

Improving Performance of Sampling-Based Uncertainty Quantification on Advanced Computing Architectures Through Embedded Ensemble Propagation

Eric Phipps (etphipp@sandia.gov)
& H. Carter Edwards
Sandia National Laboratories

SIAM Annual Meeting

July 7-11, 2014

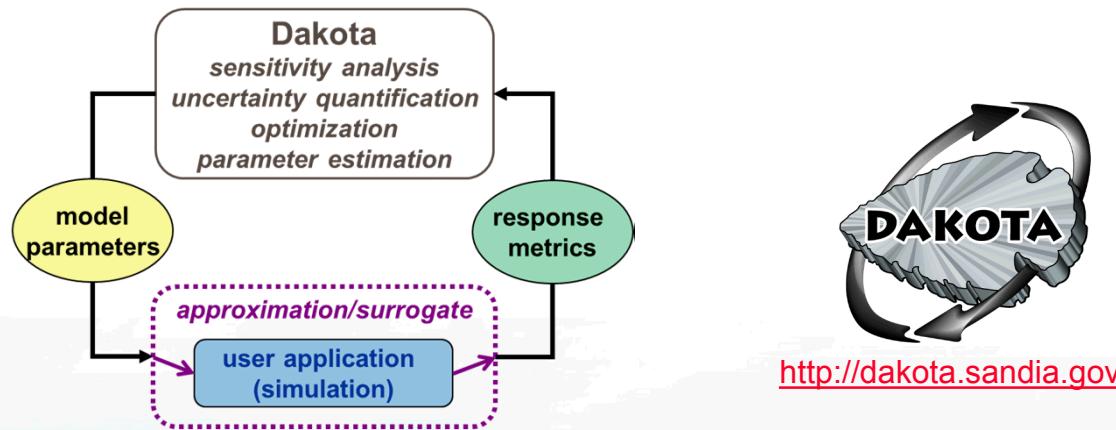
SAND 2014-xxxx C

Forward Uncertainty Quantification

- **Uncertainty Quantification (UQ) means many things**
 - Best estimate + uncertainty
 - Model validation
 - Model calibration
 - Reliability analysis
 - Robust design/optimization, ...
- **A key to many UQ tasks is forward uncertainty propagation**
 - Given uncertainty model of input data (aleatory, epistemic, ...)
 - Propagate uncertainty to output quantities of interest
- **There are many forward uncertainty propagation approaches**
 - Monte Carlo
 - Stochastic collocation
 - NISP/NIPC
 - Regression PCE (“point/probabilistic collocation”)
 - Stochastic Galerkin, ...
- **Key challenges:**
 - Achieving good accuracy
 - High dimensional uncertain spaces
 - Expensive forward simulations

Emerging Architectures Motivate New Approaches to Uncertainty Quantification

- UQ is a significant driver for exascale computing:
 - 1000x increase in performance would make many UQ problems tractable
- UQ approaches traditionally implemented as an outer loop:

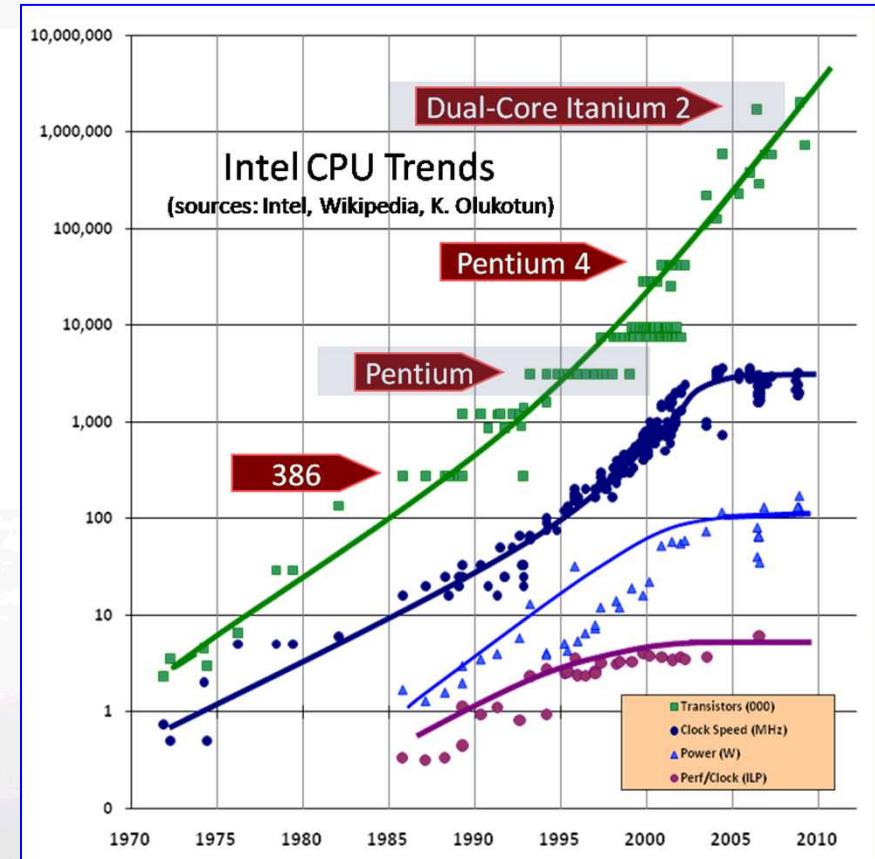


- Aggregate UQ performance limited to that of underlying deterministic simulation
- Emerging architectures leading to dramatically increased on-node compute power
 - Will require very good strong scalability to very high thread-counts
- Achieving this is difficult for many PDE simulation problems
 - Poor memory access patterns
 - Inability to expose sufficient fine-grained parallelism
- Can this be remedied by inverting the outer UQ/inner solver loop?
 - Expose new dimensions of parallelism through *embedded* approaches

Sandia National Laboratories

Computer Architectures Are Changing Dramatically

- Historically (super)computers have gotten faster by
 - Decreasing transistor size
 - Increasing clock frequency
 - Making memory appear faster (hiding latency) by
 - Executing multiple instructions simultaneously
 - Reordering instructions on-the-fly
 - Adding more compute nodes that communicate through an interconnect
- These techniques have hit a wall
 - Nearing physical limits on transistor sizes
 - Pumping up frequency makes the chips run hotter, which requires too much power to cool them
 - Adding more compute nodes increases power usage, failure rate



Herb Sutter, “The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software”, Dr. Dobb’s Journal

Sandia National Laboratories

Performance increases are instead being achieved by increasing fine-grained parallelism

- Lots of *node-level* parallelism at lower clock frequencies
 - NVIDIA K40:
 - 896 double precision scalar cores @ 0.7 GHz
 - Scheduler issues instructions to groups of 32 cores (1 warp) at a time (SIMT)
 - Xeon Phi:
 - 61 8-wide double precision cores @ 1.2 GHz
 - Compiler/programmer issues instructions to operate on all components of the vector simultaneously (SIMD/vectorization)
- Lots of independent threads of execution that can easily be swapped in and out to hide latency
 - No out-of-order execution and limited instruction-level parallelism
- Restrictive memory access patterns
 - Access memory chunks commensurate with SIMD/SIMT size
 - Limited fastest cache size shared amongst many threads

Keys to Achieving Maximal Algorithmic Performance on Modern Architectures

- All modern architectures perform arithmetic on short vectors
 - Intel Sandy/Ivy Bridge CPU: 4-wide double precision (AVX)
 - Blue Gene/Q CPU: 4-wide double precision (QPX)
 - Intel Xeon Phi Accelerator: 8-wide double precision (MIC)
 - NVIDIA GPU: 32-wide single/double precision
- To achieve maximum performance, an algorithm must vectorize well:
 - CPU/MIC:
 - Auto-vectorization by compiler
 - Explicit vector intrinsics
 - GPU:
 - Each “vector lane” (actually GPU thread) programmed explicitly
- Load/store contiguous regions of memory
 - Architectures always load whole cache lines when accessing any data from memory
 - CPU/MIC: 64 Bytes, GPU 128 Bytes
 - When values are stored contiguously, loading a full vector can have cost as low as accessing a single scalar value
 - MIC: 8 doubles in one instruction
 - GPU: 32 floats, 16 doubles in one instruction
- As architectures evolve, these features will become more and more important
 - No increase in scalar floating-point throughput
 - No decrease in memory latency

UQ in this environment

- Solving PDEs on complex domains is a challenge in this environment
 - Unstructured meshes
 - Sparse linear algebra
- And that makes UQ for these problems a challenge
 - Traditional approach is to run independent simulations on disjoint subsets of compute nodes
 - Therefore aggregate performance is limited to any single simulation
- Take a holistic view of the entire UQ workflow
 - Single-point forward simulation is no longer the end-point
 - Codes are being rewritten for these architectures, why not treat UQ as the basic unit of calculation?
- Uncertainty propagation is often a better structured calculation than the original simulation
 - Lots of reuse of data from simulation to simulation
 - e.g., spatial mesh, matrix graph
 - Many UQ methods rely on (local) smoothness, so data generated by solution process is often similar across samples
 - E.g., preconditioner, Krylov space
- What if we propagated a collection of samples (ensemble) simultaneously?
 - See Giering and Vossbeck, 2012.

Simultaneous ensemble propagation

- PDE:

$$f(u, y) = 0$$

- Propagating m samples – block diagonal (nonlinear) system:

$$F(U, Y) = 0, \quad U = \sum_{i=1}^m e_i \otimes u_i, \quad Y = \sum_{i=1}^m e_i \otimes y_i, \quad F = \sum_{i=1}^m e_i \otimes f(u_i, y_i)$$

- Commute Kronecker products (just a reordering of DoFs):

$$F_c(U_c, Y_c) = 0, \quad U_c = \sum_{i=1}^m u_i \otimes e_i, \quad Y_c = \sum_{i=1}^m y_i \otimes e_i, \quad F_c = \sum_{i=1}^m f(u_i, y_i) \otimes e_i$$

- Each sample-dependent scalar replaced by length- m array
 - Automatically reuse non-sample dependent data
 - Sparse accesses amortized across ensemble
 - Math on ensemble naturally maps to vector arithmetic

Potential Speed-up for PDE Assembly

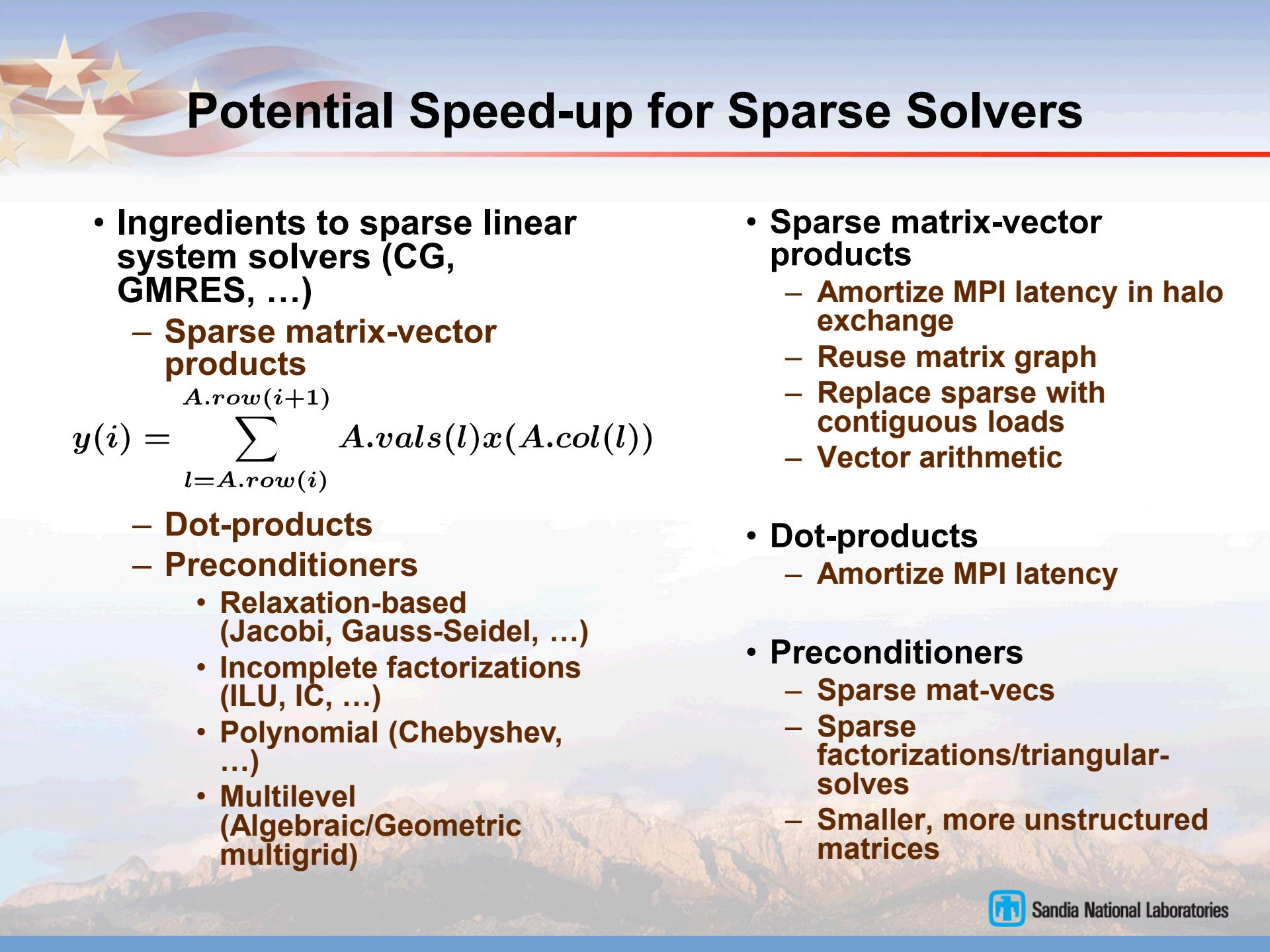
```
import(u) // halo exchange

for e = 0 to Nelem do
    // Sparse gather of global solution
    for i = 0 to Nnode do
        I = NodeIndex(e,i)
        ue(i) = u(I)
    end for

    // Evaluate element residual/Jacobian
    fe = local_residual(ue)
    Je = local_jacobian(ue)

    // Sparse scatter into global residual/Jacobian
    for i = 0 to Nnode do
        I = NodeIndex(e,i)
        atomic_add(f(I), fe(i))
        for j = 0 to Nnode do
            J = ElemGraph(e,i,j)
            atomic_add(J(I,J), Je(i, j))
        end for
    end for
end for
```

- **Halo exchange**
 - Amortize MPI latency across ensemble
- **Gather**
 - Reuse node-index map (mesh)
 - Replace sparse with contiguous loads
- **Local residual/Jacobian**
 - Vectorized math
- **Scatter**
 - Reuse node-index map and element graph (mesh)
 - Replace sparse with contiguous stores



Potential Speed-up for Sparse Solvers

- Ingredients to sparse linear system solvers (CG, GMRES, ...)

- Sparse matrix-vector products

$$y(i) = \sum_{l=A.row(i)}^{A.row(i+1)} A.vals(l)x(A.col(l))$$

- Dot-products
 - Preconditioners
 - Relaxation-based (Jacobi, Gauss-Seidel, ...)
 - Incomplete factorizations (ILU, IC, ...)
 - Polynomial (Chebyshev, ...)
 - Multilevel (Algebraic/Geometric multigrid)

- Sparse matrix-vector products

- Amortize MPI latency in halo exchange
 - Reuse matrix graph
 - Replace sparse with contiguous loads
 - Vector arithmetic

- Dot-products

- Amortize MPI latency

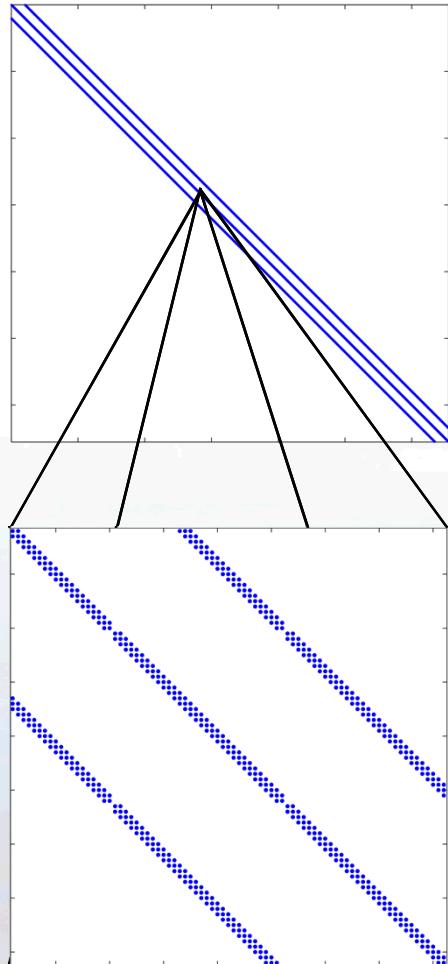
- Preconditioners

- Sparse mat-vecs
 - Sparse factorizations/triangular-solves
 - Smaller, more unstructured matrices

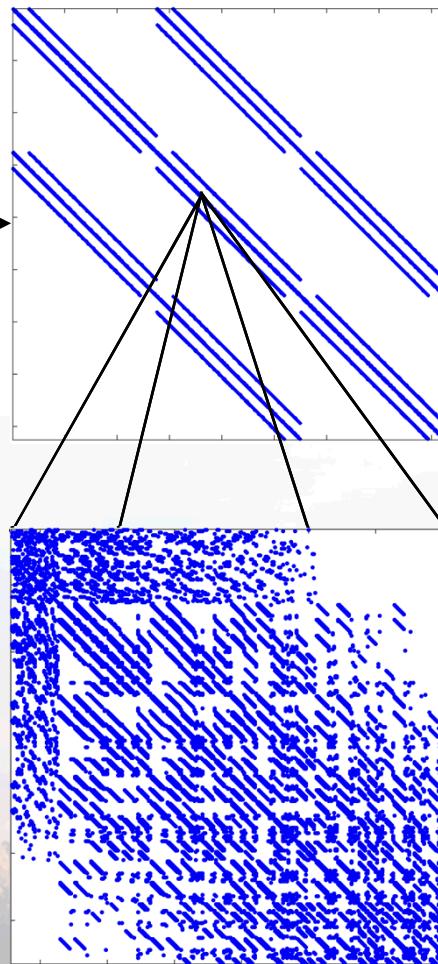
Algebraic Multigrid Generates Unstructured Matrices*

Linear FEM discretization of 3-D Laplacian $\nabla \cdot \nabla u$

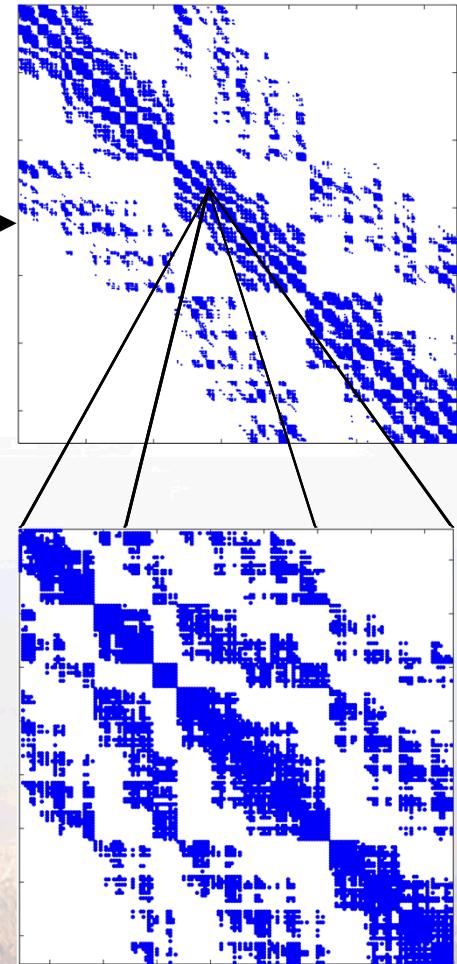
Level 0



Level 1



Level 2



*Matrices courtesy of J. Hu (SNL)

Sandia National Laboratories

Kokkos: A Manycore Device Performance Portability Library for C++ HPC Applications*

- Standard C++ library, not a language extension
 - Core: multidimensional arrays, parallel execution, atomic operations
 - Containers: Thread-scalable implementations of common data structures (vector, map, CRS graph, ...)
 - LinAlg: Sparse matrix/vector linear algebra
- Relies heavily on C++ template meta-programming to introduce abstraction without performance penalty
 - Execution spaces (CPU, GPU, ...)
 - Memory spaces (Host memory, GPU memory, scratch-pad, texture cache, ...)
 - Layout of multidimensional data in memory
 - Scalar type

<http://trilinos.sandia.gov>

*H.C. Edwards, D. Sunderland, C. Trott (SNL)

Application & Library Domain Layer

Kokkos Sparse Linear Algebra

Kokkos Containers

Kokkos Core

Back-ends: OpenMP, pthreads, Cuda, vendor libraries ...

atories

Stokhos: Trilinos Tools for Embedded UQ Methods

- Trilinos tool originally developed for stochastic Galerkin methods

- Provides “ensemble scalar type”

- C++ class containing an array with length fixed at compile-time
 - Overloads all math operations by mapping operation across array

$$a = \{a_1, \dots, a_m\}, \quad b = \{b_1, \dots, b_m\}, \quad c = a \times b = \{a_1 \times b_1, \dots, a_m \times b_m\}$$

- Uses expression templates to fuse loops

$$d = a \times b + c = \{a_1 \times b_1 + c_1, \dots, a_m \times b_m + c_m\}$$

- Enabled in simulation codes through template-based generic programming

- Template C++ code on scalar type
 - Instantiate template code on ensemble scalar type

- Integrated with Kokkos for many-core parallelism

- Specializes Kokkos data-structures, execution policies to map vectorization parallelism across ensemble
 - For CUDA, currently requires manual modification of parallel launch to use customized execution policies

<http://trilinos.sandia.gov>

Sandia National Laboratories

Tpetra: Foundational Layer / Library for Sparse Linear Algebra Solvers on Next-Generation Architectures*

- Tpetra: Sandia's templated C++ library for distributed memory (MPI) sparse linear algebra
 - Builds distributed memory linear algebra on top of Kokkos library
 - Distributed memory vectors, multi-vectors, and sparse matrices
 - Data distribution maps and communication operations
 - Fundamental computations: axpy, dot, norm, matrix-vector multiply, ...
 - Templated on “scalar” type: float, double, automatic differentiation, polynomial chaos, ensembles, ...
- Higher level solver libraries built on Tpetra
 - Preconditioned iterative algorithms (Belos)
 - Incomplete factorization preconditioners (Ifpack2, ShyLU)
 - Multigrid solvers (MueLu)
 - All templated on the scalar type

<http://trilinos.sandia.gov>

*M. Heroux, M. Hoemmen, et al (SNL)

Sandia National Laboratories

Techniques Prototyped in FENL Mini-App

- Simple nonlinear diffusion equation

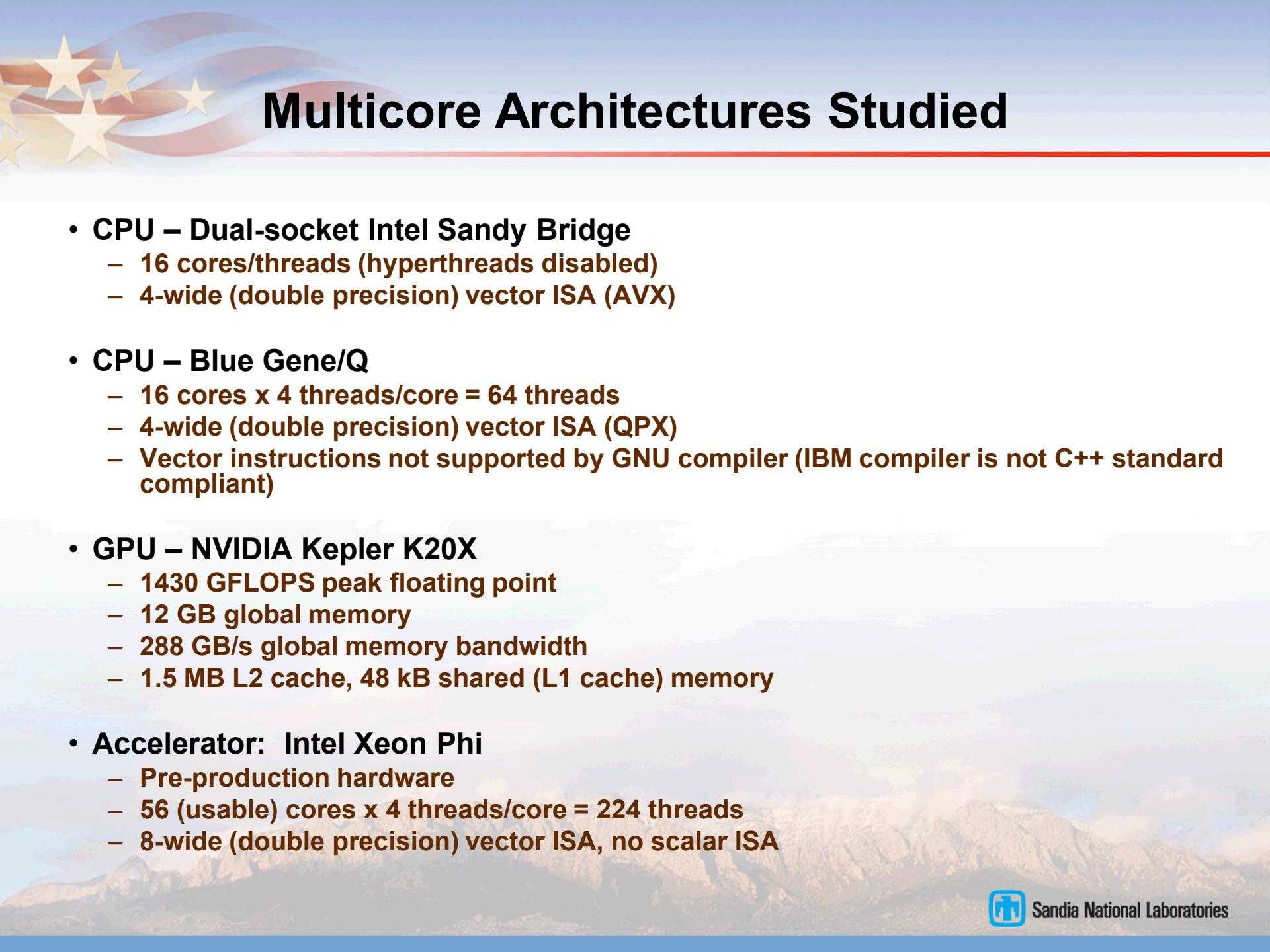
$$-\kappa \nabla^2 u + u^2 = 0$$

- 3-D, linear FEM discretization
 - 1x1x1 cube, unstructured mesh
 - KL-like random field model for diffusion coefficient

<http://trilinos.sandia.gov>

- Hybrid MPI+X parallelism
 - Traditional MPI domain decomposition using threads within each domain
- Employs Kokkos for thread-scalable
 - Graph construction
 - PDE assembly
- Employs Tpetra for distributed linear algebra
 - CG iterative solver (Belos package)
 - Smoothed Aggregation AMG preconditioning (MueLu)
- Supports embedded ensemble propagation via Stokhos through entire assembly and solve
 - Samples generated via tensor product & Smolyak sparse grid quadrature

Sandia National Laboratories

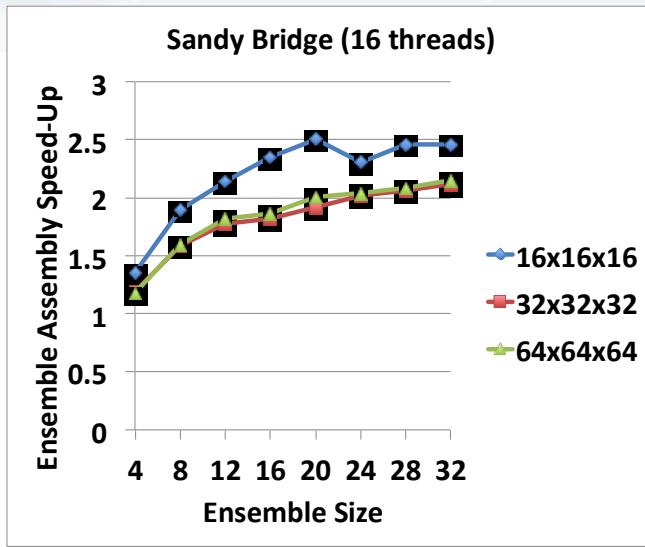
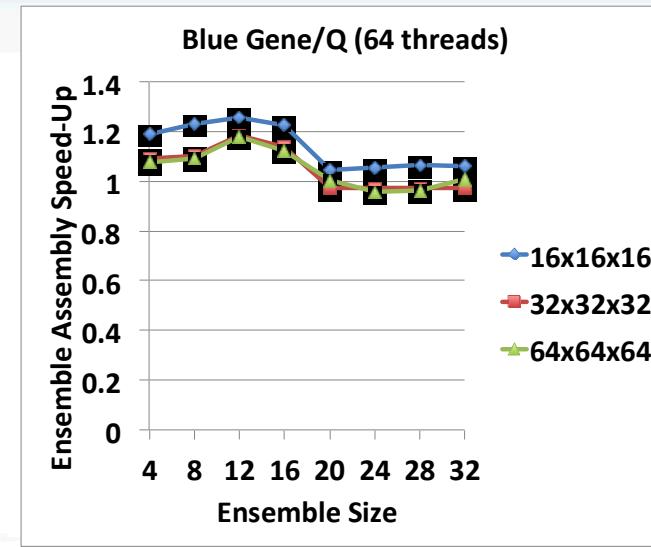
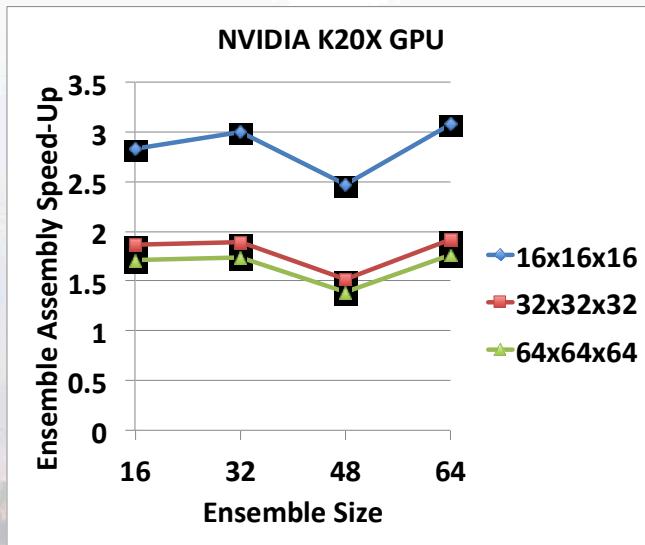
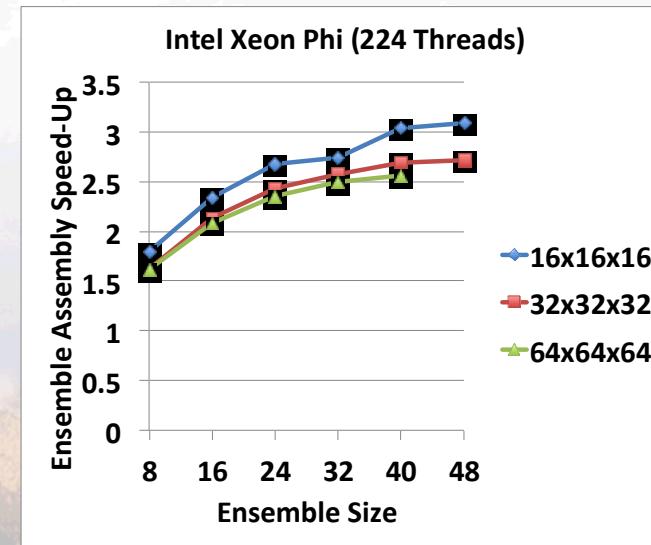


Multicore Architectures Studied

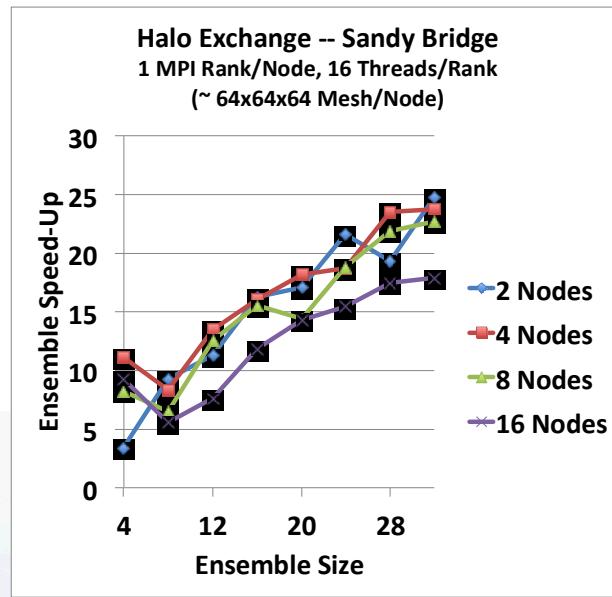
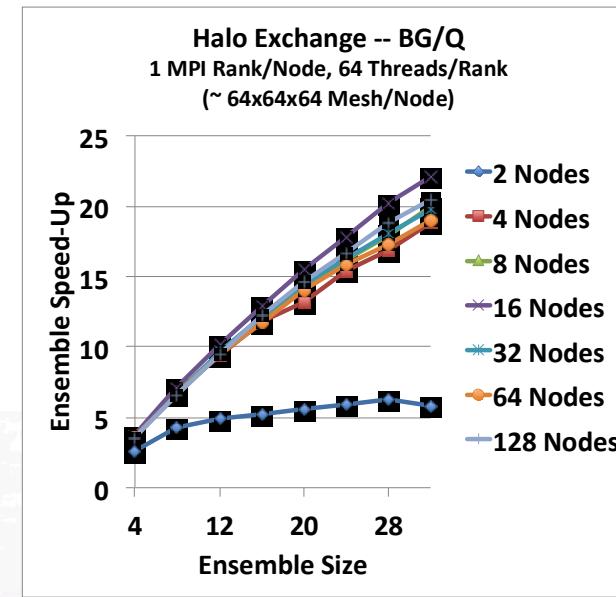
- CPU – Dual-socket Intel Sandy Bridge
 - 16 cores/threads (hyperthreads disabled)
 - 4-wide (double precision) vector ISA (AVX)
- CPU – Blue Gene/Q
 - 16 cores x 4 threads/core = 64 threads
 - 4-wide (double precision) vector ISA (QPX)
 - Vector instructions not supported by GNU compiler (IBM compiler is not C++ standard compliant)
- GPU – NVIDIA Kepler K20X
 - 1430 GFLOPS peak floating point
 - 12 GB global memory
 - 288 GB/s global memory bandwidth
 - 1.5 MB L2 cache, 48 kB shared (L1 cache) memory
- Accelerator: Intel Xeon Phi
 - Pre-production hardware
 - 56 (usable) cores x 4 threads/core = 224 threads
 - 8-wide (double precision) vector ISA, no scalar ISA

Sandia National Laboratories

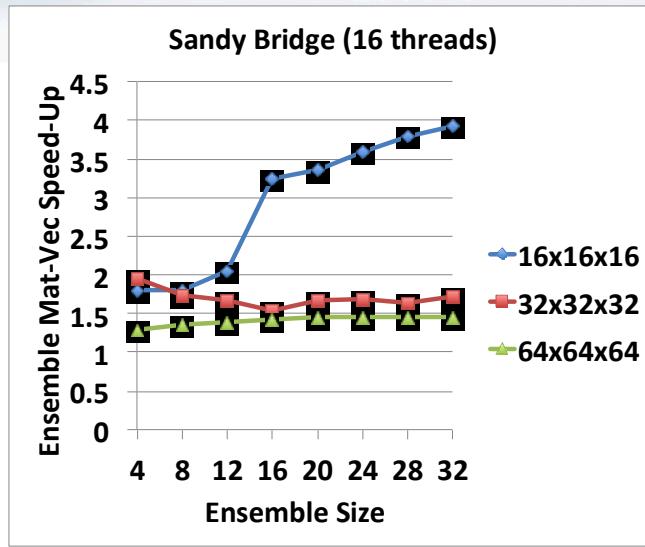
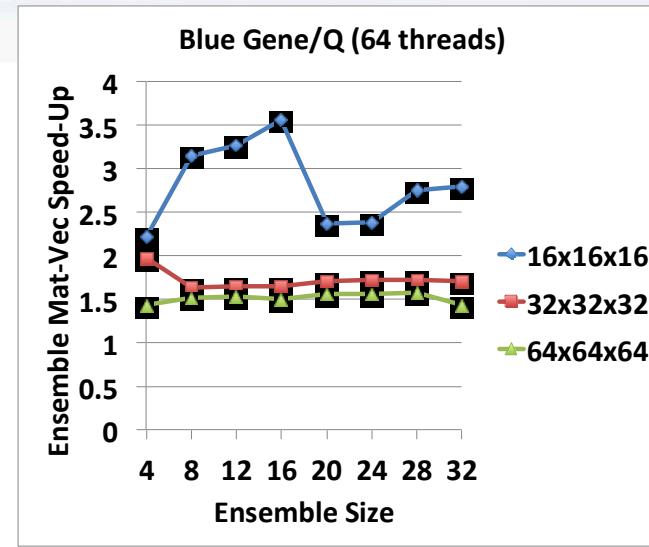
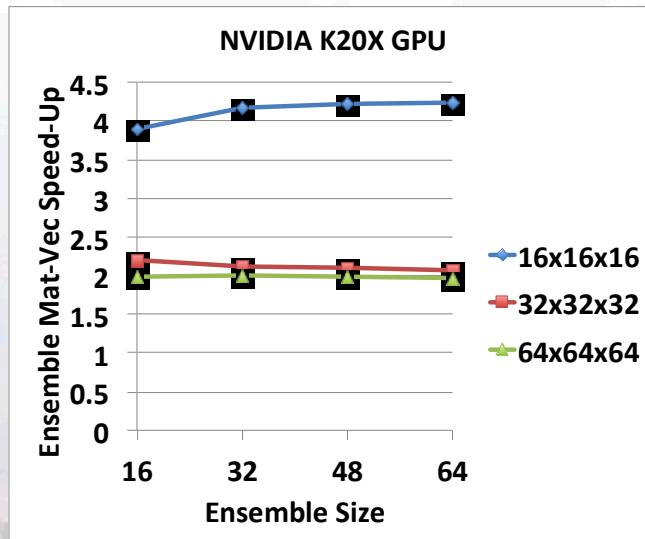
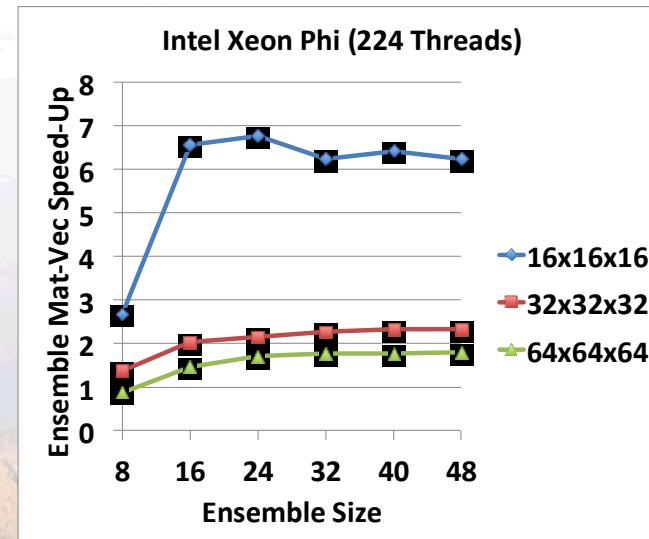
Ensemble Assembly Speed-Up



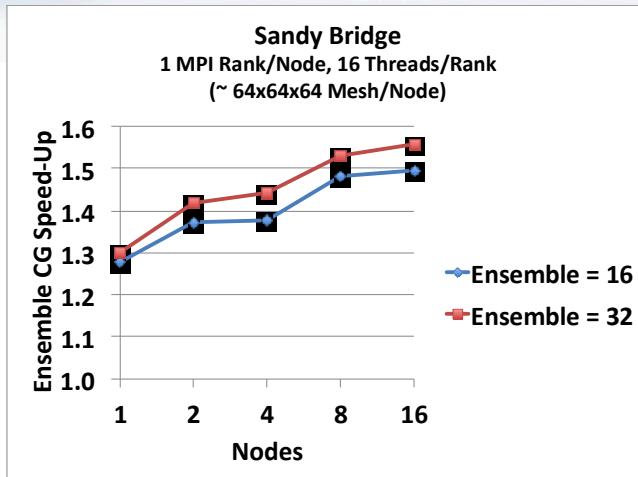
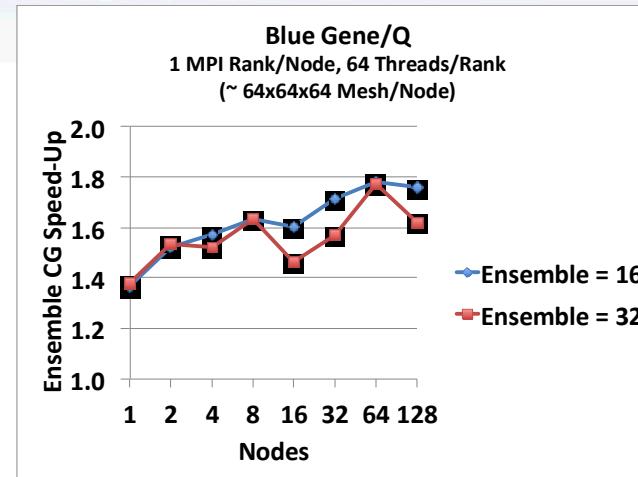
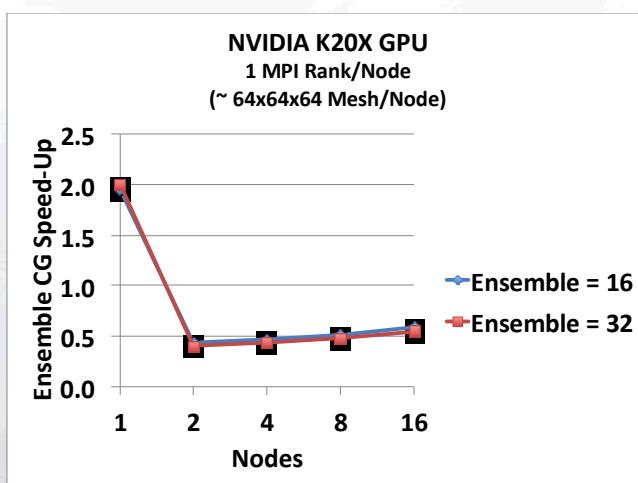
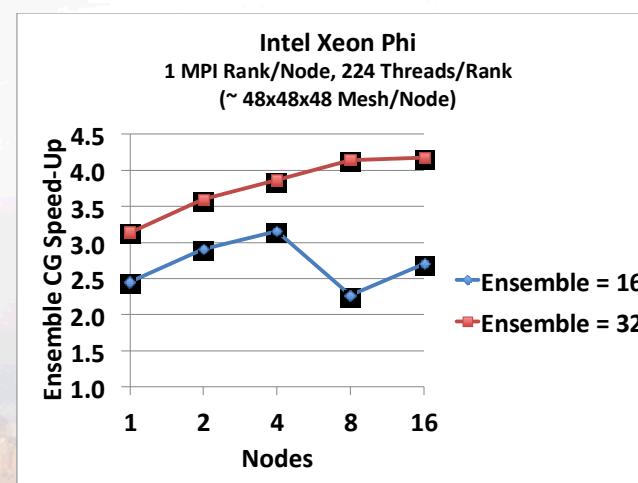
Ensemble MPI Halo-Exchange Speed-Up



Ensemble Matrix-Vector Product Speed-Up



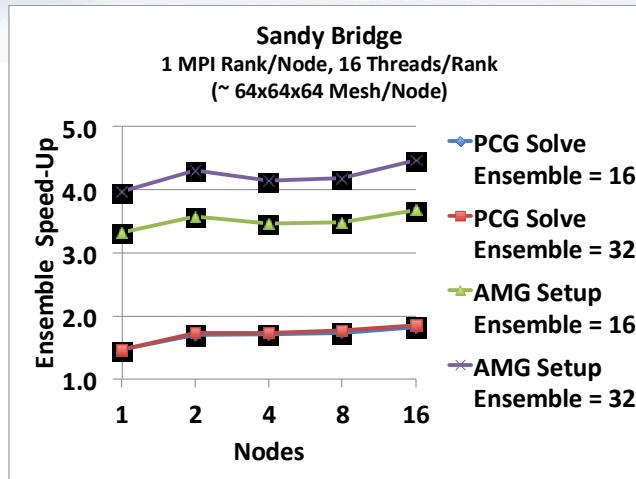
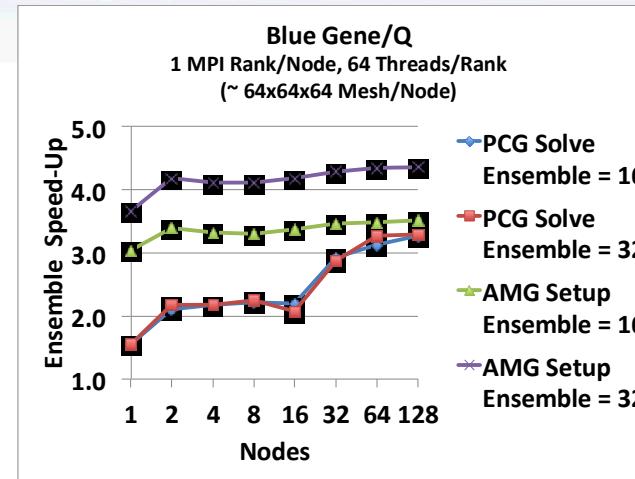
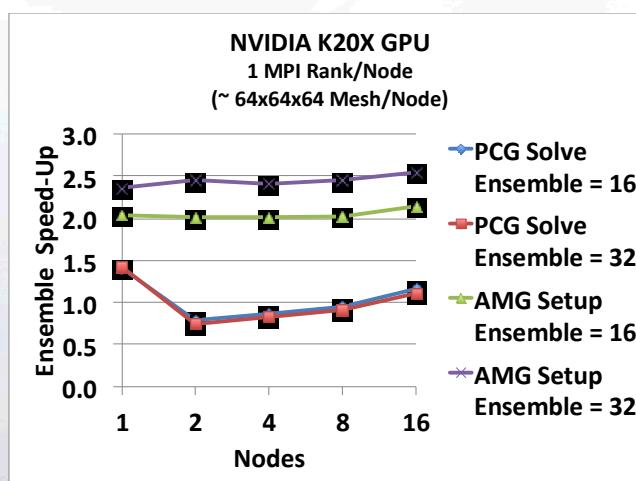
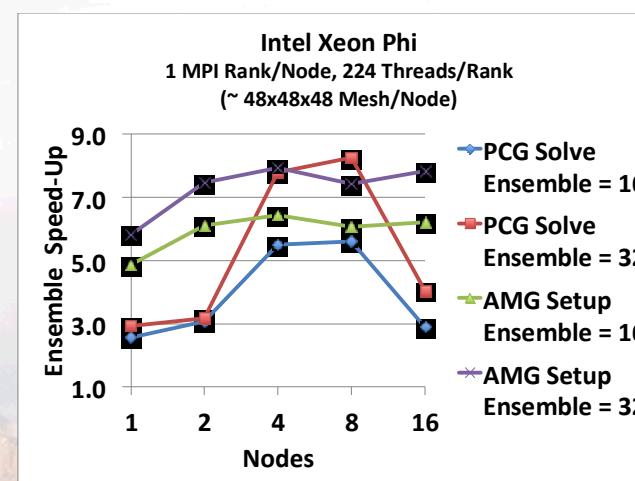
Ensemble CG Speed-Up



Problem with current implementation
that will be fixed soon

Sandia National Laboratories

Ensemble AMG-Preconditioned CG Speed-Up



Problem with current implementation
that will be fixed soon

Sandia National Laboratories

Concluding Remarks

- Results demonstrate substantial improvements in performance are possible by propagating multiple samples together
 - However these are “fake” UQ problems where all samples are the same
 - But results provide an upper bound on performance
- What happens when this is applied to real UQ samples?
 - Will number of CG iterations increase substantially?
 - What is the effectiveness of propagating ensembles directly through preconditioners?
 - What about other approaches, e.g., applying a single-point preconditioner across an ensemble?
 - See J. Hu talk in Part II of this session, MS45 for answers!

Future Work

- **How do we decide when/which samples to propagate together**
 - You're not going to do all of them
 - Some things really do change dramatically between some samples
 - Bifurcations
 - Discontinuities
 - Adaptivity (time, spatial)
 - Branches in the simulation code
- **Software implementation**
 - Fix remaining CUDA kernels not optimized for ensembles
 - Investigate approaches that don't require modifying parallel launch