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Why FinFETs ? State-of-the-art FinFETs still show the best performance
for logic computing compared to the emerging beyond-CMOS devices.
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Why below 6 nm ? ITRS projection to 6-nm gate length, but the gate
switching energy (C,V?) is fast reduced with decreasing gate length.

At which gate lengths would the switching energy reach the thermal
fluctuation limit (e.g., C,V2 < 100 kgTt) ?

41 <--switching energy (C,V?) in 100kgT units, T=300K *

Switching energy of TFETs
would reach the thermal
fluctuation limit even faster
due to the lower voltage.
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*Calculated from ITRS 2011/12 editions data for HP logic devices (PIDS2 tables)
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Why quantum ? As devices are shrinking towards ‘true’ nm scale (~10
nm feature sizel?], guantum mechanical effects!3! dominate.

Nonequilibrium Green’s Function (NEGF) Formalism
- Describe guantum transport in open nanodevices

- The retarded Green’s function (GR) determines the device terminal
properties (e.g., transmission, current, etc.)

Gi=|F1-H -% (E)]_l

- Determining G® needs to invert a huge
matrix, requiring N, xO(N’) cost
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CBR! — A very efficient approach to determine GR®

» Computational cost about N, xO(N)
» Applicable to nanodevices with any number of contacts

CBR3D scaling with number of CPUs
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Highlights in the CBR Simulator:
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1 | = with ARPACK eigensolver
74 | = with FEAST eigensolver

= Fully charge self-consistent quantum
transport in 2D & 3D

" |nclude dominant scatterings (e.g.,
impurity, roughness, e-e, phonon)

= Nearly linear speed-up w/ # of cores

Total speed-up referenced to N¢py

. g ] ARPACK: T, ~1/Np, /2
= Significantly faster® than other 2 ¢ o
. - FEAST: T ~1/Ng,¥* |
quantum transport simulators
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Device — HfSiON/SiO, gate dielectric, TaN metal gate (explicitly simulated)

Optimization — optimize geometry and doping profile and select the I-V
characteristics satisfy the ITRS projections

l4 52=2300 A/m

2000 ] |-V characteristics:
1000 optimized Si FinFET, Lg=6nm
] (HfSION/SIO, dielectric, TaN gate)
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Electron Density & Potential Energy

Electron Density Electron Density Potential Energy

Red — high, blue — low, linear scale




Induced Capacitive Charge Distribution

Induced charge

_ AQ _—qAn(r)
c(r) = AVy AV

Gate capacitance

[AQ dr
="

Cg

* The optimized 6-nm FinFET is dominated by the fringing capacitance (the induced
charge shows peak near the S/D regions).

= The induced charge distribution in the gate shows a complex profile, capturing
guantum confinement and the gate-channel/S/D charge interactions.
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In contrast, the induced charge in an optimized 10-nm FinFET!®! is
peaked in the channel.
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[6] H. Khan, D. Mamaluy, D. Vasileska, IEEE T-ED 55, pp. 743-753 (2008).




40 - 41 <--switching energy (C,V2)in 100ksT units, T=300K ¥
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= Qur QM simulated data are about 10% lower than ITRS, due to quantum
confinement in the gate.
= Switching energy approaches the thermal fluctuation limit (< 100 kgT) at
gate length < 5 nm, which holds true for all charge-based FETs.
i
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Our findings:
= The end of FET scaling is near!

= Utilization of TFET-like power saving structures will bring the end to Moore law even
sooner.

= Alternative (llI-V, carbon, etc.) channel materials will not fix the situation since the

gate capacitance is mainly determined by the node geometry and dielectric
material.

Possibilities after the thermal fluctuation limit is reached:

1) Accept the end of Moore’s law and concentrate on power dissipation reduction.
2) FET alternatives (memristors, super-conductive logic, spintronics, etc).

3) Continue Moore’s law with... single-electron transistors!
EswitchzcgvzngV:[ngq]zqz/cg
SETs have the switching energy vs gate capacitance trend opposite to all other FETs!
Thus, SET scaling below 5nm gate length may be possible.




