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Motivation: 3D imaging for a 3D world ) e

Laboratories

Widely available 2D imaging or
point-wise measurement
techniques are often insufficient
to resolve 3D flow phenomena

= Repetition needed to capture
spatial statistics

air
flow

X (mm)

high-speed video of a ethanol drop

in an air-stream digital holographic measurement

(Gao et al, 2013, Opt. Lett.)

Holography is an optical technique to record and reconstruct a 3D light field
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What is holography? ) e,
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holographic viewer
plate

1

beam splitter  beam block irt
Optical method first proposed by Gabor in 1948
1. Coherent light scattered by particle field forms the object wave, E,

2. Interference with a reference wave, E,, forms the hologram: h = |E_+E,|?

3. Reconstruction with E, forms virtual images at original particle locations
h-E=(|E,|?>+ |E|?)E.+ |E,|?E, + E’E
u ~ D v
DC term virtual real
image image
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Digital in-line holography (DIH) ) i
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J o
spatial filter  collimating optics particle field CCD

Holographic plate and wet-chemical processing replaced with digital sensor
= First proposed by Schnars and Juptner in ‘90s

= Advantage: hologram can be numerically refocused using the diffraction
integral equation

= Challenge: Resolution of digital sensors (order 100 line pairs/mm) is much
less than resolution of photographic emulsions (order 5,000 line
pairs/mm)
= For suitable off axis angles, 6, the fringe frequency, f, is typically too large to
resolve with digital sensors (f = 2sin(6/2)/A)

= Rather, the in-line configuration (8= 0) is typically utilized

-
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Digital in-line holography (DIH) ) i
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" |nthe computer, we multiply the digitally recorded hologram h by an
estimate of the complex conjugate of the reference wave E,*
hE = (JEo|2 + |E,|2)E,J*+ 22(153 + |E.|%E,

~
DC term virtual real

image image
= This complex amplitude can be numerically propagated to any distance
along the optical axis, z, using the diffraction equations

E(x,y,2)=h(x,y)-E, (x,y)®g(x,y,2)
= Rayleigh-Sommerfeld: g(x,y,z) = el /j/'t\/x2 +y’+2°

ejkz ik(x*+y?*) /22
=  Fresnel-Kirchhoff: g(x,y,z) =.—ej ey )/2
jAz
= Numerically, the convolution is computed using the fast Fourier
transform (FFT)

E(x,y,2)=FFT{FFT {l,(x,y)E, (x,y)| FFT {g(x,y,2)}

= Visualized via the reconstructed amplitude, A = |E|, or intensity, | = | E|?

-
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Digital in-line holography (DIH) ) i
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Drop .
Trajectory :

s,
0y
.

air-stream (Gao et al 2013, Opt. .2

Reconstructed amplitude throughout depth, z

= |n-focus structures are clearly observed at different depths, z
= “Rings” around the in-focus structures are the out-of-focus virtual images

How can we automatically extract in-focus objects and validate the accuracy
of the results?

-
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Hybrid particle extraction method () i
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Basic idea: In-focus regions display a minimum amplitude within the particle
interior and a maximum sharpness at the particle edges

Validity of this assumption has been verified through simulation
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Reconstructed amplitudroghout eth,z ) Reconstructed edge sharpness throughout depth, z
Optimum segmentation threshold is automatically extracted from the
threshold of the amplitude which displays maximum edge sharpness

= Further details in Guildenbecher et al, 2013, Appl. Opt. and Gao et al, 2013,
Opt. Express.
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Experimental validation ) e
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___________________________________________

1 spatial filter and 15 beam expansion 27d beam expansion
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= Quasi-stationary particle field
= Polystyrene beads (d =~ 465um) in 10,000 cSt silicone oil
= Settling velocity = 0.8 um/s
= Multiple holograms recorded, displacing the particle
field 2 mm in the z-direction between each acquisition

particle field

' 205

200
195

object z [mm)]

2 mm 2 mm ® 185

I I

180

hologram Detected objects colored by z-position

July 14, 2014 Daniel R. Guildenbecher



Experimental validation )i
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Diameter measured from area of the Displacement found by particle

detected 2D morphology matching between successive

= Actual mass median holograms
diameter =465 um = Actual displacement = 2.0 mm
= Measured mass median = Mean detected displacement =
diameter =474 um 1.91 mm +/- 0.81 mm
= Error of 2.0% with respect to = Standard deviation of 1.74 times
actual value mean diameter
July 14, 2014
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Aerodynamic drop fragmentation ) e
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Motivation: fundamental spray
process and an important canonical
problem for multiphase simulations

= No viable methods to measure
secondary drop size/velocity
statistics or the 3D morphology of
the ring shaped ligament

Experimental configuration: Double-
pulsed laser and imaging hardware as
typically used in PIV

digital holograms of the breakup of an ethanol drop in an

- ﬂ, - 53?2 nm, 5 ns pulseW|dth air-stream (Gao et al 2013, Opt. Lett.)
= |nterline transfer CCD (4008 X 2672, 9 um pixel pitch)
= Temporal separation, At = 62 us, determined by laser timing

= Note: experiments in Guildenbecher et al, 2013, Proceedings of Digital
Holography and 3-D Imaging confirm no loss of accuracy due to the reduced
coherence length of these lasers
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Aerodynamic drop fragmentation ) i
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= Secondary drop sizes/positions
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higher uncertainty in z-direction
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Aluminum drop combustion in propellants
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Motivation: Aluminum is added to solid propellant to increase specific

impulse and reduce combustion instabilities

= At the burning surface, aluminum agglomerates to produce molten drops

with a broad size distribution

= Predictive models require high-fidelity measurements
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high-speed video of burning 004
propellant strand

http://spaceflight.nasa.gov/gallery/images/shuttle/sts-
120/html/sts120-s-028.html
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Numerical simulation (Wang et al
2007, Combust. Theor. Model.)
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Aluminum drop combustion in propellants (i) &%

T \ -
double- ! ' : s
pulsed laser | ! . f f
_______ / ’i v
spatial ~ collimating camera focal- camera and lens
filter optics plane
propellant

strand

recorded hologram

Propellant: solid-rocket propellant pressed into a strand roughly 6 mm in

diameter and initially 100 mm long

= Nominally 70 wt% ammonium perchlorate, 20 wt% aluminum particulate,
10 wt% hydroxyl terminated polybutadiene

= Combusts from the top surface down, ejecting molten aluminum particles
traveling on the order of 10 m/s

Laser: Continuum Minilite Nd:YAG, 532 nm wavelength, 5 ns pulse duration
Camera: sCMOS from LaVision
Lens: Infinity K2 long distance microscope with CF-4 objective
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Aluminum drop combustion in propellants  (d)
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Second reacting

;‘ ™ fL/aIuminum drop
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Aluminum drop combustion in propellants  (d)

Laboratories

K Agglomeration causes
individual um sizes particles?

)g/ake contalnlng nm
/ S|2ed AI .03 partlcles

ny

- aad”

i m '7/ AI203 cap .«
¢ l
Iumlnufi \
<—..,forrhat|o -7

: zone Wy
" A .h‘,h

July 14, 2014 Daniel R. Guildenbecher 15



Aluminum drop combustion in propellants ()&
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Digital holography allows for automatic measurement of in-focus features

“July 14, 2014 Daniel R. Guildenbecher 16



Aluminum drop combustion in propellants ()&
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=
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—— . s
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* Many thanks to Marcia Cooper, Mike Oliver, and Lee Stauffacher during these challenging experiments
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Conclusions ()
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Developments in DIH enable quantitative 3D measurement of
challenging multiphase flows with validated accuracy
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Aluminum drop combustion in propellants ()&
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Open questions affecting image

quality:

1. What is the role of gas-phase
thermal gradients?

=  Expected to lead to index of

refraction variations ' R R 1

u Numerical refocusing 7. ' | *ﬁlake contammg nm
equations implicitly assume AR _.~ / sized AI203 partlcles
constant index of refraction (BR ' b é

2. How do sub-um alumina
particles affect image
formation?

=  Multiple scattering would
lead to loss of phase
information
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Experimental configuration for z validation (i) &
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s 1L gj: T “Spatial filter and 1% beam expansion || 2% beam expansion COMOS
65-15 PIV T \ ! ! ! !
hwp  pp J_ ! J_ Lo |
T G T D R
i f=100mm pinhole f=750mm} | ThorLabs BEISM-A | particle field \ 4
o _d_=_5_0_u_n1 _________ : : _________________ ! with stir rod Yy
= Particles stirred by
a rotating rod 240
(ro=1.58 mm, |
@,=100 rpm) 230
b= pm _
=
= Recorded at 15Hz =
. . . 220 W°
with a LaVision &
sCMOS camera
210
(2560 X 2160,
6.5 um pixel pitch)
200

x [mm]

particles measured with the hybrid method, background shows the recorded holograms
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Extraction of theoretical trajectory

) e,
In the x-z plane, particles are expected to
travel in near perfect circles
x(t)=rcos(wt+6,)
= Assuming measured x-positions have
minimal error, curve fit 2 r, o, 6,

240

230

220 v©

z [mm]

simulated flow field showing streamlines and total
velocity contour within the center x-z plane of the
field of view (dotted lines)

210

200
x [mm]

example in-plane trajectory
|

Measured r =5.04 mm, w=9.414 rpm

July 14, 2014

At this r, simulation gives @ = 9.406 rpm
Daniel R. Guildenbecher
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Comparison with measured results i) s
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Predicted z-trajectory: z(t)=rsin(wt +6,) and Az(t)=rwcos(wt+6,)-At

y [mm]
o ~ 0 IS 0 IN &

215 -

X [mm]

measured x-z trajectory vs. predicted
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Conclusions i i,
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For all trajectories

245 A

= Errorin measured z=-0.04 = 1.51 mm
= Errorin measured Az=-0.03 &= 1.05 mm sl
= Standard deviation of 2.3-d 235 -

Experiments repeated with smaller particles —
(d =118um, see paper for details) a ® 1 °
! C
=  Errorin measured z=-0.003 = 0.379 mm g e 1 K N g
. O [
= Errorin measured Az=-0.001 = 0.302 mm  «° 2201 & >~
= Standard deviation of 2.6-d ; ® b’
2159 2
210 1
Next steps: ® ; ”
= Compare results with alternative particle 2051
detection methods . 4 ! B
= Use results to quantify effects of particle . .
overlap and other experimental noise o o]
sources all measured x-z trajectories vs. predicted
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3D, 3C fluid velocity measurements? ) e
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Advantages: s
=  Simple optical setup requiring only one
line-of-sight view 2401
= Large depth of field (hundreds of mm 235 |
possible)
= Particle sizes can be measured (if desired) 20 2z
Challenges: g 225 1 %
= High uncertainty in the z-direction W 220 - %;
= Particle field must be relatively sparse s |1 £
providing only limited vectors
= Vectors at random positions 2101
= Methods not as mature as PIV or even 205 -
tomographic-PIV
Note: the literature contains many works on 1 -
holographic-PIV. My own work has not : . [rgm] :
been focused on these applications ean measured 1z velocitios
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