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Motivation

Reservoir Optimization Superconductor Vortex Pinning
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Optimization Problem Formulation

Goal: Control uncertainty rather than quantify uncertainty.

Initialize Determine Observe Mak
Physical Control Physical Deceilsi?)n
Model Action System
' !
: A
Inverse
=
Problem

We implement the control prior to observing the state.
Control is deterministic.
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Optimization of PDEs with Random Inputs

Given a >0, Q, C Q, Q. C Q, and w € L?(Q; C), we consider

o { QU(u(-,x;z) —w(Xx))(u(-, x;z) —w(x))) dx} —l—% /Cz(x)z(x) dx

N =

min J(z) =

z€Z
where u(z) =u € Lf,”(E; H'(Q;C)) solves the weak form of

—Au(&,x) = 11+ oe(&,x))u(é,x) = z(x), xeQ, (€E

ou . -

%(E,x):mu(ﬁ,x), xe N, e

v

Random parameters ¢:

=1
=1

X -+ X By With = CR

1 Q- ®@pm With pr: S — [0, 00) U {+o0}
Control space: Z = *(Q; C) Deterministic

State space: U =L (Z;H'(Q;C)) Stochastic

(
Risk Measure: o : L}(Z) — R U {+o00} U {—o0}
see, Rockafellar, Uryasev, Shapiro, Dentcheva, Ruszczynski, . ..
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» Image space: E=
» Probability law: p=p
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Motivation - Control Uncertainty

Optimal control should be “risk averse.” For example:
» Reduce variance or deviation
E[(X-EX])? or  E[(X-EX),)
e.g. reduce uncertainty and variability in controlled system.
» Control rare events, tail probabilities, or quantiles
Pr[X <] or VaRg[X]=inf{teR :PriX<t>p}
e.g. reduce failure regions and certify reliability.

» Minimize over quantiles

1

CVaRs[X] = ——
aRs[X] 1= 8 Jx>vars[x]

X(&)p(€) dE = E[X[X > VaRg[X]]

e.g. minimize over undesirable events.
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Risk Measures

RISk NEUTRAL: i
o X] =E[X] X(€)

3
p(&)  PrX<t =8
CONDITIONAL ‘ | — ¢
VALUE-AT-RISK:
o[X] = CVaRg[X] X&) t=VaRs[X]
3 i ¢
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Risk Measures

Shapiro, Dentcheva, Ruszczynski, Rockafellar, Uryasey, . . .

We consider the risk measures (X € L},(Z)):
» Risk Neutral: o[X] = E[X]
» Mean Plus Semideviation: ¢[X] = E[X] + cE[(X — E[X])+], ¢ € (0,1)
» Conditional Value-at-Risk: o[X] =inf {t + cE[(X —t)4] : t€e R}, c>1

These o are coherent (Artzner, Delbaen, Eber, Heath): X, Y € L, ()
» Convexity: o[tX+ (1—-1t)Y] <to[X]+ (1 —t)o[Y], Vte[0,1]
» Monotonicity: X >Y ae. = o[X] > o[Y]
> Translation Equivariance: o[X+ ] =0[X]+¢t, VteR
» Positive Homogeneity: o[tX] =to[X], Vt> 0.

Sandia
National
Laboratories




Infinite-Dimensional Results

Existence of Optimal Controls: Assume Helmholtz equation is uniquely
solvable, then there exists a unique minimizer of

10 = 30| [ %2 ~ 0t 52— wio)) dx| + 5 [ 2070 v

Differentiability: [(z) is Hadamard differentiable
» State Equation: Find u(¢) = u(&;z) € H'(9;C) a.e. in E solving
—Au(E,x) = K21+ oe(€, %)) Pu(é, 1) = 2(x), (€E xeQ
M len) =inuEr),  ces xeon
» Adjoint Equation: Find A(¢) = \(¢;z) € H'(Q; C) a.e. in = solving
—AXEx) = K (1+0e(6,2)))PAEx) = — (u(E,x) —w(x), E€E x€Q
a—({,x):in)\(f,x), £e=, xe .
on

» Gradient:
Viiz)=az—-E |:VO’ {/ (u(-yx;5z) —w(x)(u(-,x;z) —w(x))) dx} )\] .

0
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Discretization of Optimization Problem

Replace all expected values with quadrature approximations
> Risk Neutral: oolX] = EglX] = X9, wiX(&)
> Mean Plus Semideviation: og[X] = Eq[X] + cEg[p(X — Eg[X],v)], ¢ € (0,1)
» Conditional Value-at-Risk: og[X] = inf {t + cEg[p(X —t,7)] : t ER}, ¢ > 1

Require the solutions u(¢;) = u, € HY(Q;C), k=1,...,Q, solves the weak form of
—Aug(x) — (1 + oe(&, 1) Pue(x) = 2(2), xeQ
%(x):inuk, x € Q.

» Decoupled PDE system is equivalent to stochastic collocation for a single PDE
» Use favorite numerical PDE technique to solve deterministic PDEs
» For convergence, must smooth plus function (Chen and Mangasarian 1994)

i (0)+ ~ p(x,7) = x + 7 Hog(1 + exp(—x))

» Convergence depends on quad. rule and regularity of state and adjoint w.r.t. .
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| Smoothed, Semi-Discretized Results

Existence of Optimal Controls: There exists a minimizer of

Jo@ = o0 | [ (16,%:2) ~ w550~ wl) x| +5 [ 297 e

intheset { z€ Z : ||z]|;2¢.,c) < K } forany K > 0.
Add constraint because quadrature weights may be negative!

Differentiability: ], (z) is Fréchet differentiable with gradient computed as
» State Equation: Find u; = u(¢;z) € H'(Q;C), k=1,...,Q, solving

—Au(x) — nz(l + ae(fk,x))zuk(x) = z(x), x €Q
%(x):imuk, x € 092
» Adjoint Equation: Find \ = \(&;2) € HY(;C), k=1,...,Q, solving
—AN(x) = K2 (1 + 0e(8, %)) M = — (e(x) — w(x)), xeQ
%(x) =ik A(x), x € 092.
» Gradient: V]o(z) =
Q
0z =Y Voo | [ (u(x52) w72 — @) ax] (6) v
k=1 2o
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Adaptivity and Optimization

» Efficient Numerical Method

» Gradient computation requires two PDE solves per quad. point;
» High accuracy or large dim(Z) — large Q;
> In optimization, accuracy not required far from a solution.

» Accurate Characterization of the Random Field

» Use adaptive sparse grids to exploit anisotropy in random fields
(Gerstner and Griebel 1998, Ma and Zabaras 2009, Agarwal and
Aluru 2009, Webster et al.);

» Use adaptive finite elements to accurately resolve PDE solution
(Carstensen 2005, Becker et al. 2007).

» Trust Region Methods

» Globally convergent opt. algorithm (Powell 1975, Sorensen 1982);

» Allows for inexact gradients and objective functions (Carter 1989,
Heinkenschloss and Vicente 2001, Ziems and Ulbrich 2011);

» Natural framework for model management (Alexandrov et al. 1998,
Dennis and Torczon 1996).
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ol Trust-Region Algorithm

Given: 20, mo(s) ~ ](Zo 4 S), ]0 ~ ], Ao >0, and gtOl > 0.
While ||V (s)||z > gtol

1. Model Update: Choose a new m(s) ~ J(zx + s).

2. Step Computation: Approximate a solution, s, to the subproblem

rreug mi(s) subjectto |ls|lz < Ax.

3. Obijective Update: Choose a new Ji(z) ~ J(z).

4. Step Acceptance: Compute

e = Ji(zk) — Jx(zk + sx)
m(0) — mi(se)

If pr > n € (0,1), then zx1 = zx + si else zgy1 = z.
5. Trust Region Update: Choose a new trust region radius, Ay .

EndWhile
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' Trust-Region Algorithm

Given: 20, 7110(5) ~ ](Zo 4 S), ]0 ~ ], Ao >0, and gtOl > 0.
While ||V (s)||z > gtol

1. Model Update: Choose a new m(s) = J(zx +s). <— ADAPTIVITY

2. Step Computation: Approximate a solution, s, to the subproblem

rreug mi(s) subjectto |ls|lz < Ax.

3. Objective Update: Choose a new Ji(z) = J(z). < ADAPTIVITY

4. Step Acceptance: Compute

e = Ji(zk) — Jx(zk + sx)
m(0) — mi(se)

If pr > n € (0,1), then zx1 = zx + si else zgy1 = z.
5. Trust Region Update: Choose a new trust region radius, Ay .

EndWhile
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+./Inexact Gradients and Objective Functions

Kouri, Heinkenschloss, Ridzal, and van Bloemen Waanders

Inexact Gradients
There exists ¢ > 0 independent of k such that

IVm(0) — V](zi)l|z < emin{[|Vm(0)]]z, Ac}

(Carter 1989, Heinkenschloss and Vicente 2001).

Inexact Objective Functions
There exists K > 0, w € (0,1), and 6(z,s) — 0 as r — 0 such that

|(J(zx) = J(zx +s¢)) — Ur(zk) — Ji(ze + 56))| < KO(zx, 5k)
6(zx, 5x)° < mmin {(mx(0) — m(se)), e} -
Here, n > 0 is tied to algorithmic parameters and limy_, o, 7y = 0.
(Carter 1989, Ziems and Ulbrich 2013).

» Cannot compute [(zx) and V] (zx);
» Control a posteriori errors using adaptive sparse grids.
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Sparse Grids and Adaptivity

Gerstner and Griebel 2003

Vi

1D Operators: Fork=1,...,M, E) =0and
A =F—E" where Ei(g) == | p(€)g(6)de
=k
> Sparse-Grid Operator: For an index set Z ¢ N,
Ez=) (A ®@--- @A)
ieZ

Admissibility: i€Z and i>j] = jeZ
Error: Given the index set Z ¢ NM, the error is

E—Er=) (A} @ ®A})

igT ‘

Adaptivity: Picki ¢ Z s.t. ZU {i} admissible and A} ® - -- @ AM “large”

v

v

v

ooooooooooooooo
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ol Trust-Region Algorithm

Given: 20, mo(s) ~ ](Zo —+ S), ]0 ~ ], Ao >0, and gtOl > 0.
While | Vri(s)] z > gtol

1. Model Update: Choose a new m(s) = J(zx + s).
2. Step Computation: Approximate a solution, s, to the subproblem

min m(s) subjectto ||s|]jz < Ay.
s€eZ

3. Objective Update: Choose a new Ji(z) = J(z).

4. Step Acceptance: Compute

o = Je@) — Iz + 5)
T’I’lk(O) — mk(sk) '
If pk>nE (07 1), then Zk41 = Zk + Sk else Zk41 = Zk-
5. Trust Region Update: Choose a new trust region radius, Axy1.

EndWhile
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.Hierarchical Sparse Grids and TR Subproblems

Nash 2001, Kouri 2013

Hierarchy of Optimization Problems
Let Zo C Z; C ... C Z; denote a sequence of gradient-adapted sparse
grid index sets and consider the hierarchy of TR subproblems

I;Iélél Tie,e(S) = qre(s) — (ve,s)z  subjectto ||s||z < Ag

where vr = 0, ve = vet1 + (Vre(Se41) — Vk,e41(5e+1)), and

1
re(s) = EWZIIZ (z1)s,8) z + (V]z (), 9) 2.
k k
\ 7, » Existing TR subproblem solver oz T
D\ O > Pre-Smoothing: Ty ; its. of Op T t0 Gk ¢ (5041 + )
4 ~ —~
@ > Step Acceptence: Gy ¢11(5¢) > 17k,¢(se)
> Post-Smoothing: T, ; its. of Op 1 to G ¢ (s¢ + )

Modified MG/OPT

or T steps increase / satisfy FCD —> so do modifed MG/OPT steps.
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Direct Field Acoustic Testing (DFAT)

Larkin and Whalen
5

» Physical Domain: D = (-5, 5)?
> Parameter Space: = = [—/3,/3M o
> Probability Measure:

p(©)de = (2v3) " de
> Stochastic Material: ¢(¢, x)

KL expansion of Matérn covariance

> Desired State: 0 = 7, k=10
w(x) = exp (i (kcos 0)x; + (ksin6)xy)) =
-5 0 5

o

Let @ > 0 and ¢ = 0.1. Consider the optimal control problem

min 2o [ / (0 62) @) (e )~ o) dx] +5 (00 dx
where u = u(z) € L2(Z; H'(D; C)) solves
—Au(é,x) — kz(l + ﬁe(ﬁ,x))zu(ﬁ,x) = z(x) vV (&,x) €eExD

%(f,x) =iku(&,x) V(& x) € Ex oD.
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Res#tS: M =6,v=5,and a =10

J(&2) = /D (u(z; €, %) — w(x)) (u(z &, x) — w(x)) dx.

R

0.3] !
0.8
0.2]
w 0.6
5 s
(8]
0.1 o
0.2
Yo 0 10 20 30 0% 5 10 15 20
T(6,2) J(&2)
B Mean value: ¢ + E[¢] B Mean plus CVaR: o[X] = 1E[X] + CVaRo1[X]

® Risk neutral: o[X] = E[X] M CVaR: o[X] = CVaRo.[X]

Mean plus CVaR Value-at-Risk: ¢ = 6.59073
CVaR Value-at-Risk: t = 6.90629
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Results: The Effect of Smoothing - CVaR

Smoothed Plus Function VaR Approximation
29 plx7)

loga ()

[
N

I
—_
O«
—_
N

| llzllz  Abs.Err. Rate | ¢ Abs. Err.  Rate

-
1 | 37.8369 - - 5.9792 - -
2 | 37.0495 1.2177 6.7004 0.7212
4
8

36.7416  0.7111  0.7760 | 6.8258 0.1254  2.5239
36.6653 0.4396 0.6939 | 6.9066 0.0808 0.6341

Theoretical convergence rate is % (Kouri and Surowiec).
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Results: Risk Neutral

dim | Algorithm PDE Solves  CPgraq CPapi

20 Grad. Adapt. TR 1,136,784 1,405 120,401

o =104 Obj. Adapt. TR 122,331 1,509 2,933
40 Grad. Adapt. TR 16,327,120 1,445 1,804,001

Obj. Adapt. TR 128,051 1,549 2,973

Table : Computational cost of the classical trust-region algorithm applied to
the Helmholtz example with M € {20,40} and o = 10~*.

dim | Algorithm | PDE Solves  CPgaq  CPgy
a=10"° 40 Obj. Adapt. TR 234,411 1,549 1,525
Mod. MG/OPT 139,039 1,565 2,657

Table : Computational cost of the classical trust-region algorithm applied to
the Helmholtz example with M = 40 and o = 107°.
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.

Conclusions:

» Objective function and derivative computations are expensive
» Use trust regions to guide sparse-grid adaptivity
» Exploit sparse-grid hierarchy to accelerate TR subproblem solves

» Solve control problem at costs comparable to forward PDE solve of a
fixed high-fidelity sparse grid

Future Work:

» CVaR constraints to shape the distribution and control rare events
(Shapiro, Uryasev, Rockafellar, ...)

» Ambiguous stochastic programming to incorporate data
(Shapiro, Bertsimas, Bayraksan, ...)

min sup /;f(u(z;f),z,f)dp(ﬁ)

2€Z pe M
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