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Reverse Annealing Comparisons of PnP and Npn

1I-V HBTs under lon Irradiation — Naftona
Probing the Effects of Thermal and Current Injection Annealing Laboratories

Abstract Temperature Dependence of the Reverse Annealing

We present a comparison of early-time reverse annealing in PnP and Npn HBTSs. o
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injection annealing due to difference in current density under the same operating
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« ? 13 Potential Interpretation - Local Cluster Environment Effects

— - - From 1960’s n-type GaAs work we know neutron and electron damage have different annealing stages
The Effect: Post-lrradlatlon Gal n Deg radatlon Radiation Effects in GaAs by L. W. Aukerman, P. W. Davies, R. D. Graft,and T. S. Shilliday, J. Appl. Phys. 34, 3590 (1963)
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- Temperature Dependence: Conclusion

With ion irradiations we can explore transient annealing at very short times after the irradiation and have found
a reverse annealing component in PnP and Npn HBTs. One potential explanation is that we are observing a
thermally activated defect evolution that results in a defect complex with a larger carrier recombination cross-
section that further lowers the gain after the initial Frenkel pair production has stopped. We have explored the
temperature and ion species dependence of the reverse annealing and found a clear correlation between the
size of the damage cluster and the extent of the reverse annealing, with larger damage clusters producing a
larger reverse annealing component.

Strong temperature effect observed in continuous-on
experiments




