Identity of pigments
Location, relative abundance
Spatial relationship
Single cell statistics
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Outline

 |Introduction to fluorescence and Raman
microscopy
- Principles & technology
- Advantages for photosynthetic organisms

« Spectral image analysis
- Multivariate techniques
- Advanced strategies

« Highlights of current PARC Research in Timlin lab

« Summary & Future Directions
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Fluorescence vs. Raman for
Bioenergy Applications

Non-destructive, label-free, live-cell friendly, diffraction-limited resolution in 3D

Fluorescence Emission

m Emission from an excited state
m Excitation A dependent
= Many important molecules have

endogenous fluorescence

m Broad spectral features
m Energy transfer system - high

degree of spectral overlap, efficient
excitation with a single laser

Center A

Raman Scattering

Scattering due to molecular
vibrations

Excitation A independent
Narrow spectral features,

signature can be very specific

Resonant vs. non-resonant
Carotenoids and lipids
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Technology Available
/H SNLUs \ e N w.Teca|pha300R\

yperspectral Confocal Micros~- + 532 nm excitation
* 100x (0.9 NA) dry objectiv~

* 488 nm excitatie~

SOVt i
L i d, * Spe~’ \ o700 cm™
ea ‘,\ catl =1 :
R o) 596 AUV Spec 4on rate ? r; 00 si)n;ctra/s
W\ \(&
AW al resolutlon = 35-100 cm"" e ‘/\Q\)\S\
(1-3 nm)

 Acquisition rate = <8300 spectra/s

Sinclair, et. al., Applied Optics, 45,
6283-6291 (2006).

http://lwww.witec.de/product

s/raman/alpha300-r/ /

* 532 nm excitation

* 10x, 40x or 100x dry objective
* Lateral resolution = 1 um

* Axial resolution = 72-6 um

» Spectral range = 500-*~

. ipecf‘r‘?t', resglis g‘(\ ?\G a(ge Christensen & Morris, Applied Spectroscopy, 52,
: cquisttion. \’\ 1145-1147 (1998) & Sinclair, et. al., Applied Optics,
Cos Y1y 43, 2079-2089 (2004) -/
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Normalized Spectra

Examples of Chemical Imaging in
Photosynthesis Research

Hyperspectral Confocal
Fluorescence Microscopy

os| PSl=red

0 PSII = green
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Wavelength (nm)

W

Synechocystis 6803

Subcellular localization,

discrimination, and
guantification of

photosynthetic pigments

Combined Hyperspectral
Confocal Raman &
Fluorescence Microscopy
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H. pluvialis

Subcellular localization,
discrimination, and
guantification of carotenoids
and chlorophylls

Hyperspectral
Confocal Raman
Microscopy
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Subcellular localization,
discrimination, and
guantification of carotenoid,
lipids, and precursors
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The Hyperspectral Data Cube

Time, depth,
or condition

How do you get from hundreds of thousands
of highly overlapped spectra to chemical
information?
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Required knowledge
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Spectral Image Analysis Methods

Univariate methods
- Band integration, peak height, peak positions
- Isolated bands, no spectral interference

Multivariate methods

=  Unmixing methods
- CLS
—> Least-squares prediction based
- A priori knowledge required

® Factor analysis methods

—> PCA, SIMPLISMA, self modeling curve
resolution/multivariate curve resolution

- Data defines

- No a priori knowledge of spectral shapes/pure
pixels

Mathematical complexity, accuracy
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Multivariate Curve Resolution

(MCR) Example

AllophycocyaninB  Carotenoid

Phycocyanin

How much is
present?
Where is it
located?

1

Whatis

+ Calibrate wavelength
axis
» Remove cosmic spikes

« Weight data for Poisson noise
« Estimate # of components
« Initial guess spectral signatures

« Constrained alternating least squares
analysis
« Linear additive model, D = CST

Figure 2.

endoagenous pigments in the cyanobacterium Cyanothece sp. PCC 7822.
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Mathematical isolation of independently varying chemical species is accomplished using a fast
multivariate curve resolution algorithm with robust constraints. Example shown: hyperspectral imaging of
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Jones, et. al., ] Chemom, 117:149-158 (2012) Laboratories



Analysis: The Importance of
Experimental Design

« Components that co-vary
can not be isolated
independent of one
another

* Net analyte signal is more
important that per pixel
signal to noise

o Different models can
highlight different aspects
of a data set
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Analysis:
Advanced Strategies

 Well characterized instrumentation
 Selective ROls
« Composite data
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Current PARC Research

* Phycobilisome degradation under nitrogen starvation
conditions

« Light/heat induced bleaching in Symbiodinium

— Poster “Resolving highly overlapped pigment emissions in living
Symbiodinium with hyperspectral Imaging and multivariate
analysis”

* Pigment dynamics in response to light quality

« Carotenoid composition in avian retinas
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Global Pigment Dynamics in
Response to Light Quality

« Cyanobacteria: Acarychloris marina, Cyanothece,
Spirulina platensis

« Grown under red or yellow light

~5 ME/m?s {002

- Synechocystis

{ 1 i L wo
Ox‘f’;" A 400 500 600 700 800 900
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Cyanothece
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S. platensis

MCR Pure Component Spectra
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MCR Pure Component Spectra

1t |— PSII
- — PSI
£ 0.8} [—PBP
C
Q
£
5 0.6}
()
N
g 0.4t
=

0.2
800 550 600 650 700 750
Wavelength (nm)

(7)) v w&
o o o

osYrp o 5000 10000 0 500 1000 1500 2000 2500
o ()
< (\t €n -
¢ Research ¢ =
& o)

Center

Sandia
National
PARc '11 Laabg]rg?ories




.

APBS
APSII
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Differential Response Across

A. marina Cyanothece S. platensis

116% 18% 127%
39% 52% 129%
154% -1% 31%

Change in abundance from PBS to PSI

Far red light: disruption in the linear electron

flow from PSII to PSI; organisms

compensates by synthesizing more PSIl and

PBS to attempt to restore balance

A. marina: long wavelength chlorophyll
responds as if high light and low light

Species
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Conclusions

Global pigment dynamics can be probed in living cells with
hyperspectral confocal fluorescence and Raman microscopy

Open questions remain ...

— Functional implications: lower signal could be less coupling or less
abundant, couple with biochemical assays

— Real-time analysis

On the horizon ...
— Excitation-emission spectral imaging
— Hyperspectral imaging-based cell sorting

Future areas: high-throughput screening for phenotype, population

dynamics in microbial communities, characterization of biohybrid, bio-

oY1y inspired systems
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Interactions with Light
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Raman Spectroscopy and Spectral
Imaging of Carotenoids

* Resonant Raman vs. non-resonant Raman

5

Ruban AV et al. J. Biol. Chem. v,
2001;276:24862-24870
VZ

i et virtual state

Raman intensity / rel.

S

non-resonant rescnant fluorescence

« Carotenoid biogenesis has varied Wavenumber / cm’
applications v;: C = C stretching vibrations

v,: C-C stretches coupled to C-H in-plane
bending or C-CH; stretching
v;: CH;in-plane rocking vibrations

° Non-destructive, live-cell friendly v,: C-H out-of-plane bending modes

- Bioenergy, environment, human health

 RR-based spectral imaging is particularly exciting because of
the ability to discriminate, quantify, and localize carotenoids
in situ. m Sandia
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