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Optimization Under Uncertainty

min

s.t.
optimize, accounting 

for uncertainty metrics

(using any UQ method)

Input design parameterization
• Design vars may augment uncertain vars in simulation
• Inserted design vars: an optimization design var may be a 

parameter of an uncertain dist, e.g., the mean of a normal

Control response statistics to design for…

…robustness:
min/constrain moments 
μ, σ2, or z(β) range

…reliability:
min/max/constrain p/β
(tail stats, failure)

…combined/other:
Pareto, inversion/model 
calibration under uncertainty
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Uncertainty Quantification Algorithms in DAKOTA:
New methods bridge robustness/efficiency gap
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GPs with gradient-
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Recursive 
emulation, 
TGP
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Vanderbilt

Stochastic 
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sparsity detection

Local adapt 
refinement, 
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Stanford, 
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Epistemic & 
Mixed UQ

Interval-valued/ 
2nd-order prob. 
w/nested sampling

Opt-based interval 
est, Dempster-Shafer, 
discrete model forms

Discrete 
GPs, Imprec. 
probability 

Arizona St

Bayesian Emulator based 
MCMC with QUESO, 
GPMSA

model 
selection, 
multifidelity

LANL, 
UT Austin

Other Efficient subspace 
method, Morris-
Smale topology

Rand fields / 
stoch proc,

Moment meth

NCSU, Utah, 
Cornell, 
Maryland



UQ with Sampling Methods

Starting from distributions on the uncertain input values, draw observations
from each distribution, pair samples, and execute the model for each pairing
 ensemble of results yields distributions of the outputs

– Monte Carlo: basic random sampling

– Pseudo Monte Carlo: Latin Hypercube Sampling (LHS)

– Quasi Monte Carlo: Halton, Hammersley, Sobol sequences

– Orthogonal arrays, Centroidal Voronoi Tesselation (CVT), Importance Sampling

Advantage: Sampling is easy to implement, robust, and transparent.

Disadvantage: N-1/2 convergence, often impractical for pfail, stats nonsmooth over d

N realizations of Y

Simulation 
Model

Output Distributions

N samples of X

Output 1

Output 2

Input  Distributions • sample mean and variance

• full PDF(probabilities)
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Optimization under Uncertainty 
with Surrogates
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Formulations 2 & 4 amenable to trust-region approaches
Goals: maintain quality of results, provable convergence (for a selected confidence level)

SBOUU: employ surrogate models for interpolation of 
noisy data and approximation of expensive simulations 
and/or statistics.

• Data fit (global, local, multipoint)
• Multifidelity
• Reduced-order models (ROM)

Rely on truth models for surrogate construction, 
updating, and step verification

Formulation 1: 
Nested (no surrogate)

Formulation 2: 
Design Surrogate

Formulation 3: 
UQ Surrogate

Formulation 4:
Design and UQ Surrogates



Trust Region Surrogate-Based 
Optimization (SBO) – Data Fit Case

Data fit surrogates:

• Global: polynomial resp surf, NN, splines, kriging/GP, radial basis fn

• Local: 1st/2nd-order Taylor series

• Multipoint: two-point exponential approx (TPEA), two-point 
adaptive nonlinearity approx (TANA)

Sequence of trust regions

Neural 
Network

Kriging

Splines

Quad Poly

(Global) data fits in SBO:

• Smoothing: extract desired 
global trend from noisy data

• DACE: number of design 
variables limited to O(101)

• Local consistency must be 
balanced with global accuracy

• Constrained LLS

• TS w/ global Hessian estimation



Trust-Region 
Surrogate-Based Optimization

Data Fit

Data fit surrogates:

• Global: polynomial regress., splines, 
neural net, kriging/GP, radial basis fn

• Local: 1st/2nd-order Taylor

• Multipoint: TPEA, TANA, …

Data fits in SBO

• Smoothing: extract global trend

• DACE: number of des. vars. limited

• Local consistency must be balanced 
with global accuracy

Multifidelity surrogates:

• Coarser discretizations, looser 
conv. tols., reduced element order

• Omitted physics: e.g., Euler CFD, 
panel methods

Multifidelity SBO

• HF evals scale better w/ des. vars.

• Requires smooth LF model

• May require design vect. mapping

• Correction quality is crucial

 Multifidelity

ROM surrogates:

• Spectral decomposition (str. dynamics)

• POD/PCA w/ SVD (CFD, image analysis)

• KL/PCE (random fields, stoch. proc.)

ROMs in SBO

• Key issue: capture parameter changes

– E- ROM, S-ROM, tensor SVD

• Some simulation intrusion to re-project

• TR progressions resemble 
local, multipoint, or global

 ROM

• Extended ROM
• Local
• Multipoint

• Spanning ROM
• Tensor SVD



TR-SBOUU Benchmark Results

• Direct nested OUU is expensive and requires seed reuse

• SBOUU expense much lower (up to 100x), but unreliable.

• TR-SBOUU maintains quality of results and reduces expense ~10x

– Ex. 1: formulation 4 with TR 5-7x less expensive than direct nesting

– Ex. 2: formulation 4 with TR 8-12x less expensive than direct nesting

– ICF Ex.: formulations 2/4 with TR locate vicinity of a min in a single cycle

• Greater algorithmic robustness:

– Navigation of nonsmooth engineering problems

– Less sensitive to seed reuse: variable patterns OK and often helpful, possibility of exploitation 
of poor sample design is reduced

– Less sensitive to starting point: data fit SBO provides some global identification

• Primary weakness:

– Resolution of statistics with (under-resolved) sampling  best for moments & their projections

2002-2003 conference papers (AIAA MA&O, SIAM CS&E, USNCCM): Eldred, M.S., Giunta, A.A., Wojtkiewicz, 
S.F., Jr., and Trucano, T.G., "Formulations for Surrogate-Based Optimization Under Uncertainty."



Robust Hohlraum Design for
Inertial Confinement Fusion

r

Z

Capsule

Wire initiation 
creates a “high 
Z” dense plasma 

3D ALEGRA MHD

Encapsulant converts the plasma 
radiation to a “drive” i.e., pressure on 
the capsule.

1D, 2D, 3D ALEGRA, rad-MHD

Drive and implosion of capsule.

1D, 2D ALEGRA rad-hydro

Sample 
Hohlraum 

Configuration

Encapsulant

Metal wires

Uncertainties in: plasma, drive, and capsule characteristics



ICF Capsule Design
2D Optimization
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Maximize –V
r

s.t. V  3.e+5 cm/s

0.103 cm  r  0.14 cm
0.001 g/cc    0.003 g/cc
R = U[r - 2.5e-3, r + 2.5e-3]
 = U[ - 2.5e-5,  + 2.5e-5]

Fixed
seed

Variable
seed

DOT SQP
DOT MMFD
TR-SBOUU2
TR-SBOUU4

• Nested OUU stalls
• TR-SBOUU finds solution vicinity in a single cycle, effectively stepping over nonmoothness in V(r), V(r) 

(objective/constraint are multimodal  min dependent on initial TR)
• Less sensitive to seed reuse and starting point



UQ with Reliability Methods

Mean Value Method

Rough 
statistics

G(u)

MPP search methods

Reliability Index 
Approach (RIA)

Find min dist to G level curve
Used for fwd map z  p/

Performance Measure
Approach (PMA)

Find min G at  radius
Used for inv map p/ z

Nataf x  u:

Failure
region



RBDO Algorithms

Bi-level/Nested RBDO
• Constrain RIA z  p/ result

• Constrain PMA p/  z result

RIA
RBDO

PMA
RBDO

KKT
of MPP

Unilevel RBDO:
• All at once: apply KKT conditions of 

MPP search as equality constraints
• Opt. increases in scale (d,u)
• Requires 2nd-order info for 

derivatives of 1st-order KKT

1st-order 
(also 2nd-order w/ QN)

Sequential/Surrogate-based RBDO:
• Break nesting: iterate between opt & UQ until target is met.

Trust-region surrogate-based approach is non-heuristic.

Analytic Bi-level RBDO
• Analytic reliability sensitivities avoid 

numerical differencing at design level

(1st order)

If d = distr param, then expand



OUU Performance vs. Time - Cantilever Problem
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Bi-level OUU

TR-SBOUU2

TR-SBOUU4

Bi-level RBDO

Sequential RBDO

BL
A-BL

S1

S2

OUU/TR-SBOUU

RBDO

OUU Progress (2002-2005)

> 2 orders of magnitude 
improvement over 
“brute force” OUU

With tuning of initial TR size,
3 RBDO benchmarks solved in 
~40 fn evals per limit state:
• 35 for 1 limit state in short column

• 75 for 2 limit states in cantilever

• 45 for 1 limit state in steel column



Shape Optimization of Compliant MEMS 

• MEMS subject to substantial variabilities & lack historical knowledge base

• Sources of uncertainty
– Material properties, manufactured geometries, residual stresses

– Data can be obtained  aleatoric uncertainty, probabilistic approaches

• Resulting part yields can be low or have poor cycle durability

ASC Milestone: Solution-Verified Reliability Analysis & Design of MEMS 

• Account for both manufacturing uncertainties and simulation errors in MEMS design

• Integrate UQ/RBDO (DAKOTA), ZZ/QOI error est (Coda), adapt (SIERRA), nonlin mech (Aria)

• Goals: On-line soln verification  project UQ/OUU results to fully converged mesh;
Achieve prescribed reliability; Minimize sensitivity to uncertainties (robustness)

Bi-stable MEMS Switch

CDF

z

Error estimates 
result in CDF shift

p(Fmin<z)

 Error-corrected: EE as analysis correction factors

 Error-informed: EE as indicators for uniform/adaptive refinement (tight tols: eliminate correction)

 Combined: control error levels (loose tols: assure correction accuracy) & use correction factors



Bi-Stable Switch: Problem Formulation

13 design vars: Wi, Li, i

2 random vars:

 reliable + robust



Milestone Results:
Solution-Verified Reliability Analysis and Design

Conclusions: UQ/OUU with error corrected/informed approaches can be:

 more accurate: controlling/correcting errors leads to higher confidence in UQ/RBDO results

 less expensive: Linear800+EE analysis above < 10% cost of fully converged reference

 more reliable: on-line approach accounts for any parameter dependence (esp. shape vars)

 more convenient: can eliminate need for manual a priori convergence studies

 Reliability analysis: compute error-corrected CDFs and assess accuracy/efficiency

 RBDO: carry best fwd to design switch for max robustness s.t. reliability constraint

Reliability constraint: >2

Max Fmin (10x robustness) 



Issues with RBDO

• AMV2+ and FORM converge to 
different MPPs 
(+ and O respectively)

• Issue: high nonlinearity leading to 
multiple legitimate MPP solns.

• Challenge: design optimization 
may tend to seek out regions 
encircled by the failure domain.  
1st-order and even 2nd-order 
probability integrations can 
experience difficulty with this 
degree of nonlinearity.

Insight from parameter study over 3σ uncertain variable range 
for fixed design variables dM*.  Dashed black line denotes 
g(x) = Fmin(x) = -5.0.

As for UQ, need to achieve a more effective balance in robustness / efficiency



Efficient Global Reliability Analysis

10 samples 28 samples

explore

exploit



EGRA-based OUU
Reliability:

Bi-level / Nested: opt outer loop, UQ inner loop

• Separate GPs (Uncertain approx): 

• EGO over d; For each d, EGRA resolves g(u)

• No data leveraging among UQ runs for nearby d

• Single GP (Combined approx):

• EGRA resolves g(d, u) using a single GP; EGO post-processes this GP for p(d)

• Leverages data but may resolve g in regions of d that are not important for optimization

Sequential: break nesting  iterate between opt & UQ by updating approximate constraint

• Combined GP for g(d, u) with refinement

• After each approx design cycle, perform EGRA at d*  updates g(d, u); iterate until conv.

• Leverages data and avoids resolving g in unimportant regions of d

Bichon, B.J., Eldred, M.S., and Mahadevan, S., "Efficient Global Surrogate Modeling for Reliability-Based Design Optimization," (to appear) ASME Journal of Mechanical Design.

FD gradients



Stochastic collocation: instead of estimating coefficients for 
known basis functions, form interpolants for known coefficients

• Global:  Lagrange (values) or Hermite (values+derivatives)

• Local:    linear (values) or cubic (values+gradients) splines

Sparse interpolants formed using  of tensor interpolants

Non-Intrusive Stochastic Expansions:
Polynomial Chaos and Stochastic Collocation

Polynomial chaos: spectral projection using orthogonal polynomial basis fns

using

• Estimate j using regression or numerical integration:
sampling, tensor quadrature, sparse grids, or cubature

• Tailor expansion form:
– p-refinement: anisotropic tensor/sparse, generalized sparse

– h-refinement: local bases with dimension & local refinement

• Method selection: fault tolerance, decay, sparsity, error est.



Slide #21

• Approach 2: PCE/SC over all variables

Moment sensitivity = expectations over  +
differentiation of remaining polynomial in s

Stochastic Sensitivity Analysis

• PCE/SC have convenient analytic features

– Expansions readily differentiated w.r.t. 

– Analytic moment expressions

• Augment w/ nonprobabilistic dimensions s

– Design, epistemic uncertain

• Approach 1: PCE/SC over prob. vars
for each set of nonprobabilistic vars

Moment sensitivity = expectation of response sensitivity

Additional data requirements (dR/ds), but no additional dimensions

 Additional dimensions, but no additional data requirements



PCE-based and SC-based OUU

Reliability: Robustness:Analytic Bi-level: 
• Analytic moment/reliability sensitivities

(avoid numerical derivs. at design level)

• Uncertain or Combined expansions

Unilevel approach (sim residuals @ collocation pts)

( initially based on moment proj)

• 1st-order
• Also QN 

2nd-order 

Sequential/Surrogate-based:
• Break nesting: iterate between opt & UQ w/ (surrogate) linkage

• Uncertain expansions

TR-SBO with local 
data fit & multifidelity

Multifidelity (focused on UQ fidelity):
• Optimize corrected LF UQ model over TR

• LF = Combined expansion (over s), MVFOSM

• HF = Uncertain expansion (at single design pt)

• Additive corrections enforce LF/HF consistency

• 1st order & 
QN 2nd-order



Computational Results: 
PCE-/SC-based OUU

Eldred, M.S., "Design Under Uncertainty Employing Stochastic Expansion Methods," Intl Journal for UQ, Vol. 1, No. 2, Feb. 2011, pp. 119-146.

Typical result:

short column

• 1st-order uncertain locally accurate & reliable: effective in bi-level & sequential

• 0th-order combined can be more efficient but optima not as precise

• Sequential is competitive; quasi-2nd-order linkage assists convergence

• Multifidelity coerces LF UQ results to HF optimum; top performer with cheapest LF (Mean Value)

Fully converged solution is (b, h) = (8.1147, 25.000) with Area = 202.87

Smooth C∞ 

(Ishigami)

Rational 
functions 
(Short column, 
Cantilever beam)



Summary
Strengths, Weaknesses, Research needs

Sampling (nongradient-based)

• UQ Strengths: Simple and reliable, convergence rate is dimension-independent

• UQ Weaknesses: N-1/2 convergence  expensive for accurate tail statistics

• OUU: smoothing with surrogates, TR-SBOUU 10x reduction with improved algorithmic robustness

Local reliability (gradient-based)

• Strengths: computationally efficient, widely used, scalable to large n (w/ efficient derivs.)

• Weaknesses: algorithmic failures for nonsmooth, multimodal, highly nonlinear limit states

• OUU: exploits analytic design grads, additional 10x reduction with analytic bi-level and sequential; 
but optimizers tend to exploit weaknesses above 

Global reliability (typically nongradient-based)

• Strengths: handles multimodal and/or highly nonlinear limit states

• Weaknesses: conditioning, nonsmoothness (ensemble emulation); scaling to large n (adjoint enhancement)

• OUU: global nongradient at both levels; sequential reuses GP data while avoiding unimportant d regions

Stochastic expansions (typically nongradient-based)

• Strengths: functional representation, exponential conv rates for smooth problems

• Weaknesses: nonsmoothness (h-refinement), scaling to large n (adaptivity, adjoints)

• OUU: SSA enables gradient-based NLP or gradient-enhanced global opt.;
bi-level, sequential, and multifidelity approaches

Related topics

• Epistemic & mixed UQ, including discrete epistemic model forms

• MCUU & Bayesian calibration



• A clear hierarchy of fidelity (from low to high)

• Multifidelity UQ methods: generate statistics for 
truth model leveraging less expensive models

• Multifidelity inference: calibration enables 
resolution of low complexity discrepancies

Multiple Model Forms in UQ
Discrete model choices, same physics (additional dimensions for multi-{physics,scale})

• Both hierarchy and peers

• Combine model selection and 
multifidelity inference processes

• An ensemble of models that are all credible (lacking 
a clear preference structure): e.g., turbulence models

• Without (adequate) data: epistemic 
model form uncertainty propagation

• With data: Bayesian model selection



• High-fidelity simulations (e.g., RANS, LES) can be prohibitive for use in UQ

• Low fidelity “design” codes often exist that are predictive of basic trends

• Can we leverage LF codes w/i HF UQ in a rigorous manner?  global approxs. of model discrepancy

Multifidelity UQ using Stochastic Expansions

Nlo >> Nhi

discrepancy

Adaptive sparse grid multifidelity algorithm:
• Gen. sparse grids for LF & discrepancy levels
• Greedy selection from grids: max QoI/Cost
• Refine discrepancy where LF is less predictive

Compressive sensing multifidelity algorithm: 
• Target sparsity within the model discrepancy



High fidelity Conchas: DG formulation for LES

ASCR MF UQ example: VAWT Gust Response

Vertical-axis Wind Turbine (VAWT) CACTUS: Code for Axial and 
Crossflow TUrbine Simulation

Computed vortex filaments 
in the wake of a VAWT

Low fidelity



LF/HF simulation comparison

QoI 1 (LF)

QoI 2 (LF)

Small gust

Large gust



Numerical studies – Level 2,5 sparse grid case

3 random vars: vortex radius (~ bnd normal), position (~ uniform), amplitude (~ gumbel)

• Multifidelity sparse grid using isotropic grids with default growth rules

• LF = level 5 (1099 Cactus simulations),   =  level 2 (44 HF LES simulations)

Blade impulse

Mean Convergence

Std Dev Conv

Coeff Spectrum
PDF

CCDF



Epistemic UQ
Epistemic UQ: one does not know enough to specify probability distributions

Sometimes referred to as subjective, reducible, or lack of knowledge uncertainty

Interval analysis

 Propagate input intervals to output intervals

 Intrusive interval methods (operation by operation propagation) have been investigated for 
several decades, but have not become mainstream (key issue: interval growth)

 Sampling methods (+ surrogate models if expensive evals) are commonly used

 Optimization methods are promising and some variants exploit data reuse

Dempster-Shafer theory of evidence

 Basic probability assignment (interval-based)

 Solve opt. problems (currently sampling-based)

to compute belief/plausibility for output intervals

Imprecise probability (p-boxes), Info gap, …



Notes on Rigorous Separation
Taking your set of uncertain variables and drop each one in one bucket or another based 

on your confidence of its characterization:

 Not really the right approach, IMO

 Advocate an approach that separates reducible parts from irreducible parts

 Provides a natural interpretation of mixed aleatory-epistemic results!

 For example there may an imprecisely known random excitation, but you know there 
is an excitation  separate what reducible from irreducible and model the reducible 
part as best you can (conservatism may be appropriate)

 For example, assume an aleatory Gaussian input w/ epistemic moments…  

 Or posit a range of possible distributions….

 If we don’t perform this separation rigourously and mix reducible and irreducible 
uncertainy, then what is the impact?

 Generally speaking results become difficult to interpret (some argue that aggregate p-box 
is still representative, but…)

 Specifically, aleatory results represent a partial view of the true irreducible variability.

 Example: mock transient thermal simulator
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valued and 
second-order 
statistics

Traditional approach: nested sampling

 Expensive sims  under-resolved 

sampling (especially @ outer loop)

 Under-prediction of credible outcomes

epistemic
sampling

aleatory
sampling

simulation

Epistemic uncertainty (aka: subjective, reducible, lack of knowledge 
uncertainty): insufficient info to specify objective probability distributions

Increasing epistemic 
structure (stronger 
assumptions)

Algorithmic approaches

• Interval-valued probability (IVP), aka probability bounds analysis (PBA)

• Dempster-Shafer theory of evidence (DSTE)

• Second-order probability (SOP), aka probability of frequency

Mixed Aleatory-Epistemic UQ:
IVP, SOP, and DSTE based on Stochastic Expansions

Address accuracy and efficiency

• Inner loop: stochastic exp. that are epistemic-aware (aleatory, combined)

• Outer loop:

• IVP, DSTE: opt-based interval estimation, global (EGO) or local (NLP)

• SOP: nested stochastic exp. (nested expectation is only post-processing in special cases)



Eldred, M.S., Swiler, L.P., and Tang, G., "Mixed Aleatory-Epistemic Uncertainty 
Quantification with Stochastic Expansions and Optimization-Based Interval Estimation," 
RESS, Vol. 96, No. 9, Sept. 2011, pp. 1092-1113.

Mixed Aleatory-Epistemic UQ: IVP, SOP, and DSTE

Multiple cells 
within DSTE

Analytic C∞
Convergence rates for combined expansions

L∞ metrics: 
IVP mixed, 
DSTE mixed

L2 metrics:
Aleatory, 
SOP mixed

Rational
Discontinuous C0

IVP SC SSG Aleatory:  interval converged to 5-6 digits by 300-400 evals

IVP nested LHS sampling: converged to 2-3 digits by 108 evals

Fully converged area interval = [75., 375.], β interval = [−2.18732, 11.5900]



Performance Results for Algebraic Test Problems

Mixed-integer global optimization approaches for interval estimation 

• Latin hypercube sampling (LHS)

• Evolutionary algorithm (EA)

• Surrogate-based global optimization (SBGO)

Rosenbrock

Epistemic vars: 1 discrete model form (2 values), 2 
continuous defining interval means for 2 aleatory vars

Short column

Epistemic vars: 1 discrete model form (4 values), 3 
continuous defining interval means within 5 aleatory vars

Eldred, M.S. and Wildey, T.M., "Propagation of Model Form Uncertainty for Thermal Hydraulics 
using RANS Turbulence Models in Drekar," Sandia Technical Report 2012-5845, July 2012.



Results for Thermal-Hydraulics with Drekar

Drekar RANS turbulence: Spalart-Allmaras, k-with Neumann BC, k-with Dirichlet BC

Clear benefit shown in utilizing optimization approaches relative to LHS:

• Rosenbrock: cost reductions of 20x for EA and 1000x for SBGO w/ comparable accuracy.

• Short column: EA more converged for 3 out of 4 bounds with 10x cost reduction;
SBGO provided most converged results for all 4 bounds with 3000x reduction in cost.

• Drekar: SBGO provided significant refinement in all 4 bounds (intervals broadened 
by 86% for mux and 11% for mpressure) using only 7 additional outer loop evaluations.



Summary Points

Address key UQ challenges

• Severe simulation budget constraints and moderate to high random dimensionality

• Compounded by mixed uncertainties, nonsmoothness, rare events

Impact DOE missions

• NNSA (ASC) & Offices of Science/Energy (ASCR, SciDAC-3, CSSEF, NE/CASL, EERE)

Investments in scalable UQ R&D

• Developing a broad suite of scalable and robust core UQ methods:

• Sampling, reliability, stochastic expansion, epistemic

• Goal-oriented adaptive refinement, (Adjoint) gradient-enhancement, Sparsity detection

• Building on this foundation (address complexities, compound efficiencies)

• Design under uncertainty: SBOUU, RBDO, PCBDO, et al.

• Multifidelity UQ, Mixed aleatory-epistemic UQ, emulator-based Bayesian inference



Extra Slides



Bayesian Methods
Inference and Model Selection

Likelihoods: Gaussian (with management 
of functional data, replicates, etc.)

Posterior evaluators (QUESO, GPMSA, DREAM, UQTk): 

MCMC with Metropolis-Hastings, delayed rejection, 
differential evolution, parallel chains, preconditioning, …

Emulators (Pecos/Surfpack): built over 
support of prior; for posterior sampling

• No emulator

• Stochastic expansions (PCE/SC)

• Gaussian processes

• Multifidelity models

Advanced topics: 

• discrepancy modeling and multifidelity inference

• PCE/KLE coefficient inference

• model averaging and selection

From Marzouk & Xiu, 2009



Moderate dimensional KLE Random Field Model 
Bayesian inference of Basal sliding field for Greenland

Greenland 
surface ice 
velocity

Karhunen-Loeve expansion (KLE):

Assume analytic spatial covariance kernel 
(squared exponential) for random field

and integrate over domain for modes. Length 
scale (L) balances feature resolution vs. # KLE 
modes (and may require iteration for inference).

KLE modes (5 capture 95% energy):

Dimension reduced inference of KLE coeffs:

• Mismatch = sum sq of surface velocity discrepancy

• PCE formed for mismatch over uniform prior 
distributions for isotropic sparse grid lev = 3

• MCMC on PCE with 100k samples, 1st 10k discarded
C(r1, r2 ) e(r1r2 )2 /L2

Truth Reconstructed

Posterior coeffs 1,2



Input design parameterization:

• Augmented design variables

• Inserted design variables

– Native distribution params may be sufficient

– Extended parameterizations  location, scale

Output metric characterization:

• Robustness metrics  min/constrain 2

– awk for reliability  use G() range

• Reliability metrics  max/constrain p/

– awk for sampling (by binning)  projected p/, IS

• Combination         

– Also Pareto opt., …

• Inversion (model calibration) under uncertainty

– NLS with output PDF/CDF

OUU Formulation 
Issues (probabilistic)

Augment with response statistics su

(e.g., , z//p) using linear mapping:

Minimize f(d) + Wsu(d)
Subject to gl  g(d)  gu

h(d)  ht

al  Aisu(d)  au

Aesu(d)  at

dl  d  du

Nonlinear mappings (2, /) via AMPL

Maximize r or r (= -2)
subject to 2  (r > rcrit)

Minimize

where

E.g., triangular distribution:



Input design parameterization:

• Augmented design variables

• Inserted design variables

– As for uniform PDF  need locn, scale for BPAs

Output metric characterization:

• Robustness

– insensitivity to epistemic uncertainties

– minimize/constrain response interval

– Pl – Bel for Y*  [pbel, ppl] or p*  [Ybel, Ypl]

• Reliability

– Minimize/constrain appropriate interval bound

– Pl(Y) or Bel(Y), depending on failure sense

• Combination

OUU Formulation Issues 
(nonprobabilistic)



Bistable Switch: Problem Formulation

σ
σ

-5.0

simultaneously reliable and robust designs

-5.0

-5.0

combined RIA/PMA to control both tails
(reliable/robust):

RIA/PMA combination: 
twice the cost

Typical design specifications:

• actuation force Fmin reliably < target (-5 μN)

• bistable (Fmax > 0, Fmin < 0)

• maximum force: 50 < Fmax < 150

• equilibrium E2 < 8 μm

• maximum stress < 1200 MPa 


