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' Optimization Under Uncertainty

Standard NLP Add resp stats s, (u, o, z//p)
min F(d) optimize, accounting min /() JEdV)ViU(d)
st. g, <g(d) <gu | foruncertainty metrics S.L. }gf((;)g: - u
h(d) = hy (using any UQ method) dp < d<dy
a; < Ajsu(d) < an
dlgdédu A su(d) = ay
Input design parameterization
* Design vars may augment uncertain vars in simulation da
* Inserted design vars: an optimization design var may be a
parameter of an uncertain dist, e.g., the mean of a normal di
Control response statistics to design for...
...robustness: ...reliability: ...combined/other:
min/constrain moments min/max/constrain p/ Pareto, inversion/model
M, 02, or z(B) range (tail stats, failure) calibration under uncertainty
— J— | — [ a
o o |

Epistemic/Mixed —| |e— — ] f—




Uncertainty Quantification Algorithms in DAKOTA:
New methods bridge robustness/efficiency gap
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Latin Hypercube, | Incremental Adaptive Bootstrap, FSU
Monte Carlo Importance Jackknife
Local: Mean Value,| Global reliability GPAIS, POFDarts, Recursive Local:
1st- & 2nd-order methods (EGRA) | GPs with gradient- | emulation, Notre Dame,
reliability (AMV+, enhancement TGP Global:
FORM, SORM) Vanderbilt
Polynomial chaos, | Dimension-adaptive | Local adapt | Stanford,
stoch collocation | p-/h-refinement, refinement, Utah
(regression, grad-enhancement, | adjoint EE,
tensor, sparse) sparsity detection | discrete vars
Interval-valued/ Opt-based interval Discrete Arizona St
2nd-order prob. est, Dempster-Shafer, GPs, Imprec.
w/nested sampling discrete model forms| ,obability
Emulator based model LANL,
MCMC with QUESO, | selection, UT Austin
GPMSA multifidelity
Efficient subspace | Rand fields / | NCSU, Utah,
method, Morris- stoch proc, Cornell,
Smale topology Moment meth| Maryland
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UQ with Sampling Methods

Starting from distributions on the uncertain input values, draw observations
from each distribution, pair samples, and execute the model for each pairing
- ensemble of results yields distributions of the outputs

— Monte Carlo: basic random sampling

— Pseudo Monte Carlo: Latin Hypercube Sampling (LHS)

— Quasi Monte Carlo: Halton, Hammersley, Sobol sequences

— Orthogonal arrays, Centroidal Voronoi Tesselation (CVT), Importance Sampling
Advantage: Sampling is easy to implement, robust, and transparent.
Disadvantage: N-"? convergence, often impractical for p;,;, stats nonsmooth over d
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Optimization under Uncertainty
with Surrogates

SBOUU: employ surrogate models for interpolation of

noisy data and approximation of expensive simulations

and/or statistics.
« Data fit (global, local, multipoint)
« Multifidelity
* Reduced-order models (ROM)

Rely on truth models for surrogate construction,

updating, and step verification
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Formulation

Design Surrogate

Formulations 2 & 4 amenable to trust-region approaches
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Formulation 3:
UQ Surrogate
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Formulation 1:
Nested (no surrogate)
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Formulation 4:
Design and UQ Surrogates

Sandia
Goals: maintain quality of results, provable convergence (for a selected confidence level) l"l National
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Trust Region Surrogate-Based Quad Poly
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» Global: polynomial resp surf, NN, splines, kriging/GP, radial basis fn

» Local: 1st/2nd-order Taylor series Neural

* Multipoint: two-point exponential approx (TPEA), two-point Netwo
adaptive nonlinearity approx (TANA)
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Sequence of trust regions

(Global) data fits in SBO:

* Smoothing: extract desired
global trend from noisy data

* DACE: number of design
variables limited to O(10")

* Local consistency must be o Ty
balanced with global accuracy

* Constrained LLS
» TS w/ global Hessian estimation
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Data fit surrogates:

Data fits in SBO
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Trust-Region
Surrogate-Based Optimization
Multifidelity > ROM
’ \ [

2 » Spanning ROM
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* Local
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Multifidelity surrogates:

Coarser discretizations, looser

Global: polynomial regress., splines,
neural net, kriging/GP, radial basis fn

Local: 1st/2nd-order Taylor .
Multipoint: TPEA, TANA, ...

Omitted physics: e.g., Euler CFD,
panel methods

Multifidelity SBO

Smoothing: extract global trend * HF evals scale better w/ des. vars.

DACE: number of des. vars. limited * Requires smooth LF model

Local consistency must be balanced * May require design vect. mapping

with global accuracy

Correction quality is crucial

_2 _1 | | ///// 2>\\ \\\\\-1Multipooint 1/////// ///2

conv. tols., reduced element order

ROM surrogates:

+ Spectral decomposition (str. dynamics)
« POD/PCA w/ SVD (CFD, image analysis)
+ KL/PCE (random fields, stoch. proc.)

ROMs in SBO

+ Key issue: capture parameter changes
—E- ROM, S-ROM, tensor SVD

+ Some simulation intrusion to re-project

m Sandia

National _
Laboratories

* TR progressions resemble
local, multipoint, or global
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TR-SBOUU Benchmark Results

Direct nested OUU is expensive and requires seed reuse
SBOUU expense much lower (up to 100x), but unreliable.

TR-SBOUU maintains quality of results and reduces expense ~10x

— Ex. 1: formulation 4 with TR 5-7x less expensive than direct nesting

— Ex. 2: formulation 4 with TR 8-12x less expensive than direct nesting

— ICF Ex.: formulations 2/4 with TR locate vicinity of a min in a single cycle
Greater algorithmic robustness:

— Navigation of nonsmooth engineering problems

— Less sensitive to seed reuse: variable patterns OK and often helpful, possibility of exploitation

of poor sample design is reduced
— Less sensitive to starting point: data fit SBO provides some global identification

Primary weakness:

— Resolution of statistics with (under-resolved) sampling 2> best for moments & their projections

2002-2003 conference papers (AIAA MA&O, SIAM CS&E, USNCCM): Eldred, M.S., Giunta, A.A., Wojtkiewicz,
S.F., Jr., and Trucano, T.G., "Formulations for Surrogate-Based Optimization Under Uncertainty."
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Robust Hohlraum Design for
Inertial Confinement Fusion

Encapsulant Wire initiation
creates a “high m"" m“““
Z” dense plasma

3D ALEGRA MHD

Encapsulant converts the plasma
radiation to a “drive” i.e., pressure on
the capsule.

1D, 2D, 3D ALEGRA, rad-MHD

Metal wires

Drive and implosion of capsule.
1D, 2D ALEGRA rad-hydro

HHHM!

Sample
Hohlraum

Capsule Configuration

>

Uncertainties in: plasma, drive, and capsule characteristics

Sandia
m National
Laboratories




ICF Capsule Design
2D Optimization

< 0.0 X . e
5 4 \ Maximize —V
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: - s.t.  o,<3.e+5 cm/s e
40E40
£ 3054, g | 0.103cm < . <0.14 cm |
2 N 0.001 g/cc < 1) < 0.003 glec oo |
G0 ‘/ R=U[u, -2.5¢e-3, u + 2.5¢-3] AN
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* Nested OUU stalls
* TR-SBOUU finds solution vicinity in a single cycle, effectively stepping over nonmoothness in V(r), o\(r)
objective/constraint are multimodal - min dependent on initial TR Sandia
d /€ ' 1 dep m National
» Less sensitive to seed reuse and starting point |aboratories



‘ UQ with Reliability Methods

Mean Value Method e = glpx) —
% = LY 0w T ) ) Rough
Bear = o = 2 B . statistics
z = pf I BBz {z = Hg—O y-*'ir:rff
Becar = il z = g+ OgBecdf
T g . _
MPP search methods AN

Failure Performance Measure

. region Approach (PMA)
: - MPP

Reliability Index
Approach (RIA)

minimize uu

minimize +G(u)

FORM subject to ulu = 32

, Find min G at B radius
U1 Used for inv map p/8 2 z
" SORM -

subject to G(u) =2

Find min dist to G level curve
Used for fwd map z 2 p/p

, Lu ‘ . Laboratories

eeeeeeeeeeeeee

Nataf x = u:
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RBDO Algorithms

Bi-level/Nested RBDO minimize
. RIA subject to

- Constrain RIA z > p/B result RBDO J
« Constrain PMA p/B > z result or
~ vd’ =

Analytic Bi-level RBDO

- Analytic reliability sensitivities avoid Vafeas =
numerical differencing at design level < _
dPedf =
\(1st order)

Sequential/Surrogate-based RBDO:

* Break nesting: iterate between opt & UQ until target is met. ,
Trust-region surrogate-based approach is non-heuristic.

subject to  B(d.) + VaB(de)T(d —d.) > 3
or p(dc) + Vdp(dc)T(d - dc) <p
Id—dc [, <A*

minimize  f(d.) + Vaf(d.)T(d — d.) ]

Unilevel RBDO:

15t-order
(also 2"-order w/ QN)

B
p

PMA minimize
~ RBDO | subject to
p

f
zZ>E

IAN IV

Vag
1 If d = distr param, then expand

—V
VG % VaxVyg
—&(—Bear )V aBedf

Vag =

%

4 _gmin f(d,p,y(d,p))
- All at once: apply KKT conditions of aug =(d 1, N g
MPP search as equality constraints s.t. Gf{(u,n) =0
* Opt. increases in scale (d,u) Baliowed — 3 >0 | KKT
* Raquires and-ordler info for s | 190G Cuis m] + ] VGl i n) = 0| of MPP
derivatives of 1st-order KKT .
lﬁl - ||ul|| m ﬁaa%dial
d <d< d* labu[mories
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OUU Progress (2002-2005)

100000

OUU/TR-SBOUU

OUU Performance vs. Time - Cantilever Problem

10000 +——=—

1000

RBDO

Bﬁ\, S1
100 A-BL \

S2

Total Resp Fn Evals

—— Bi-level OUU

—=— TR-SBOUU2
TR-SBOUWU4

—— Bi-level RBDO

—=— Sequential RBDO

10

With tuning of initial TR size, |> 2 orders of magnitude
3 RBDO benchmarks solved in | improvement over
~40 fn evals per limit state: “brute force” OUU

e 35 for 1 limit state in short column
» 75 for 2 limit states in cantilever
e 45 for 1 limit state in steel column

Sandia
National
Laboratories
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Shape Optimization of Compliant MEMS

« MEMS subject to substantial variabilities & lack historical knowledge base

« Sources of uncertainty
— Material properties, manufactured geometries, residual stresses
— Data can be obtained - aleatoric uncertainty, probabilistic approaches

* Resulting part yields can be low or have poor cycle durability

ASC Milestone: Solution-Verified Reliability Analysis & Design of MEMS
« Account for both manufacturing uncertainties and simulation errors in MEMS design
 Integrate UQ/RBDO (pakota), ZZ/QOI error est (coda), adapt (sierra), Nnonlin mech (aria)

» Goals: On-line soln verification = project UQ/OUU results to fully converged mesh;
Achieve prescribed reliability; Minimize sensitivity to uncertainties (robustness)

Bi-stable MEMS Switch P(F min<2)

A switch
contact

CDF

E, E;

/NS

displacement

Error estimates
result in CDF shift

V4

P AMRAY

» Error-corrected: EE as analysis correction factors
» Error-informed: EE as indicators for uniform/adaptive refinement (tight tols: eliminate correction)
» Combined: control error levels (loose tols: assure correction accuracy) & use correction factors
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Bi-Stable Switch: Problem Formulation

actuation force i o
contact
A S
. !
anchors :
| E2 Ej
|
i E :
|
displacement
N .

vernier

13 design vars: W,, L, 6,
2 random vars:

| variable | mean () | std. dev. | distribution
AW (width bias) -0.2 pm 0.08 normal
Sy (residual stress) | -11 Mpa 4.13 normal
max E [Frmin(d, x)]
s.t. 2 < /Bccdf(d)
50 < E[Fmee(d,x)] < 150
E[E2(d,x)] < 8
E [Smaz(d,x)] < 3000 I el |

- reliable + robust + % m % = : Laboratories




' Milestone Results:

Solution-Verified Reliability Analysis and Design

> Reliability analysis: compute error-corrected CDFs and assess accuracy/efficiency

probability
&
probability
o
b

0.4f

—&— linear_200
—=— linear_B0O
+— linear_3200
—=— linear_12800 oA
- —4— reference

. f e . L ,
m ] o [ [ [ m "] o 0 1 a
F in (BN} ® D

» RBDO: carry best fwd to design sW|tch for max robustness s.t. reliability constraint

70

- MVFOSM
60 -2.5
50 =
-35
~ 40 =
Z 2
S S
-5
10 . e .
B } Reliability constraint: g >2
0 6 e
B | . . . 65 : ‘ ‘ I Max F_,, (10x robustness)
0 2 4 6 8 10 6 6.5 7 7.5 8
displacement (um) displacement (um)

Conclusions: UQ/OUU with error corrected/informed approaches can be:

more accurate: controlling/correcting errors leads to higher confidence in UQ/RBDO results
less expensive: L.inear800+EE analysis above < 10% cost of fully converged reference
more reliable: on-line approach accounts for any parameter dependence (esp. shape vars)
more convenient: can eliminate need for manual a priori convergence studies

YV V VY

Sandia
National
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Issues with RBDO

Insight from parameter study over 30 uncertain variable range
for fixed design variables d\,*. Dashed black line denotes

g(x) =F, min(x) =-5.0.

(AW, S )

F
min

« AMV2+ and FORM converge to
different MPPs 274
(+ and O respectively)

r

* Issue: high nonlinearity leading to
multiple legitimate MPP solins.

-11

« Challenge: design optimization
may tend to seek out regions
encircled by the failure domain. :
1st-order and even 2"d-order il
probability integrations can
experience difficulty with this . .
degree of nonlinearity. " Width bias AW (um)

residual stress S (MPa)

As for UQ, need to achieve a more effective balance in robustness / efficiency |@

Sandia
National
Laboratories



Efficient Global Re

Sandia
m National
Laboratories

iability Analysis

exploit

explore

» —

10

0 —
10
- — Reliability method Function evaluations First-order p (% error) Second-order p (% error) Sampling p, (% error, avg. error)
" Noapproximation 70 0.11797 (277.0%) 0.02516 (—19.6%)
= —— x space AMV2+ 26 0.11797 (277.0%) 0.02516 (—19.6%) _—
L uspace AMV+ 26 0.11777 (277.0%) 0.02516 (—19.6%) —
» — u space TANA 131 0.11797 (277.0%) 0.02516 (—19.6%)
& LHS solution 10k — — 0.03117 (0.385%, 2.847%)
% LHS solution 100 k e S 0.03126 (0.085%. 1.397%)
P03 LHS solution 1M _— —_— 0.03129 (truth, 0.339%)
o |xspace EGRA 35.1 —_ _— 0.03134 (0.155%, 0.433%)
o —|u space EGRA 35.2 = _ 0.03133 (0.136%, 0.296%)




EGRA-based OUU

Bi-level / Nested: opt outer loop, UQ inner loop M
- Separate GPs (Uncertain approx): PHHHTHZE f(d)
« EGO over d; For each d, EGRA resolves g(u) subject to  P[g(d,x) > 2] < pr

* No data leveraging among UQ runs for nearby d
+ Single GP (Combined approx):
+ EGRA resolves g(d, u) using a single GP; EGO post-processes this GP for p(d)
» Leverages data but may resolve g in regions of d that are not important for optimization

Sequential: break nesting - iterate between opt & UQ by updating approximate constraint
+ Combined GP for g(d, u) with refinement
» After each approx design cycle, perform EGRA at d* - updates g(d, u); iterate until conv.
» Leverages data and avoids resolving g in unimportant regions of d

Table 1. Results for the short column RBDO example.

Design/Reliability Avg. Obj. Fn  Avg. B* Value  Avg. g Evals
Methods (Best Feasible)  (# violations)  (Best Feasible)
Nested NIPS/AMV>+ 216.2 2.500 1190 )
FD gradients
Sequential NIPS/AMV2+ 216.2 2.500 757
Nested EGO/Separate EGRA 2164 (216.1) 2.502 (3) 333.3(260)
Nested EGO/Single EGRA 218.5(217.4) 2.505 (3) 134.1 (144)
Sequential EGO/EGRA 216.9 (216.5) 2514 (1) 148.7 (163)

Bichon, B.J., Eldred, M.S., and Mahadevan, S., "Efficient Global Surrogate Modeling for Reliability-Based Design Optimization," (to appear) ASME Journal of Mechanical Design.



Non-Intrusive Stochastic Expansions: A i,
Laboratories
Polynomial Chaos and Stochastic Collocation

Polynomlal chaos: spectral prOJectlon usmq orthogonal polynomial basis fns

Up(&) = Lo(‘fl) Wo(&z) = 1 Distribution ~ Density function Polynomial Weight function ~ Support range
R— Z T1(8) = vil&)woléa) = & il . il S ((I)J . [TTET]
Y : Wa(§) = Lf’o(ﬁl)'if'z(ﬁz) = & m(::n = e acie? ML :: T —
J usmg Ws©) = Val)volte) = 1| e EoMLE  WWRTTE)  (-osef  LL)
Ly(8) = (&) (&) = L& Gamma % GeneralizedLaguerreL,(:’)(a:) 2% [0, o0]
Us(§) = (&) valbe) = & -1
* Estimate ¢; using regression or numerical integration: (R, / -
. . s = — Q
sampling, tensor quadrature, sparse grids, or cubature | * ‘1’2 (¥3) !
Stochastic collocation: instead of estimating coefficients for N,

' ' form interpolants for known fficien ~ T, .
known basis functions, fo terpola .ts or kno C(?e .ce ts R(¢) = r;L;(€)
» Global: Lagrange (values) or Hermite (values+derivatives) =1
* Local: linear (values) or cubic (values+gradients) splines

mi, mi,

J—Hg e @Y Y (€8 (h e e L)

J1=1 Jn=1
k# Sparse interpolants formed using 2 of tensor interpolants
* Tailor expansion form:
— p-refinement: anisotropic tensor/sparse, generalized sparse
— h-refinement: local bases with dimension & local refinement

* Method selection: fault tolerance, decay, sparsity, error est.




@ Natorel Stochastic Sensitivity Analysis

Laboratories
« PCE/SC have convenient analytic features P Np
— Expansions readily differentiated w.r.t. & R= Z a;V;(€)||R(§) = Z riL;(§)
— Analytic moment expressions J=0 J=1
* Augment w/ nonprobabilistic dimensionss =~ _ in = \- 0
— Design, epistemic uncertain j=1
P N,
 Approach 1: PCE/SC over prob. vars oR = Z o (U3) oh = ) _riwj—uk

for each set of nonprobabilistic vars

Moment sensitivity = expectation of response sensitivity
DEDIAOL 2163 4 N
ar dp  dR W Zwkﬂ
o I_> ds <E> ) ds Pt ds
P 9 N, ‘
R, s)= Y ri(s)Li(€) ;L _ zzak @R 4 dd— ST
k=1 ' L S k=1 as

—>Additional data requirements (dR/ds), but no additional dimensions
« Approach 2: PCE/SC over all variables

™ N Moment sensitivity = expectations over & +
UL, 8] = ;}aj%(e‘ s)| |R(&,s) = 2:1] plegliss differentiation of remaining polynomial in s
—_ J:
NP
_P
pr(s) = 3 os(Us(E ))e tr(s) = ;TNL;:'(E-S))E
— o N,
iy 2ip..N b ik, P IT (& NT (65»5 _ #%2(3)

‘ - Additional dimensions, but no additional data requirements |
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PCE-based and SC-based OUU

Analytic Bi-level: Reliability: Robustness:
+ Analytic moment/reliability sensitivities minimize f minimize f
(avoid numerical derivs. at design level) subject to 3 > 3 subject to 2 < 52

* Uncertain or Combined expansions ~ _
(B initially based on moment proj)

Sequential/Surrogate-based: _
. . . TR-SBO with local
+ Break nesting: iterate between opt & UQ w/ (surrogate) linkage data fit & multifidelity

* Uncertain expansions \
( minimize f(se) + st(sc)T(s — Se)
< subject to B(sc) + VsB(se) (s —se) > B
&  15t-order
[s—sc|lo <A
C : + Also QN
minimize f(se) + Vaf(se) (s —se) ond_grder
< subject to  02(s.) + Vs02(s.)T(s — s.) < 52
L Hs—sCngﬂk )

Multifidelity (focused on UQ fidelity):

< minimize

+ Optimize corrected LF UQ model over TR _

* LF = Combined expansion (over s), MVFOSM < subject to

* HF = Uncertain expansion (at single design pt) L
« Additive corrections enforce LF/HF consistency D e

« 1st order & Bri(s) = B(s) + ag(s) mu_nmlzc A Qf(s) r

QN 2"d-order . o 5 J subject to oni“(s) <@
Ohi“ (8) = 0Ojo(s) + ap2(s) I's—se |l <AF Sandia
b _ m Paaglutmllries

Unilevel approach (sim residuals @ collocation pts)
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Computational Results:
PCE-/SC-based OUU

Tvpical reSUIt: Design Expansion Integration Evaluations
approach variables approach (Fn, Grad) Area BcoF
short column PCE/SC Bilevel Uncertain SSCGw=2 465. 465) 202.87  2.5001
min bh PCE/SC Bilevel Combined SSGw=3 (341,0) 201.67/199.46 2.5000
) PCE/SC Sequential 1 Uncertain SSCw=2 (372, 186) 202.86  2.5000
s.t. =25 PCE/SC Sequential Q2 Uncertain SSGw=2 (341, 186) 202.86  2.5000
50<b<15.0 PCE/SC {Comb, Unc} Multifidelity 1 {Comb, Unc} SSG {w=3, w=2} (992/1333,155) 202.86  2.5000
- PCE/SC {MV, Unc} Multifidelity 1 =~ Uncertain SSCw=2 (281, 188) 202.86  2.5000

15.0 < h <250 = . _ ; _

ully converged solution is (b, h) = (8.1147, 25.000) with Area = 202.87

+ 1storder uncertain locally accurate & reliable: effective in bi-level & sequential
 O-order combined can be more efficient but optima not as precise
« Sequential is competitive; quasi-2"d-order linkage assists convergence

« Multifidelity coerces LF UQ results to HF optimum; top performer with cheapest LF (Mean Value)

Rational

functions
(Short column, '}
Cantilever beam)

Error

107" —=— max B SC w=2-8

max B PCE w=2-8

—— B Aleatory SC w=2-8

—— P Aleatory PCE w=2-8
T T

10° 10°

Simulations

.
10°

.
10°

Smooth C~
(Ishigami)

Error

1072Y A |}L Mixed IVP SC w=2-8 CC
.. B, Mixed IVP SC w=2-8 CC
|| ——Ms Mixed SOP SC w=2-8 CC
<— g Mixed SOP SC w=2-8 CC 4
—— P Aleatory SC w=2-8 CC
T

.
10 10° 10° 10*
Simulations

Eldred, M.S., "Design Under Uncertainty Employing Stochastic Expansion Methods," Intl Journal for UQ, Vol. 1, No. 2, Feb. 2011, pp. 119-146.




Summary
Strengths, Weaknesses, Research needs

Sampling (nongradient-based)

+ UQ Strengths: Simple and reliable, convergence rate is dimension-independent

« UQ Weaknesses: N-"2 convergence - expensive for accurate tail statistics

* OUU: smoothing with surrogates, TR-SBOUU 10x reduction with improved algorithmic robustness
Local reliability (gradient-based)

« Strengths: computationally efficient, widely used, scalable to large n (w/ efficient derivs.)

+ Weaknesses: algorithmic failures for nonsmooth, multimodal, highly nonlinear limit states

* OUU: exploits analytic design grads, additional 10x reduction with analytic bi-level and sequential,
but optimizers tend to exploit weaknesses above

Global reliability (typically nongradient-based)

« Strengths: handles multimodal and/or highly nonlinear limit states

+ Weaknesses: conditioning, nonsmoothness (ensemble emulation); scaling to large n (adjoint enhancement)

* OUU: global nongradient at both levels; sequential reuses GP data while avoiding unimportant d regions
Stochastic expansions (typically nongradient-based)

« Strengths: functional representation, exponential conv rates for smooth problems

+ Weaknesses: nonsmoothness (h-refinement), scaling to large n (adaptivity, adjoints)

* OUU: SSA enables gradient-based NLP or gradient-enhanced global opt.;
bi-level, sequential, and multifidelity approaches

Related topics
» Epistemic & mixed UQ, including discrete epistemic model forms
« MCUU & Bayesian calibration



Multiple Model Forms in UQ ) i,
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Discrete model choices, same physics (additional dimensions for multi-{physics,scale})

Potential Flow

» Aclear hierarchy of fidelity (from low to high)

{ « Multifidelity UQ methods: generate statistics for}
truth model leveraging less expensive models
» Muiltifidelity inference: calibration enables
resolution of low complexity discrepancies

* An ensemble of models that are all credible (lacking
a clear preference structure): e.g., turbulence models

Hybrid RANS/LES

[- Without (adequate) data: epistemic }
model form uncertainty propagation
« With data: Bayesian model selection

Potential Flow

=
]
;?, —
&
. @, Reynold " Twe.
« Both hierarchy and peers El  Averaged Navier-  [REST equation
z Stokes (RANS) RANS model RANS model model
=
« Combine model selection and g HB
multifidelity inference processes = RANS/LES
o
g
Large Eddy

Simulation (LES)




Multifidelity UQ using Stochastic Expansions (i) fm

« High-fidelity simulations (e.g., RANS, LES) can be prohibitive for use in UQ
* Low fidelity “design” codes often exist that are predictive of basic trends
« Can we leverage LF codes w/i HF UQ in a rigorous manner? - global approxs. of model discrepancy

Nio Npi
(&) =) Fo€)L5(6) + > Af(€,)L;(€) N, >> N,
Rpign (&) = %95 ¢050.5¢ — 0.5 00265 1o | | | o
Ry (6) = =005 0.5¢. discrepancy
107° 107
L% L% 107}
% :> £ 107 2
g 3 810
§ 10 2 2
$ o 107° ¢
c.%' = High-Fidelity = High—Fidelity
High—Fidelity Model _p| L= Multifidelity o[ [=——Muitifidelity
107" Cfrrect:oﬁ Iguncct'ioi 10 0 5 'IIO 'll5 20 10 0 5 'IIO 'll5 20
5 10 15 0 Number of High—Fidelity Model Evaluations Number of High—Fidelity Model Evaluations
Polynomial Order (a) Error in mean (b) Error in standard deviation
Adaptive sparse grid multifidelity algorithm: o r=MiNo=6 ——
» Gen. sparse grids for LF & discrepancy levels & o Cosnge
* Greedy selection from grids: max AQol/ACost ¢« 2 ol e
* Refine discrepancy where LF is less predictive . m 10°f
Compressive sensing multifidelity algorithm: 8F
. . . . S | el Multifidelity 5 1 ; L 5 e S .
« Target sparsity within the model discrepancy o oq0 10 100 10
Equivalent Number of High-Fidelity Model Evaluations Equivalent Number of High-Fidelity Model Evaluations




ASCR MF UQ example: VAWT Gust Response

Vertical-axis Wind Turbine (VAWT) Low fidelity

Computed vortex filaments o
in the wake of a VAWT g '

Time: 0.000000

mh

Sandia
National
Laboratories

CACTUS: Code for Axial and
Crossflow TUrbine Simulatio



LF/HF simulation comparison
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o o ° Sandia
Numerical studies — Level 2,5 sparse grid case rh) tima_

3 random vars: vortex radius (~ bnd normal), position (~ uniform), amplitude (~ gumbel)

» Multifidelity sparse grid using isotropic grids with default growth rules
 LF = level 5 (1099 Cactus simulations), A = level 2 (44 HF LES simulations)

Blade impulse . Normalized PCE coefficients for blade impulse
1 O T T T T
. X 10; Single and muttifidelity mean predictions o PDF from 100k LHS Samples D H F SG L=2
w— e . Coeff Spectrum A delta SGL=2
-+ Mean Convergence PDF =i O LFSGL=5
" ] . + MF SGL=2,5
t ; / 10 & 7
10°
8.7 4
B oz
8. 2’ 0
I 2
873 -1 O - .
=
4 e
0
HF PCE SG i)
e =
MFSC8G S
87 20 25 107 3 a5 9 9. = 1 OO B ]
Number of HF simulations blade impulse x10* S
i i i Single a‘nd mulmids‘:hly std dev‘iaﬂun pred‘icliuns CCDF from 100k LHS Samples g
o
L 2
=t Std Dev Conv 2
Q
2400 @
-2
10 R
2300
_;5’ 22222
2000 1 0_4 - i
1900 4
e
1800 HFSCSG []
—E— MF PCE SG
) ) ) ) . MF SC SG ) ) . S
° ° 10 ° Numberzgi HF S\mi\sauons SO * © ® e & 85 ° ] o8 ° 1 0_6 L . ! '
blade impul 10 0 1 2 3
10 10 10 10

Basis id (total-order basis)




Epistemic UQ ) i,

Epistemic UQ: one does not know enough to specify probability distributions

Sometimes referred to as subjective, reducible, or lack of knowledge uncertainty

Interval analySiS f—lnput 4 Simulation [ [ output ] ]
I Intervals ] - Code(s) - Intervals
. . . [—]
= Propagate input intervals to output intervals _

= |ntrusive interval methods (operation by operation propagation) have been investigated for
several decades, but have not become mainstream (key issue: interval growth)

= Sampling methods (+ surrogate models if expensive evals) are commonly used
= Optimization methods are promising and some variants exploit data reuse

Dempster-Shafer theory of evidence 10

= Basic probability assignment (interval-based) "“11

= Solve opt. problems (currently sampling-based)
to compute belief/plausibility for output intervals

—T T
Failure
Region

Bel(=Y)—"]

00 01 02 03 04 05 06 07 0.6 08 1.0
10% 90%

Pl(>Y) or P(>Y) or Bel(>Y)
]

Source 1 + . : 00k 4
SOUrCe 2 e 7070 20
. 33% L 33% B I AT A
Source 3 ' - ' 06 08 10 12 14 16 18 20 22
33% v

Imprecise probability (p-boxes), Info gap, ...



Notes on Rigorous Separation ) b

Taking your set of uncertain variables and drop each one in one bucket or another based
on your confidence of its characterization:

= Not really the right approach, IMO

= Advocate an approach that separates reducible parts from irreducible parts
= Provides a natural interpretation of mixed aleatory-epistemic results!
= For example there may an imprecisely known random excitation, but you know there
is an excitation = separate what reducible from irreducible and model the reducible
part as best you can (conservatism may be appropriate)
= For example, assume an aleatory Gaussian input w/ epistemic moments...
= Or posit a range of possible distributions....
= |f we don’t perform this separation rigourously and mix reducible and irreducible
uncertainy, then what is the impact?

= Generally speaking results become difficult to interpret (some argue that aggregate p-box
is still representative, but...)

= Specifically, aleatory results represent a partial view of the true irreducible variability.
= Example: mock transient thermal simulator



Mixed Aleatory-Epistemic UQ: i) et
IVP, SOP, and DSTE based on Stochastic Expansions

Epistemic uncertainty (aka: subjective, reducible, lack of knowledge epistemic
uncertainty): insufficient info to specify objective probability distributions sampling

Traditional approach: nested sampling

1.00

= Expensive sims - under-resolved
sampling (especially @ outer loop) 0.75-

aleatory
samplin

= Under-prediction of credible outcomes

Interval-
valued and

second-order
statistics

Cum Prob
o
o
T

F————_—_——— === z -

____________________

Algorithmic approaches " fesponse metric

* Interval-valued probability (IVP), aka probability bounds analysis (PBA) Increasing epistemic
» Dempster-Shafer theory of evidence (DSTE) structure (stronger

« Second-order probability (SOP), aka probability of frequency assumptions)
Address accuracy and efficiency minimize  M(s)

* Inner loop: stochastic exp. that are epistemic-aware (aleatory, combined) subjectto s, < 5 < su

* Outer |OOpZ maximize M(s)
+ IVP, DSTE: opt-based interval estimation, global (EGO) or local (NLP) ——> |subjectto s <5< sp

+ SOP: nested stochastic exp. (nested expectation is only post-processing in special cases)




Mixed Aleatory-Epistemic UQ: IVP, SOP, and DSTE

Interv Est uQ Expansion Evaluations
Approach Approach Variables (Fn, Grad) Area B \
T T T T T
. . . . L — — — Global Opt/SC w=3 Belief
IVP SC SSG Aleatory: ginterval converged to 5-6 digits by 300-400 evals ok b —— Gona oSG w3 s |
EGO SCSSGw=1 Aleatory (84/91, 0/0) [75.0002, 374.999] [-2.26264, 11.8623] i e toeons w000 peer
EGO SCSSGw=2 Aleatory (372/403, 0/0) [75.0002, 374.999] [-2.18735, 11.5900] goer “n ——LHS 100015 1000 Paus |
EGO SCSSCGw=3 Aleatory (1260/1365, 0/0) [75.0002, 374.999] [-2.18732, 11.5900] _L_g,”, i . i
EGO SC SSG w =4 Aleatory (3564/3861, 0/0) [75.0002, 374.999]  [-2.18732, 11.5900] i (. Multiple cells
NPSOL SCSSCw=1 Alealory (21777, 21/77) [75.0000, 375.000] [2.26264, 11.8623] Toe T within DSTE
NPSOL SCSSCGw=2 Aleatory (93/341, 93/341) [75.0000, 375.000] [-2.18735, 11.5901] g o5k 1y
NPSOL SCSSGw=3 Aleatory (315/1155, 315/1155) [75.0000, 375.000] [-2.18732, 11.5900] k- ”_u‘
NPSOL SCSSGw=4 Aleatory (891/3267, 891/3267) [75.0000, 375.000] [-2.18732, 11.5900] Eoar T
. . . £, i
IVP nested LHS sampling: converged to 2-3 digits by 108 evals = |
LHS 100 LHS 100 N/A (10%/10%, 0/0) [80.5075, 338.607] [-2.14505, 8.64891] Eoar
LHS 1000 LHS 1000 N/A (105,108, 0/0) [76.5939, 368.225] [-2.19883, 11.2353] o
LHS 10 LHs 10* N/A (103/108, 0/0) [76.4755, 373.935]  [-2.16323, 11.5593] L ‘
. . -4 -2 0 2 4 [ 8 10 12
Fully converged area interval = [75., 375.], B interval = [-2.18732, 11.5900] Retebity ncex
Convergence rates for combined expansions 0 . . Ihjjp—
T 1 ' " Analytic C~ I\ | Discontinuous C?°
10° | &= S f&m Rational [ Wl 1 N |
2 e T L 10° w_
10° = | ._\\ 4 0° 7'.'6-7-
TR \\ . _— e
o | S~ ]| L* metrics: 10 | —
'\'\\\;-_ VP mixed, E B, Mred VP SCw=1-10 g 0
- R . - |l B, Mixed IVP SC w=1-10
2100t B DSTE mlxed ” j]}LMlxeﬂ IVP PCE w=1-10
w N ﬁL Mixed IVP SC w=2-8 7Bu Mixed IVP PCE w=1-10
— ﬁu Mixed IVP SC w=2-8 10"0- —s— 1y Mixed SOP SCw=1-9 Ll ——— BL Mixed VP SC w=2-10
10—8 L B, Mixed IVP PCE w=2-8 i —a— 0 Mixed SOP SCw=1-9 10H B, Mixed IVP SC w=2-10
B, Mixed IVP PCE w=2-8 g Mixed SOP PCE w=1-9 fi, Mixed IVP PGE w=2-10
s, Mixed SOP SCw=2-3 107 7, Mixed SOP PCE w=1-9 ‘ §, Mixed IVP PCE w=2-10
-10] o, Mixed SOP SC w=2-8 i ) —— P Aleatory SC w=1-8 & —— [ Aleatory SC w=2-10
10 +u§Mixed SOP PCE w=2-8 L2 metrics: | i e L . - ol B Aeatory PoE w210 ‘ .
a, Mixed SOP PCE w=2-8 10° 10' 10° 10° 10* 10° 10° 10° 10" 10° 10°
1[]_]2 || —— ﬁ:\leatory SC w=2-8 | A|eat0ry, Simulations Simulations
—— B Aleatory PCE w=2-8 SOP mixed
10° 10° 10* 10° . _ . _ _
Simulations s Eldred, M.S.,, Swiler, L.P., and Tang, G., "Mixed Aleatory-Epistemic Uncertainty
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Quantification with Stochastic Expansions and Optimization-Based Interval Estimation,”

RESS, Vol. 96, No. 9, Sept. 2011, pp. 1092-1113.



Performance Results for Algebraic Test Problems
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Mixed-integer global optimization approaches for interval estimation

 Latin hypercube sampling (LHS)
« Evolutionary algorithm (EA)
» Surrogate-based global optimization (SBGO)

R . Form1: £i=100(x2— %)%+ (1 —x1)?
osenbrock | o, 41000 — 2+ 2)2 4 (08— x)?
10° :
—A—HS
EA
—A— SBGO 10
107 —A— 8BGO 20
—A— SBGO 100
107k
g 107
q@'j’w'“
107°F
10°
A
10_7 2 3 ‘4 ‘5 6 7
10 10 10 10 10 10

Total Evaluations

Epistemic vars: 1 discrete model form (2 values), 2
continuous defining interval means for 2 aleatory vars

aM P\’
Form 1: fllm(m)
4P (P
Form2: [, = —m—(m) Short column
AM M2
Form 3: &ZIW(W)
M PN\? 4P-M)
Form 4 : ﬁl_b};z}/_(b}ﬂ’) Ly
10° !
—A— | HS
EA
—A— SBGO 10

o\
T

Average Relative Error
5]
b

‘
10° 10° 10" 10° 10° 107

Total Evaluations

Epistemic vars: 1 discrete model form (4 values), 3
continuous defining interval means within 5 aleatory vars

Eldred, M.S. and Wildey, T.M., "Propagation of Model Form Uncertainty for Thermal Hydraulics
using RANS Turbulence Models in Drekar," Sandia Technical Report 2012-5845, July 2012.



Results for Thermal-Hydraulics with Drekar rh) Naiona
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Drekar RANS turbulence: Spalart-Allmaras, k-¢ with Neumann BC, k-¢ with Dirichlet BC

odz  omda  aoe  ogE oDl oz ool o0le o018 OBz OS2z 0424

Figure 5. The steady-state x-velocity for typical realization com-

puted using a RANS model in Drekar Figure 6. The profile of of the steady-state x-velocity along the

Figure 4. The steady-state x-velocity for typical realization com-

puted using a RANS model in Drekar. outflow boundary for a typical realization computed using a RANS
model in Drekar.
Method Outer Evals Total Evals Uyx U pressure
LHS 10 250 [0.727604, 2.78150] [32.6109, 282.237]
SBGO 17 425 [0.622869, 4.44624] [21.7321, 297.957]

Clear benefit shown in utilizing optimization approaches relative to LHS:
» Rosenbrock: cost reductions of 20x for EA and 1000x for SBGO w/ comparable accuracy.

» Short column: EA more converged for 3 out of 4 bounds with 10x cost reduction;
SBGO provided most converged results for all 4 bounds with 3000x reduction in cost.

» Drekar: SBGO provided significant refinement in all 4 bounds (intervals broadened

by 86% for m,, and 11% for m,,...) using only 7 additional outer loop evaluations.
-~ OO




Summary Points ) i,

Address key UQ challenges
« Severe simulation budget constraints and moderate to high random dimensionality
 Compounded by mixed uncertainties, nonsmoothness, rare events

Impact DOE missions
+  NNSA (ASC) & Offices of Science/Energy (ASCR, SciDAC-3, CSSEF, NE/CASL, EERE)

Investments in scalable UQ R&D
» Developing a broad suite of scalable and robust core UQ methods:

« Sampling, reliability, stochastic expansion, epistemic

+ Goal-oriented adaptive refinement, (Adjoint) gradient-enhancement, Sparsity detection
» Building on this foundation (address complexities, compound efficiencies)

* Design under uncertainty: SBOUU, RBDO, PCBDO, et al.

« Multifidelity UQ, Mixed aleatory-epistemic UQ, emulator-based Bayesian inference
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Bayesian Methods

Inference and Model Selection

Sandia
r.h National _
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Iterator

Likelihoods: Gaussian (with management aneyee!

of functional data, replicates, etc.) e
Posterior evaluators (QUESO, GPMSA, DREAM, UQTK): L
MCMC with Metropolis-Hastings, delayed rejection, f
differential evolution, parallel chains, preconditioning, ... NonDBayesCaliration

Emulators (Pecos/Surfpack): built over
support of prior; for posterior sampling

No emulator

Stochastic expansions (PCE/SC)
Gaussian processes

Multifidelity models

Advanced topics:
discrepancy modeling and multifidelity inference

PCE/KLE coefficient inference

l |

NonDDREAMBayesCalibration . | NonDGPMSABayesCalibration | | NonDQUESOBayesCalibration |

10

~ ™ From Marzouk & Xiu, 2009 "

(a) Smooth problem: exponential convergence. (b) Discontinuous problem: algebraic convergence.

q\truth(é) — (ﬂ(gs- 9.’.- ‘S) —+ 6Em(957 gm ‘S) + 6mh(98- gh- ‘S) + 6hd(£) T €

Ny Nm

. . Np, Ng
model averaging and selection Girutn(€) =3 @, L (05, 00.8) + > 01, L (05, 0 €) + > Guin, L (05, 01 ) + > 0, L (€)

i=1 i=1 j=1 i=1




Moderate dimensional KLE Random Field Model ) o,

Laboratories
Bayesian inference of Basal sliding field for Greenland
accumulation, temperature surface topography
surface velécity - .
calving Iaw’_J/ IR Greenland
= O 3 SN surface ice
\Q e : RSy L velocity
B ‘ ' h " -
shelf geometry L gee Al /.Ougln%g‘s‘”-"m“fa“ sliding law
melt/freeze distribution % % bed topography
geothermal flux
Figure 1: Schematic of observations, boundary conditions, and processes affecting ice sheet initialization.
Karhunen-Loeve expansion (KLE): Dimension reduced inference of KLE coeffs:
Assume analytic spatial covariance kernel + Mismatch = sum sq of surface velocity discrepancy
(squared exponential) for random field « PCE formed for mismatch over uniform prior

distributions for isotropic sparse grid lev = 3

_ i)/
Crry)=e . MCMC on PCE with 100k samples, 1t 10k discarded
and integrate over domain for modes. Length
scale (L) balances feature resolution vs. # KLE

modes (and may require iteration for inference). :
KLE modes (5 capture 95% energy): : ‘e

69.6793 40

Posterior coeffs 1,2

Truth Reconstructed

20

0.008162 \
'0.008 Ny, -

§0.004 > Jooos

-0.004 -0.004

-0.008 N ©-0.008
001072 \

-0.01189



. Augment with response statistics s,,
O U U F O rm u I atl O n (e.g., u, o, Z/B/p) using linear mapping:
Issues (probabilistic) |}z fd* W@

Subjectto g,<g(d)<g,

h(d) = h,
Input design parameterization: jefuf(“j)su:({l)ts a,
« Augmented design variables d<d<d,
* Inserted design variables Nonlinear mappings (o o/p) via AMPL
— Native distribution params may be sufficient
— Extended parameterizations > location, scale E-Q-’ triangu"j‘;{fiftgg?tioni
Output metric characterization: ) = o0t —Lr)
- Robustness metrics > min/constrain 2 s e =t

— awk for reliability = use G(f) range
* Reliability metrics = max/constrain p/p

— awk for sampling (by binning) - projected p/p, IS J\,_
* Combination > Maximize p,orr(p=-2)
— Also Pareto opt., ... subjectto 2< B (r>ry;)

* Inversion (model calibration) under uncertainty
— NLS with output PDF/CDF

2
Minimize f(x) = i [T, (x)]"

where T,(x) = R,(X) R, h Sandia

National _
Laboratories




OUU Formulation Issues
(nonprobabilistic)

10°F— ' T | L N
Input design parameterization: H\&L . Faiure

Region

—_
=
1

« Augmented design variables

Bel(=Y)—*

* Inserted design variables
— As for uniform PDF - need locn, scale for BPAs

A
v

PI(>Y) or P(>Y) or Bel(>Y)
1

—
o
[
1

Output metric characterization:
 Robustness ol L

Fallure
Region

— insensitivity to epistemic uncertainties 10" g
— minimize/constrain response interval : ¥N1LL
— Pl —Bel for Y* = [pyer; Pl or P* 2 [Yiers Yol
» Reliability
— Minimize/constrain appropriate interval bound

—_
=
1

PI>Y) 3

BelY)-» PGY)

— PI(Y) or Bel(Y), depending on failure sense

PI(>Y) or P(>Y) or Bel(>Y)
5; =
1 ]

« Combination

10 ! 1 ! 1 1 ! 1
0.6 0.8 1.0 1.2 14 1.6 1.8 2.0 22



A
} Bistable Switch: Problem Formulation

Typical design specifications:

* actuation force F_; reliably < target (-5 pN)
* bistable (F,..> 0, F,;,<0)
* maximum force: 50 < F .,
* equilibrium E, < 8 pym

* maximum stress <1200 MPa

<150

-5.0

force

N E———

A SW
contact

itch

| e

min~ |

A\ V displacement

Laboratories

simultaneously reliable and robust designs —
max E [Fin(d,x)]
[S-t- 2 < /8c:cdf(d) gj j
50 < E[Fmax(dax)] < 150
E[E2(d,x < 8 no50 [
E[g‘mii(d, >)<])] < 3000 R
combined RIA/PMA to control both tails —
(reliable/robust):
max 25=_o(d) RIA/PMA combination:
st. 2 < Bccdf(d) A twice the cost
nin. constr. _— K50 Fn @ﬁaa%giﬁ\al



