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Science based engineering is a multi-scale,
multi-physics, multi-parameter enterprise
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How does one enable this cycle to be more effective?
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Hydrocodes and Meta-Analysis

Hydrocode: Computer software which approximately solves model shock physics

equations (e.g. ALEGRA)

* Inputs to a hydrocode include initial geometry, closure properties and boundary
conditions.

« Simulations outputs include a host of Quantities Of Interests (QOI).

Meta-analysis: A robust, documented, and reproducible approach for sampling
QOls in a suite of forward modeling problems. (e.g. DAKOTA)

Meta-analysis is equally as difficult and scientifically involved to
perform correctly and efficiently as the single hydrocode forward
problem. (You need sophisticated software and users in both cases.)

What we really need are robust modeling systems which
enable meta-analysis with hydrocode forward problems.




ALEGRA:
Sandia ALE hydrocode technology providing new
approaches in solid dynamics and multiphysics
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DAKOTA: Design Analysis Kit for Optimization and Terascale Applications @

DAKOTA contains algorithms for:

optimization with gradient and nongradient-based methods;

uncertainty quantification with sampling, reliability, stochastic
expansion, and epistemic methods;

parameter estimation with nonlinear least squares methods;

sensitivity/variance analysis with design of experiments and
parameter study methods.

These capabilities may be used on their own or as components within
advanced strategies such as hybrid optimization, surrogate-based
optimization, mixed integer nonlinear programming, or optimization
under uncertainty.



How are they used together?

How can this meta-analysis system be improved?

DAKOTA

optimization, calibratio,
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Why the embedded DAKOTA in ALEGRA approach?

Design Goal:
* Make it so easy for ALEGRA users to put together a useful meta-
analysis that such work will be natural and expected.

Strategic Solution:
+ DAKOTA is linked in as part of ALEGRA
- ALEGRA had to be made effectively reentrant (lots of work)
+ Multiple ALEGRA samples can occur in parallel (users should consider
parallel load balance of sample runs)
+ Parameter substitutions happen naturally in the input stream using a
standardized user environment.
+ We have built in an extensive set of standardized set of QOI (response
functions) including the ability to build in user defined QOI’s via a run-time
“C type language” interpreted interface.
+ Helps solves the reproducible meta-analysis requirement.
+ Evidence from users is that it encourages and enables meta-analysis.




Example I: Propagation of uncertain EOS
information
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Goal: All pathways are connecte
in a unified engineering process
and iteratively improved.

Upscaling bridges must be built
with embedded UQ information.
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Example: Propagate uncertainty due to statistically equivalent
possible EOS fits to the same data, to the analyst. .




Our proposed solution

Robinson, Berry, Carpenter, Debusschere, Drake, Mattsson, Rider, “Fundamental
issues in the representation and propagation of uncertain equation of state
information in shock hydrodynamics”, Computers and Fluids, 83, (2013) p. 187-193.

EOS model library and data

Proposal Model
(XML input deck)

Bayesian Inference using Markov
Chain Monte Carlo

PCA Analysis

EOS Table Building Topologically equivalent tables for

Extensive Sampling of the posterior |
distribution function (PDF)

each sample

Mean EQOS table + most significant
perturbations

Hydrocode + Dakota

Cumulative Distribution Function
(CDF) for quantities of interest




W Al EOS model calibration and inference
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Al model EOS inference A marginal distribution

Bayesian inference to determine posterior distribution function of parameters is
costly:

» Use adaptive Markov Chain Monte Carlo (MCMC) scheme to reduce number of steps
» Use optimization to find Maximum A Posteriori (MAP) parameters from which to start chain
» Each posterior evaluation is roughly equivalent to generating an entire EOS table




Tabular EOS generation and UQ representation

Simultaneously tabulate N
parameterizations of an EOS
model

Example PCA mean pressure table at 0.1 tolerance

* New UTri format uses linear phases:
interpolation on triangles to = off table
capture salient features S

« Each tabulation is topologically 2 fluid
equivalent (smooth mapping of a melt
nodes) o .

o : vaporization

* Optimized node placement is P
costly but can reduce table size

Principal Component Analysis (PCA) is used to look for a

tabular representation with reduced dimensionality:

* N tables from previous meshing step are starting point L T

« Export a truncated set of mode tables that capture most of the details — ZH]—/l H1

zZ

(i.e. eigenspectrum energy) (Z . ElT)Hl/Z _ sz/T

* Multi-precision floating point is necessary due to dynamic range of N
multi-phase tables. 2 =74+ UZE =7+ UZE

* Log density and log energy used in PCA analysis (also ensures _ T 1/27;
positivity) =z + (Z —z1 )H Vf

+ Random variables ¢ are uncorrelated, with zero mean and unit _
standard deviation, but not necessarily independent T T 4 E fk T,
k




Multiphase Tabular Generation and
Representation: Initial AL UQ enabled table

T=T+&T) + & + 6T+ - -

= Wide range UQ AL EOS with 6 phase regions in the density-energy table.
=  With the current multi-phase model there are 37 free parameters.

= 6 parameters were fixed due to insufficient constraining data.

= The MCMC inference samples 31 parameters

= We took 400 samples from the chain. Due to unresolved topology issues
in the table generation process, only 6 of those were successfully
tabulated simultaneously. There were 3 significant modes at 1e-6 cutoff
in the PCA analysis. Work still in progress.

= Accuracy of the tables is set at a relative tolerance of 0.1.

= PCA solver currently scales as N2 so this limits practical number of
samples.




Example calculation: 2mm diameter Al ball impacting spaced Al
plates at 20 km/s in air background. Termination at 1.5 microsec

Tracer paths
100

10 f

1k Boundaries
Ball
|4 Plate 1
Plate 2
. . . . Pllate 2 Black
0 1 2 3 4 5 6
Density (g/cm3)

Temperature (kK)

Phase boundary lines of PCA source EOS files are shown along with
phase space trajectory of tracers (mean table, csmin=0)
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Example uncertainty analysis using UQ enabled AL EOS

3 PCE (polynomial chaos expansion) quadrature points and 1 tabular mode

10CDF (tracer id, mfac, mincs) for y positions at 1.5 mus
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Lessons Learned:

1) UQ EOS information can be comparable to other model uncertainty
(e.g. mesh resolution (mfac), numerical or modeling constants (mincs))

2) UQ enabled table capability tends to drive useful verification and
numerical work

3) Formal approach leads to more precise and detailed thinking. 14




Example Il:
Optimization based Equation of State calibration

Key ldea:

Use hydrocode to calibrate off Hugoniot EOS information
based on accurate boundary velocity measurements in a
well characterized experiment.




The ZR accelerator delivers up to 25 MA current &
several MJ magnetic energy to short circuit load

22 MJ stored energy; ~10 TW peak power

Marx
generator

intermediate
storage
capacitor

laser-
triggered
gas switch

Photo of Z experiment

liner z-pinch
experiment

Current rise times of 100-1000 ns possible via
independent timing of 36 laser triggered switches.




Quasi-isentropic compression to peak stresses =20
Mbar possible in cylindrical liner implosions on Z

=  3-4 times greater stress than in planar geometry.

Liner Z-Pinch ImpIos:on =  Material stress increases monotonically.
=  Shockless compression achieved by shaping
current.

=  Diagnosing compressed state is challenging.

= Successfully fielded accurate photonic Doppler
velocimetry (PDV).

|I=20 MA; R=0.1 cm;
P=64 Mbar. tube
liner —

aperture

Radial Photonic Doppler Velocimetry (PDV) successfully measures liner

surface implosion velocity in experiments on Z.




Use the data to infer information about the sample
equation of state.

Cylindrical quasi-isentropic " Goalis to measure off-Hugoniot density
compression experiment. and pressure.
external " Pressure and density in sample inferred

VISAR from velocimetry data + MHD code +
mathematical optimization.

Al anode

ak-gap

=  Current is inferred from external
VISAR.

= Velocity of sample inner surface is
obtained from PDV.

= Velocity of inner surface is a function
of the assumed EQOS of the pusher and
the unknown EQOS of the sample.

Al pusher

J| J
= Choose the coefficients in the sample

EOS model to match the inner surface
velocity history via optimization.




A simulated cylindrical experiment illustrates the
technique for shockless compression of copper

Current shaped to compress

Simulated Cylindrical Cu ICE Current vs. Time

Cu quasi-isentropically. “f

Cu: R=1.9 mm, R,=2.43 mm, "

A=530 pum; Al: R,=3.43 mm.

2D ALEGRA, resistive S
MHD+conduction+material - | | |
models. 224 26 28 30 a2

Liner Density Initial Time 2.2 us

50 um perturbation, random
in z, on outer surface i
aluminum. = b cu
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tube
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Robinson



Copper equation of state 3325 developed at SNL

using density functional theory is used to develop

the surrogate data.
E VS. p.EOS Qu§325 |
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* John Carpenter and Kyle Cochrane (SNL).



Copper is quasi-isentropically compressed to 9.5 Mbar,
and unaffected by magnetic Rayleigh Taylor

Liner Density t=3.022 us
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Optimize EOS parameters to match velocity

An extended Vinet type EOS with 3 free parameters has been used to match
surrogate data very well.
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Extended Vinet EQS with 3 parameters works extremely well.

Cu Vlnet EOS converged P vs. P T 200 K

2.0 [

Cu 3325
Cu Vinet converged state
Cu Vinet initial state

1.5}

0.5

Pressure (Pa) x1E12
o
|

ool . . . . . e e
5 10 15 20 25
Density (kg/m°) x1E3

Lessons learned: Process is very sensitive and details must be right. Optimization error

norm below the uncertainty in the measurement velocity is required (1 percent).
I ———————



Looking to the future

Calibration under uncertainty would be the obvious next
step and would allow uncertainties in the calibrated
parameters to be captured.

This information could then enable UQ EOS development.

Consistent uncertainty information should be made
available for other properties such as conductivity in the
same tabular format.




Summary

The integrated ALEGRA-DAKOTA system has shown

great promise for raising the bar and encouraging more
meaningful meta-analysis.

Deep dives into the meta-analysis world tends to bring out
substantive quality issues very effectively.

Integrated meta-analysis capabilities enable more efficient
and thorough science and engineering.
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