SAND2014- 15555PE

Improving Performance of Sampling-Based
Uncertainty Quantification on Advanced
Computing Architectures Through Embedded
Ensemble Propagation

Eric Phipps (etphipp@sandia.qgov)
& H. Carter Edwards

Sandia National Laboratories

SIAM Annual Meeting
July 7-11, 2014

SAND 2014-xxxx C

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Sandia National Laboratories
Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. ﬂl‘

mailto:etphipp@sandia.gov
mailto:etphipp@sandia.gov

Forward Uncertainty Quantification

Uncertainty Quantification (UQ) means many things
— Best estimate + uncertainty
— Model validation
— Model calibration
— Reliability analysis
— Robust design/optimization, ...

A key to many UQ tasks is forward uncertainty propagation
— Given uncertainty model of input data (aleatory, epistemic, ...)
— Propagate uncertainty to output quantities of interest

There are many forward uncertainty propagation approaches
— Monte Carlo
— Stochastic collocation
— NISP/NIPC
— Regression PCE (“point/probabilistic collocation”)
— Stochastic Galerkin, ...

Key challenges:
— Achieving good accuracy
— High dimensional uncertain spaces
— Expensive forward simulations

Sandia National Laboratories

Emerging Architectures Motivate New
Approaches to Uncertainty Quantification

« UQ is a significant driver for exascale computing:
— 1000x increase in performance would make many UQ problems tractable

« UQ approaches traditionally implemented as an outer loop:

Dakota
sensitivity analysis
uncertainty quantification

optimization
response
metrics

parameter estimation

.

approximation/surrogate

user application

) http://dakota.sandia.gov

— Aggregate UQ performance limited to that of underlying deterministic simulation

 Emerging architectures leading to dramatically increased on-node compute power
— Will require very good strong scalability to very high thread-counts

+ Achieving this is difficult for many PDE simulation problems
— Poor memory access patterns
— Inability to expose sufficient fine-grained parallelism

» Can this be remedied by inverting the outer UQ/inner solver loop?
— Expose new dimensions of parallelism through embedded approaches

117! Sandia National Laboratories

http://trilinos.sandia.gov

Computer Architectures Are Changing
Dramatically

 Historically (super)computers have
gotten faster by
— Decreasing transistor size
— Increasing clock frequency
— Making memory appear faster (hiding
latency) by

* Executing multiple instructions
simultaneously

* Reordering instructions on-the-fly

— Adding more compute nodes that
communicate through an interconnect

 These techniques have hit a wall

— Nearing physical limits on transistor
sizes

— Pumping up frequency makes the chips
run hotter, which requires too much
power to cool them

— Adding more compute nodes increases
power usage, failure rate

10,000,000

1,000,000

100,000

Intel CPU Trends

(sources: Intel, Wikipedia, K. Olukotun}

Dual-Core Itanium 2 = /

10,000

1,000

100

10

B Transi: (000) -

0

@ Clock Speed (MHz)
A Power (W)
® Perf/Clock (ILP)

1970

1975

1980

1985

1990

1995 2000 2005 2010

Herb Sutter, “The Free Lunch Is Over: A
Fundamental Turn Toward Concurrency in
Software”, Dr. Dobb’s Journal

i

Sandia National Laboratories

Performance increases are instead being
achieved by increasing fine-grained parallelism

» Lots of node-level parallelism at lower clock
frequencies
— NVIDIA K40:
» 896 double precision scalar cores @ 0.7 GHz

» Scheduler issues instructions to groups of 32 cores (1
warp) at a time (SIMT)

— Xeon Phi:
+ 61 8-wide double precision cores @ 1.2 GHZ

« Compiler/programmer issues instructions to operate on
all components of the vector simultaneously
(SIMD/vectorization)

 Lots of independent threads of execution that can
easily be swapped in and out to hide latency

— No out-of-order execution and limited instruction-level
parallelism

* Restrictive memory access patterns
— Access memory chunks commensurate with SIMD/SIMT
size
— Limited fastest cache size shared amongst many threads

117! Sandia National Laboratories

Keys to Achieving Maximal Algorithmic
Performance on Modern Architectures

All modern architectures perform arithmetic on short vectors
— Intel Sandy/lvy Bridge CPU: 4-wide double precision (AVX)
— Blue Gene/Q CPU: 4-wide double precision (QPX)
— Intel Xeon Phi Accelerator: 8-wide double precision (MIC)
— NVIDIA GPU: 32-wide single/double precision

To achieve maximum performance, an algorithm must vectorize well:
— CPU/MIC:
» Auto-vectorization by compiler
» Explicit vector intrisics
- GPU:
» Each “vector lane” (actually GPU thread) programmed explicitly

Load/store contiguous regions of memory

— Architectures always load whole cache lines when accessing any data from memory
« CPU/MIC: 64 Bytes, GPU 128 Bytes

— When values are stored contiguously, loading a full vector can have cost as low as accessing a single
scalar value

« MIC: 8 doubles in one instruction
 GPU: 32 floats, 16 doubles in one instruction

As architectures evolve, these features will become more and more important
— No increase in scalar floating-point throughput
— No decrease in memory latency

117! Sandia National Laboratories

UQ in this environment

Solving PDEs on complex domains is a challenge in this environment
— Unstructured meshes
— Sparse linear algebra

And that makes UQ for these problems a challenge
— Traditional approach is to run independent simulations on disjoint subsets of compute nodes
— Therefore aggregate performance is limited to any single simulation

Take a holistic view of the entire UQ workflow
— Single-point forward simulation is no longer the end-point
— Codes are being rewritten for these architectures, why not treat UQ as the basic unit of calculation?

Uncertainty propagation is often a better structured calculation than the original simulation
— Lots of reuse of data from simulation to simulation
* e.g., spatial mesh, matrix graph
— Many UQ methods rely on (local) smoothness, so data generated by solution process is often similar
across samples
» E.g., preconditioner, Krylov space

What if we propagated a collection of samples (ensemble) simultaneously?
— See Giering and Vossbeck, 2012.

117! Sandia National Laboratories

Simultaneous ensemble propagation 4’@

- PDE:

f(u,y) =0 l X

* Propagating m samples — block diagonal (nonlinear) system:

F(U,Y):O, U:Zei®ui, Y:Zei®yi7 F:Zez®f(uzayz)

« Commute Kronecker products (just a reordering of DoFs):

Fc(UcaYc) = 0, e = Zui®ez’7 V= Zyi®ei7 e = Z f(u'w yz)®ez

« Each sample-dependent scalar replaced by length-m array
— Automatically reuse non-sample dependent data
— Sparse accesses amortized across ensemble
— Math on ensemble naturally maps to vector arithmetic

117! Sandia National Laboratories

Potential Speed-up for PDE Assembly

import(u) // halo exchange
for e = 0 to Ngjey, do

// Sparse gather of global solution
for : = 0 to N,,ode dO

I = Nodelndex(e,t)

Ue(2) = u(I)

end for

// Evaluate element residual/Jacobian
fe = local_residual(u,)
Je = local _jacobian(u,)

// Sparse scatter into global residual/Jacobian
for : = 0 to IN,,0qe doO
I = Nodelndex(e,z)
atomic_add(f(I), fe(2))
for 5 = 0 to N, 04e do
J = ElemGraph(e,z,j)
atomic_add(J(I,J), Je(2,7))
end for
end for
end for

- Halo exchange

— Amortize MPI latency across

ensemble

 Gather

— Reuse node-index map

(mesh)

— Replace sparse with
contiguous loads

* Local residual/Jacobian
— Vectorized math

» Scatter

— Reuse node-index map and
element graph (mesh)

— Replace sparse with
contiguous stores

i

Sandia National Laboratories

Potential Speed-up for Sparse Solvers

* Ingredients to sparse linear « Sparse matrix-vector
system solvers (CG, products
GMRES, ...) — Amortize MPI latency in halo
— Sparse matrix-vector exchange
products — Reuse matrix graph
A.row(i+1) — Replace sparse with
y@)= Y Awals(l)z(A.col(l)) contiguous loads

— Vector arithmetic
I=A.row(7)

— Dot-products * Dot-products

— Preconditioners — Amortize MPI latency
* Relaxation-based
(Jacobi, Gauss-Seidel, ...)

 Incomplete factorizations * Preconditioners

(ILU, IC, ...) — Sparse mat-vecs

» Polynomial (Chebyshev, — Sparse]
factorizations/triangular-

+ Multilevel solves
(Algebraic/Geometric — Smaller, more unstructured
multigrid) matrices

117! Sandia National Laboratories

Algebraic Multigrid Generates Unstructured

Matrices’

Linear FEM discretization of 3-D Laplacian V - Vu

Level 0 Level 1 Level 2

A)

"Matrices courtesy of J. Hu (SNL)

Sandia National Laboratories

Kokkos: A Manycore Device Performance Portability Library for
C++ HPC Applications’

« Standard C++ library, not a language extension
— Core: multidimensional arrays, parallel execution, atomic operations
— Containers: Thread-scalable implementations of common data

structures (vector, map, CRS graph, ...) @—!9 .

— LinAlg: Sparse matrix/vector linear algebra

* Relies heavily on C++ template meta-programming to introduce
abstraction without performance penalty http://trilinos.sandia.gov

— Execution spaces (CPU, GPU, ...)

— Memory spaces (Host memory, GPU memory, scratch-pad, texture
cache, ...)

— Layout of multidimensional data in memory

— Scalar type "H.C. Edwards, D. Sunderland, C. Trott (SNL)

Application & Library Domain Layer

Kokkos Sparse Linear Algebra

Kokkos Containers

Kokkos Core

Back-ends: OpenMP, pthreads, Cuda, vendor libraries ... |uois

http://trilinos.sandia.gov

Stokhos: Trilinos Tools for Embedded
UQ Methods

Trilinos tool originally developed for stochastic Galerkin
methods

Provides “ensemble scalar type”
— C++ class containing an array with length fixed at compile-time
— Overloads all math operations by mapping operation across array
a={ay,...,an}t, b={b,...,bnn}, c=axb={ai1Xb1,...,amXbn}
— Uses expression templates to fuse loops
d=axb+c={a; Xbi+c1,...,am X by, + cin}

http://trilinos.sandia.gov

Enabled in simulation codes through template-based generic
progamming

— Template C++ code on scalar type

— Instantiate template code on ensemble scalar type

Integrated with Kokkos for many-core parallelism

— Specializes Kokkos data-structures, execution policies to map
vectorization parallelism across ensemble

— For CUDA, currently requires manual modification of parallel
launch to use customized execution policies

117! Sandia National Laboratories

http://trilinos.sandia.gov

Tpetra: Foundational Layer / Library for Sparse Linear
Algebra Solvers on Next-Generation Architectures’

» Tpetra: Sandia’s templated C++ library for
distributed memory (MPI) sparse linear algebra

Builds distributed memory linear algebra on top of
Kokkos library

Distributed memory vectors, multi-vectors, and sparse | ./ilinos.sandia.qov

matrices
Data distribution maps and communication operations

Fundamental computations: axpy, dot, norm, matrix-
vector multiply, ...

Templated on “scalar” type: float, double, automatic
differentiation, polynomial chaos, ensembiles, ...

= Higher level solver libraries built on Tpetra

Preconditioned iterative algorithms (Belos)
Incomplete factorization preconditioners (Ifpack2,
ShyLU)

Multigrid solvers (MuelLu)

All templated on the scalar type

M. Heroux, M. Hoemmen, et al (SNL)

i

Sandia National Laboratories

http://trilinos.sandia.gov

Techniques Prototyped in FENL Mini-App

Simple nonlinear diffusion equation

—kVu+u?=0
— 3-D, linear FEM discretization
— 1x1x1 cube, unstructured mesh

— KL-like random field model for diffusion coefficient http://trilinos.sandia.gov

Hybrid MPI+X parallelism
— Traditional MPI domain decomposition using threads within each domain

Employs Kokkos for thread-scalable
— Graph construction
— PDE assembly

Employs Tpetra for distributed linear algebra
— CG iterative solver (Belos package)
— Smoothed Aggregation AMG preconditioning (MueLu)

Supports embedded ensemble propagation via Stokhos through entire assembly and

solve
— Samples generated via tensor product & Smolyak sparse grid quadrature

m

Sandia National Laboratories

http://trilinos.sandia.gov

Multicore Architectures Studied

* CPU - Dual-socket Intel Sandy Bridge
— 16 cores/threads (hyperthreads disabled)
— 4-wide (double precision) vector ISA (AVX)

« CPU - Blue Gene/Q
— 16 cores x 4 threads/core = 64 threads
— 4-wide (double precision) vector ISA (QPX)

— Vector instructions not supported by GNU compiler (IBM compiler is not C++ standard
compliant)

 GPU - NVIDIA Kepler K20X
— 1430 GFLOPS peak floating point
— 12 GB global memory
— 288 GB/s global memory bandwidth
— 1.5 MB L2 cache, 48 kB shared (L1 cache) memory

« Accelerator: Intel Xeon Phi
— Pre-production hardware
— 56 (usable) cores x 4 threads/core = 224 threads
— 8-wide (double precision) vector ISA, no scalar ISA

117! Sandia National Laboratories

Ensemble Assembly Speed-Up

Sandy Bridge (16 threads) Blue Gene/Q (64 threads)
s 3 §1.4
D25 B 1.2
: KW&H:“ 2 1
w 2 n
= =0.8
Q0 -
£ 1.5 ==16x16x16 £ 0.6 ==16x16x16
& 32x32x32 @ 32x32x32
< 1 <0.4
K] 64x64x64 K] 64x64x64
© 0.5 2 0.2
: :
2 0 T T T 1 2 0 T T T 1
w 4 8 12 16 20 24 28 32 w 4 8 12 16 20 24 28 32
Ensemble Size Ensemble Size
NVIDIA K20X GPU Intel Xeon Phi (224 Threads)
3_3.5 3_3.5
2 2
825 825
(7] (7]
% 2 %‘ 2
g E—E\E/E ~16x16x16 S ~16x16x16
15 B 15
& 32x32x32 & 32x32x32
< <
K] 1 64x64x64 K] 1 64x64x64
Q0 Q0
£ 0.5 £ 0.5
§ 0 T T | § 0 T T T T
w 16 32 48 64 w 8 16 24 32 40 48
Ensemble Size Ensemble Size
onal Laboratories

S e

Ensemble MPI Halo-Exchange Speed-Up

Halo Exchange -- Sandy Bridge
1 MPI Rank/Node, 16 Threads/Rank
(~ 64x64x64 Mesh/Node)

30
o 25
2
§ 20
2 15 =~2 Nodes
% <#4 Nodes
g 10 8 Nodes
b 5 -==16 Nodes

0

4 12 20 28
Ensemble Size

Ensemble Speed-Up

N
[§,]

N
o

=
(6}

[
o

(5,]

o

Halo Exchange -- BG/Q
1 MPI Rank/Node, 64 Threads/Rank
(~ 64x64x64 Mesh/Node)

=~2 Nodes
<-4 Nodes
8 Nodes
==16 Nodes
=32 Nodes
64 Nodes
128 Nodes

12 20 28
Ensemble Size

117! Sandia National Laboratories

Ensemble Matrix-Vector Product Speed-Up

Sandy Bridge (16 threads)
o 4.5
=)
T 4
©
% 3.5 n’r‘nzn’“
& 3 /
2.5
> '2 “-16x16x16
(1]
S15 . “32x32x32
Q
= 1 64x64x64
§ 0.5
[= 0 T T T T T T I
[¥¥]
4 8 12 16 20 24 28 32

Ensemble Size

NVIDIA K20X GPU
o 4.5
S g—8 @ d
©
$3.5
& 3
2.5
2 2 BB —g—g 16066
(1]
S1s “32x32x32
Q
= 1 64x64x64
§ 0.5
[= 0 T T 1
[¥¥]

16 32 48 64
Ensemble Size

Blue Gene/Q (64 threads)
g_ 4
535
§2.5 .
> 2 =-16x16x16
S15 O “*32x32x32
(]
s ! 64x64x64
§ 0.5
l.lc.l 0 T T T T T T T |
4 8 12 16 20 24 28 32
Ensemble Size
Intel Xeon Phi (224 Threads)

3_8
37 i
a® /
<5
g’/
>4 / =~16x16x16
s3 “+-32x32x32
(]
52 = & O ~64x64x64
€1
a
I.EO T T T T T 1

8 16 24 32 40 48

Ensemble Size

Sandia National Laboratories

Ensemble CG Speed-Up

Sandy Bridge Blue Gene/Q
1 MPI Rank/Node, 16 Threads/Rank 1 MPI Rank/Node, 64 Threads/Rank
(~ 64x64x64 Mesh/Node) (~ 64x64x64 Mesh/Node)

g_ 1.6 g_Z.O
-g 15 F -g 1.8
g4 816
013 U]

‘; & =~Ensemble = 16 ‘; 1.4 =~Ensemble = 16
=1.2 9
-g -“Ensemble = 32 -g 1.2 -““Ensemble = 32
o l1 i

(%2} (72}

u=.l 1.0 u=_| 1.0 T T T T T T)

1 2 4 8 16 1 2 4 8 16 32 64128
Nodes Nodes
NVIDIA K20X GPU Intel Xeon Phi
1 MPI Rank/Node 1 MPI Rank/Node, 224 Threads/Rank
(~ 64x64x64 Mesh/Node) (~ 48x48x48 Mesh/Node)

g_ 2.5 §_4.5

22,0 3 4.0 -

1] 8_3.5 T

&15 \ ¥ 3,0

1L} 1L}

313 <~Ensemble = 16 325 =~Ensemble = 16
e} - = 520 - =
€05 } = —] Ensemble = 32 € s Ensemble = 32

3 gL

& 0.0 ‘ ‘ ‘ ! g 1.0 ‘ ‘ ‘ ‘

1 2 4 8 16 1 2 4 8 16

Nodes

Problem with current implementation
that will be fixed soon

117! Sandia National Laboratories

Sandy Bridge
1 MPI Rank/Node, 16 Threads/Rank
(~ 64x64x64 Mesh/Node)
§5'° ~~PCG Solve
B 4.0 ./-\H/. Ensemble = 16
Q4.
2 g & & & @ “PCGSolve
2 3.0 Ensemble = 32
g AMG Setup
3 2.0 n/n_?_.H Ensemble = 16
[=
w ~=AMG Setup
1.0 Ensemble = 32
1 2 4 8 16 —neemoles
Nodes
NVIDIA K20X GPU
1 MPI Rank/Node
(~ 64x64x64 Mesh/Node)
o 30 ~~PCG Solve

)
325 g— @ —m @ @ Ensemble = 16

S0 5T & T B PG solve

2 1.5 Ensemble = 32
210 n\ﬂ_n_rﬂ AMG Setup
)] =
2 0.5 Ensemble = 16

0.0 AMG Setup

1) a 8 16 Ensemble = 32

Nodes

Problem with current implementation
that will be fixed soon

Ensemble AMG-Preconditioned CG Speed-Up

Blue Gene/Q
1 MPI Rank/Node, 64 Threads/Rank
(~ 64x64x64 Mesh/Node)

39.5'0 =~PCG Solve
0 Ensemble = 1
4.0 nsemble = 16
2 <#PCG Solve
o] o
2 30 N oo Ensemble = 32
-g AMG Setup
92.0 Ensemble = 16
[=
w ~=AMG Setup

1.0 Ensemble = 32

1 2 4 8 16 32 64128 > -
Nodes
Intel Xeon Phi
1 MPI Rank/Node, 224 Threads/Rank
(~ 48x48x48 Mesh/Node)

39.9'0 =~PCG Solve
3 Ensemble = 16
57.0
Q 7= O =PCG Solve
2 5.0 x Ensemble = 32
-g AMG Setup
93.0 Ensemble = 16
[=
w ~<AMG Setup

1.0 Ensemble = 32

1 2 4 8 16 —neemoles
Nodes

117! Sandia National Laboratories

Concluding Remarks

* Results demonstrate substantial improvements in
performance are possible by propagating multiple samples
together

— However these are “fake” UQ problems where all samples are
the same

— But results provide an upper bound on performance

« What happens when this is applied to real UQ samples?
— Will number of CG iterations increase substantially?

— What is the effectiveness of propagating ensembles directly
through preconditioners?

— What about other approaches, e.g., applying a single-point
preconditioner across an ensemble?

— See J. Hu talk in Part |l of this session, MS45 for answers!

117! Sandia National Laboratories

Future Work

 How do we decide when/which samples to propagate

together

— You’re not going to do all of them

— Some things really do change dramatically between some

samples
e Bifurcations
* Discontinuities

« Adaptivity (time, spatial)
* Branches in the simulation code

» Software implementation

— Fix remaining CUDA kernels not optimized for ensembles
— Investigate approaches that don’t require modifying parallel

launch

2

Sandia National Laboratories

