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Motivation
Reservoir Optimization

v = −Kλ(s)∇p, ∇ · v = q

φ ∂ts +∇ · ( f (s)v ) = q̂

Superconductor Vortex Pinning

Courtesy Argonne National Laboratory

γ(∂t + iµ)ψ = εψ − |ψ|2ψ + (∇− iA)
2
ψ

J = Im(ψ̄(∇− iA)ψ)− (∂tA +∇µ), ∇ · J = 0

Direct Field Acoustic Testing

−∆u− κ2
(1 + σε)

2u = z



Optimization Problem Formulation

Goal: Control uncertainty rather than quantify uncertainty.

Initialize
Physical
Model

Determine
Control
Action

Observe
Physical
System

Inverse
or OED
Problem

Update
Model

Make
Decision

We implement the control prior to observing the state.
Control is deterministic.



Optimization of PDEs with Random Inputs
Given α > 0, Ωo ⊆ Ω, Ωc ⊆ Ω, and w ∈ L2(Ω;C), we consider

min
z∈Z

J(z) ≡ 1
2
σ

[∫
Ωo

(u(·, x ; z)− w(x))(u(·, x ; z)− w(x))) dx
]
+
α

2

∫
Ωc

z(x)z(x) dx

where u(z) = u ∈ L2p
ρ (Ξ; H1(Ω;C)) solves the weak form of

−∆u(ξ, x)− κ2(1 + σε(ξ, x))2u(ξ, x) = z(x), x ∈ Ω, ξ ∈ Ξ.

∂u
∂n

(ξ, x) = iκ u(ξ, x), x ∈ ∂Ω, ξ ∈ Ξ.

I Random parameters ξ:
I Image space: Ξ ≡ Ξ1 × · · · × ΞM with Ξk ⊆ R
I Probability law: ρ ≡ ρ1 ⊗ · · · ⊗ ρM with ρk : Ξk → [0,∞) ∪ {+∞}

I Control space: Z ≡ L2(Ωc;C) Deterministic

I State space: U ≡ L2p
ρ (Ξ; H1(Ω;C)) Stochastic

I Risk Measure: σ : Lp
ρ(Ξ)→ R ∪ {+∞} ∪ {−∞}

see, Rockafellar, Uryasev, Shapiro, Dentcheva, Ruszczynski, . . .



Motivation - Control Uncertainty

Optimal control should be “risk averse.” For example:

I Reduce variance or deviation

E[(X − E[X])2] or E[(X − E[X])
q
+]

1
q

e.g. reduce uncertainty and variability in controlled system.

I Control rare events, tail probabilities, or quantiles

Pr[X ≤ t] or VaRβ [X] = inf { t ∈ R : Pr[X ≤ t] ≥ β }

e.g. reduce failure regions and certify reliability.

I Minimize over quantiles

CVaRβ [X] =
1

1− β

∫
X≥VaRβ [X]

X(ξ)ρ(ξ) dξ = E[X |X ≥ VaRβ [X]]

e.g. minimize over undesirable events.



Risk Measures

RISK NEUTRAL:
σ[X] = E[X]

ξ

ρ(ξ)

ξ

X(ξ)

CONDITIONAL

VALUE-AT-RISK:
σ[X] = CVaRβ [X]

ξ

ρ(ξ) Pr[X ≤ t] = β

ξ

X(ξ) t = VaRβ [X]



Risk Measures
Shapiro, Dentcheva, Ruszczynski, Rockafellar, Uryasev, . . .

We consider the risk measures (X ∈ L1
ρ(Ξ)):

I Risk Neutral: σ[X] = E[X]

I Mean Plus Semideviation: σ[X] = E[X] + cE[(X − E[X])+], c ∈ (0, 1)

I Conditional Value-at-Risk: σ[X] = inf { t + cE[(X − t)+] : t ∈ R }, c > 1

These σ are coherent (Artzner, Delbaen, Eber, Heath): X, Y ∈ L1
ρ(Ξ)

I Convexity: σ[tX + (1− t)Y] ≤ tσ[X] + (1− t)σ[Y], ∀t ∈ [0, 1]

I Monotonicity: X ≥ Y a.e. =⇒ σ[X] ≥ σ[Y]

I Translation Equivariance: σ[X + t] = σ[X] + t, ∀t ∈ R
I Positive Homogeneity: σ[tX] = tσ[X], ∀t > 0.



Infinite-Dimensional Results
Existence of Optimal Controls: Assume Helmholtz equation is uniquely
solvable, then there exists a unique minimizer of

J(z) ≡ 1
2
σ

[∫
Ωo

(u(·, x ; z)− w(x))(u(·, x ; z)− w(x))) dx
]

+
α

2

∫
Ωc

z(x)z(x) dx

Differentiability: J(z) is Hadamard differentiable
I State Equation: Find u(ξ) = u(ξ; z) ∈ H1(Ω;C) a.e. in Ξ solving

−∆u(ξ, x)− κ2(1 + σε(ξ, x)
)
)2u(ξ, x) = z(x), ξ ∈ Ξ, x ∈ Ω.

∂u
∂n

(ξ, x) = iκ u(ξ, x), ξ ∈ Ξ, x ∈ ∂Ω.

I Adjoint Equation: Find λ(ξ) = λ(ξ; z) ∈ H1(Ω;C) a.e. in Ξ solving

−∆λ(ξ, x)− κ2(1 + σε(ξ, x)
)
)2λ(ξ, x) = − (u(ξ, x)− w(x)), ξ ∈ Ξ, x ∈ Ω.

∂λ

∂n
(ξ, x) = iκλ(ξ, x), ξ ∈ Ξ, x ∈ ∂Ω.

I Gradient:

∇J(z) = αz− E
[
∇σ

[∫
Ωo

(u(·, x ; z)− w(x))(u(·, x ; z)− w(x))) dx
]
λ

]
︸ ︷︷ ︸

INTEGRATION

.



Discretization of Optimization Problem

Replace all expected values with quadrature approximations

I Risk Neutral: σQ[X] = EQ[X] =
∑Q

k=1 ωkX(ξk)

I Mean Plus Semideviation: σQ[X] = EQ[X] + cEQ[℘(X − EQ[X], γ)], c ∈ (0, 1)

I Conditional Value-at-Risk: σQ[X] = inf { t + cEQ[℘(X − t, γ)] : t ∈ R }, c > 1

Require the solutions u(ξk) = uk ∈ H1(Ω;C), k = 1, . . . ,Q, solves the weak form of

−∆uk(x)− κ2(1 + σε(ξk, x))2uk(x) = z(x), x ∈ Ω.

∂uk

∂n
(x) = iκ uk, x ∈ ∂Ω.

I Decoupled PDE system is equivalent to stochastic collocation for a single PDE
I Use favorite numerical PDE technique to solve deterministic PDEs
I For convergence, must smooth plus function (Chen and Mangasarian 1994)

(x)+ ≈ ℘(x, γ) ≡ x + γ−1 log(1 + exp(−γx))

I Convergence depends on quad. rule and regularity of state and adjoint w.r.t. ξ.



Smoothed, Semi-Discretized Results
Existence of Optimal Controls: There exists a minimizer of

JQ(z) ≡ 1
2
σQ

[∫
Ωo

(u(·, x ; z)− w(x))(u(·, x ; z)− w(x))) dx
]

+
α

2

∫
Ωc

z(x)z(x) dx

in the set
{

z ∈ Z : ‖z‖L2(Ωc;C) ≤ K
}

for any K > 0.
Add constraint because quadrature weights may be negative!

Differentiability: JQ(z) is Fréchet differentiable with gradient computed as
I State Equation: Find uk = u(ξk; z) ∈ H1(Ω;C), k = 1, . . . ,Q, solving

−∆uk(x)− κ2(1 + σε(ξk, x))2uk(x) = z(x), x ∈ Ω.

∂uk

∂n
(x) = iκ uk, x ∈ ∂Ω.

I Adjoint Equation: Find λk = λ(ξk; z) ∈ H1(Ω;C), k = 1, . . . ,Q, solving
−∆λk(x)− κ2(1 + σε(ξk, x)

)
)2λk = − (uk(x)− w(x)), x ∈ Ω.

∂λk

∂n
(x) = iκλk(x), x ∈ ∂Ω.

I Gradient: ∇JQ(z) =

αz−
Q∑

k=1

ωk∇σQ

[∫
Ωo

(u(·, x ; z)− w(x))(u(·, x ; z)− w(x))) dx
]

(ξk) λk︸ ︷︷ ︸
QUADRATURE

.



Adaptivity and Optimization

I Efficient Numerical Method
I Gradient computation requires two PDE solves per quad. point;
I High accuracy or large dim(Ξ) =⇒ large Q;
I In optimization, accuracy not required far from a solution.

I Accurate Characterization of the Random Field
I Use adaptive sparse grids to exploit anisotropy in random fields

(Gerstner and Griebel 1998, Ma and Zabaras 2009, Agarwal and
Aluru 2009, Webster et al.);

I Use adaptive finite elements to accurately resolve PDE solution
(Carstensen 2005, Becker et al. 2007).

I Trust Region Methods
I Globally convergent opt. algorithm (Powell 1975, Sorensen 1982);
I Allows for inexact gradients and objective functions (Carter 1989,

Heinkenschloss and Vicente 2001, Ziems and Ulbrich 2011);
I Natural framework for model management (Alexandrov et al. 1998,

Dennis and Torczon 1996).



Trust-Region Algorithm

Given: z0, m0(s) ≈ J(z0 + s), J0 ≈ J, ∆0 ≥ 0, and gtol > 0.
While ‖∇mk(s)‖Z > gtol

1. Model Update: Choose a new mk(s) ≈ J(zk + s).

2. Step Computation: Approximate a solution, sk, to the subproblem

min
s∈Z

mk(s) subject to ‖s‖Z ≤ ∆k.

3. Objective Update: Choose a new Jk(z) ≈ J(z).

4. Step Acceptance: Compute

ρk =
Jk(zk)− Jk(zk + sk)

mk(0)−mk(sk)
.

If ρk ≥ η ∈ (0, 1), then zk+1 = zk + sk else zk+1 = zk.

5. Trust Region Update: Choose a new trust region radius, ∆k+1.

EndWhile



Trust-Region Algorithm

Given: z0, m0(s) ≈ J(z0 + s), J0 ≈ J, ∆0 ≥ 0, and gtol > 0.
While ‖∇mk(s)‖Z > gtol

1. Model Update: Choose a new mk(s) ≈ J(zk + s). ← ADAPTIVITY

2. Step Computation: Approximate a solution, sk, to the subproblem

min
s∈Z

mk(s) subject to ‖s‖Z ≤ ∆k.

3. Objective Update: Choose a new Jk(z) ≈ J(z). ← ADAPTIVITY

4. Step Acceptance: Compute

ρk =
Jk(zk)− Jk(zk + sk)

mk(0)−mk(sk)
.

If ρk ≥ η ∈ (0, 1), then zk+1 = zk + sk else zk+1 = zk.

5. Trust Region Update: Choose a new trust region radius, ∆k+1.

EndWhile



Inexact Gradients and Objective Functions
Kouri, Heinkenschloss, Ridzal, and van Bloemen Waanders

Inexact Gradients
There exists c > 0 independent of k such that

‖∇mk(0)−∇J(zk)‖Z ≤ c min{‖∇mk(0)‖Z ,∆k}

(Carter 1989, Heinkenschloss and Vicente 2001).

Inexact Objective Functions
There exists K > 0, ω ∈ (0, 1), and θ(z, s)→ 0 as r→ 0 such that

|(J(zk)− J(zk + sk))− (Jk(zk)− Jk(zk + sk))| ≤ Kθ(zk, sk)

θ(zk, sk)
ω ≤ ηmin {(mk(0)−mk(sk)), rk} .

Here, η > 0 is tied to algorithmic parameters and limk→∞ rk = 0.
(Carter 1989, Ziems and Ulbrich 2013).

I Cannot compute J(zk) and ∇J(zk);
I Control a posteriori errors using adaptive sparse grids.



Sparse Grids and Adaptivity
Gerstner and Griebel 2003

I 1D Operators: For k = 1, . . . ,M, E0
k ≡ 0 and

∆i
k ≡ Ei

k − Ei−1
k where Ei

k(g)
i→∞−−−→

∫
Ξk

ρk(ξ)g(ξ)dξ

I Sparse-Grid Operator: For an index set I ⊂ NM,

EI ≡
∑
i∈I

(∆
i1
1 ⊗ · · · ⊗∆

iM
M )

I Admissibility: i ∈ I and i ≥ j =⇒ j ∈ I
I Error: Given the index set I ⊂ NM, the error is

E− EI =
∑
i6∈I

(∆
i1
1 ⊗ · · · ⊗∆

iM
M )

I Adaptivity: Pick i 6∈ I s.t. I ∪ {i} admissible and ∆
i1
1 ⊗ · · · ⊗∆

iM
M “large”



Trust-Region Algorithm

Given: z0, m0(s) ≈ J(z0 + s), J0 ≈ J, ∆0 ≥ 0, and gtol > 0.
While ‖∇mk(s)‖Z > gtol

1. Model Update: Choose a new mk(s) ≈ J(zk + s).

2. Step Computation: Approximate a solution, sk, to the subproblem

min
s∈Z

mk(s) subject to ‖s‖Z ≤ ∆k.

3. Objective Update: Choose a new Jk(z) ≈ J(z).

4. Step Acceptance: Compute

ρk =
Jk(zk)− Jk(zk + sk)

mk(0)−mk(sk)
.

If ρk ≥ η ∈ (0, 1), then zk+1 = zk + sk else zk+1 = zk.

5. Trust Region Update: Choose a new trust region radius, ∆k+1.

EndWhile



Hierarchical Sparse Grids and TR Subproblems
Nash 2001, Kouri 2013

Hierarchy of Optimization Problems
Let I0 ⊆ I1 ⊆ . . . ⊆ Ik denote a sequence of gradient-adapted sparse
grid index sets and consider the hierarchy of TR subproblems

min
s∈Z

q̂k,`(s) ≡ qk,`(s)− 〈v`, s〉Z subject to ‖s‖Z ≤ ∆k

where vk = 0, v` = v`+1 + (∇qk,`(s`+1)−∇qk,`+1(s`+1)), and

qk,`(s) ≡ 1
2
〈∇2JI`(zk)s, s〉Z + 〈∇JIk (zk), s〉Z .

k

0

k

Modified MG/OPT

I Existing TR subproblem solver OPT
I Pre-Smoothing: T1,` its. of OPT to q̂k,`(s`+1 + s)
I Step Acceptence: q̂k,`+1(s`) ≥ η q̂k,`(s`)
I Post-Smoothing: T2,` its. of OPT to q̂k,`(s` + s)

OPT steps increase / satisfy FCD =⇒ so do modifed MG/OPT steps.



Direct Field Acoustic Testing (DFAT)
Larkin and Whalen

I Physical Domain: D = (−5, 5)2

I Parameter Space: Ξ = [−
√

3,
√

3]M

I Probability Measure:

ρ(ξ)dξ =
(

2
√

3
)−M

dξ

I Stochastic Material: ε(ξ, x)
KL expansion of Matérn covariance

I Desired State: θ = π
4 , k = 10

w̄(x) = exp (i ((k cos θ)x1 + (k sin θ)x2))

D

DC

R

50−5

0

5

−5

Let α > 0 and ϑ = 0.1. Consider the optimal control problem

min
z∈L2(D;C)

1
2
σ

[∫
DR

(u(z; ξ, x)− w̄(x))(u(z; ξ, x)− w̄(x)) dx

]
+
α

2

∫
Dc

z(x)z(x) dx

where u = u(z) ∈ L2
ρ(Ξ; H1(D;C)) solves

−∆u(ξ, x)− k2(1 + ϑε(ξ, x))2u(ξ, x) = z(x) ∀ (ξ, x) ∈ Ξ× D
∂u
∂n

(ξ, x) = iku(ξ, x) ∀ (ξ, x) ∈ Ξ× ∂D.



Results: M = 6, γ = 5, and α = 10−4

J (ξ, z) =

∫
DR

(u(z; ξ, x)− w̄(x))(u(z; ξ, x)− w̄(x)) dx.
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J (ξ, z) J (ξ, z)

� Mean value: ξ ← E[ξ] � Mean plus CVaR: σ[X] = 1
2E[X] + 1

2 CVaR0.1[X]

� Risk neutral: σ[X] = E[X] � CVaR: σ[X] = CVaR0.1[X]

Mean plus CVaR Value-at-Risk: t = 6.59073
CVaR Value-at-Risk: t = 6.90629



Results: The Effect of Smoothing - CVaR

Smoothed Plus Function

x
−2 −1 0 1 2

1

2 ℘(x, γ)

VaR Approximation

log2(γ)
0 1 2 3 4

t

6
6.5

7 6.9

γ ‖z‖Z Abs. Err. Rate t Abs. Err. Rate
1 37.8369 - - 5.9792 - -
2 37.0495 1.2177 - 6.7004 0.7212 -
4 36.7416 0.7111 0.7760 6.8258 0.1254 2.5239
8 36.6653 0.4396 0.6939 6.9066 0.0808 0.6341

Theoretical convergence rate is 1
2 (Kouri and Surowiec).



Results: Risk Neutral

α = 10−4

dim Algorithm PDE Solves CPgrad CPobj

20 Grad. Adapt. TR 1,136,784 1,405 120,401
Obj. Adapt. TR 122,331 1,509 2,933

40 Grad. Adapt. TR 16,327,120 1,445 1,804,001
Obj. Adapt. TR 128,051 1,549 2,973

Table : Computational cost of the classical trust-region algorithm applied to
the Helmholtz example with M ∈ {20, 40} and α = 10−4.

α = 10−6
dim Algorithm PDE Solves CPgrad CPobj

40 Obj. Adapt. TR 234,411 1,549 1,525
Mod. MG/OPT 139,039 1,565 2,657

Table : Computational cost of the classical trust-region algorithm applied to
the Helmholtz example with M = 40 and α = 10−6.



Conclusions:

I Objective function and derivative computations are expensive
I Use trust regions to guide sparse-grid adaptivity
I Exploit sparse-grid hierarchy to accelerate TR subproblem solves
I Solve control problem at costs comparable to forward PDE solve of a

fixed high-fidelity sparse grid

Future Work:

I CVaR constraints to shape the distribution and control rare events
(Shapiro, Uryasev, Rockafellar, ...)

I Ambiguous stochastic programming to incorporate data
(Shapiro, Bertsimas, Bayraksan, ...)

min
z∈Z

sup
P∈M0

∫
Ξ

f (u(z; ξ), z, ξ) dP(ξ)
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