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Motivation and Goals ) i,

P-v plane representation of detonation

Experimentally-verified Equations of State
(EOS) for energetic materials are typically
limited to pressures well below detonation
pressure.
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We need sub-ns time resolution to
measure shock and particle velocities of
energetic materials before they react.
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Why HNAB?

HNAB can be vapor-deposited as a fully-
dense amorphous thin film.

Over a matter of weeks, it crystallizes into
several different forms.

The amorphous and crystallized films
are chemically identical and have almost
identical densities. Microstructure is the
major difference, making it a model
system for studying the effects of
microstructure on performance and
sensitivity.




Ultrafast Time Domain Interferometry @i

|

|

from laser lab—3» /. :
\\\ |

|

|

Sample At
s R R
¢ Drive J Probe »/4 Pol.

\ —>>

We achieve picosecond time resolution by encoding time onto wavelength and
measuring wavelength with a slow spectrometer. Pulse are ~300-400 ps long with
separation of ~10 ps.

Timing jitter is minimized by using the same laser pulse to drive the shock and
probe Up and Ug from the other side of the target.
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UTDI: Material interaction model i) Mot

Shocked Unshocked

Ablator material material
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Shocks are nominally 1D. 20-30 um spot
size, <1 um surface displacement.

Displacement of ablator and shock are

) Because U>U,, the shock front and
greatly exaggerated for clarity.

ablator form an expanding etalon and the
interference of reflections changes with

timel
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UTDI: A Homodyne Interferometer like VISAR ) e,
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Bare aluminum ablator data ) e,
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Contours generated by integrating velocity
over time for various time steps. Each Free-surface ablator velocity
controur is ~8 ps apart. profile changes markedly with

drive energy.
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Canonical UTDI signal ) S
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Expanding etalon between the ablator and shock front causes oscillation in
phase of reflected light. The offset, amplitude, and period of oscillation are
related to U,, U, and n.. Besides the fitted parameters, we must also know the

pulse separation, At, and the unshocked index of refraction, n,,.
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Sylgard Hugoniot data )
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Phase data with region fit to model.
ase qata with region Tit 1o mode gun data from Marsh.

Marsh, Stanley P. LASL Shock Hugoniot Data. pp. 482,618, U. of California

Data from LLNL Press: Berkeley, CA, 1980. 10




HNAB Hugoniot data ) o,
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HNAB Hugoniot details ) .

HANB Il crystals have an index of
refraction of 1.5, 1.7, or 1.8, depending
on the orientation of the crystal with
respect to the light. In our analysis, we
assume 1.8.

Shock speed (km/s)

@ All HNAB, averaged
— Fit to data for up<1.5 kmys

HNAB Il is polycrystaline with crystals
oriented randomly. Which index do you
pick?
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HNAB data from LLNL after binning
into groups of 5, averaging, and

eliminating one outlier.

McCrone, W. C. “Crystallographic Study of Hexanitroazobenzene Best fit line: U. = 2.70U. + 1.77 [km /S]
(HNAB)” SAND75-7067, 1967. B
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Future Work ) &

Characterize unshocked index of refraction of HNAB in crystallized and
amorphous states to get more accurate Hugoniots.

Develop pulse-shaping techniques to drive sustained, steady shock in
materials.

Perhaps develop a new model for analysis that relaxes requirements on
steady-state shocks.




