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Forward Uncertainty Quantification

• Uncertainty Quantification (UQ) means many things
– Best estimate + uncertainty
– Model validation
– Model calibration
– Reliability analysis
– Robust design/optimization, …

• A key to many UQ tasks is forward uncertainty propagation
– Given uncertainty model of input data (aleatory, epistemic, …)
– Propagate uncertainty to output quantities of interest

• There are many forward uncertainty propagation approaches
– Monte Carlo
– Stochastic collocation
– NISP/NIPC
– Regression PCE (“point/probabilistic collocation”)
– Stochastic Galerkin, …

• Key challenges:
– Achieving good accuracy
– High dimensional uncertain spaces
– Expensive forward simulations



Emerging Architectures Motivate New 
Approaches to Uncertainty Quantification

• UQ is a significant driver for exascale computing:
– 1000x increase in performance would make many UQ problems tractable

• UQ approaches traditionally implemented as an outer loop:

– Aggregate UQ performance limited to that of underlying deterministic simulation

• Emerging architectures leading to dramatically increased on-node compute power
– Will require very good strong scalability to very high thread-counts

• Achieving this is difficult for many PDE simulation problems
– Poor memory access patterns
– Inability to expose sufficient fine-grained parallelism

• Can this be remedied by inverting the outer UQ/inner solver loop?
– Expose new dimensions of parallelism through embedded approaches

http://dakota.sandia.gov 

http://trilinos.sandia.gov


Computer Architectures Are Changing 
Dramatically

• Historically (super)computers have 
gotten faster by

– Decreasing transistor size
– Increasing clock frequency
– Making memory appear faster (hiding 

latency) by
• Executing multiple instructions 

simultaneously
• Reordering instructions on-the-fly

– Adding more compute nodes that 
communicate through an interconnect

• These techniques have hit a wall
– Nearing physical limits on transistor 

sizes 
– Pumping up frequency makes the chips 

run hotter, which requires too much 
power to cool them

– Adding more compute nodes increases 
power usage, failure rate Herb Sutter, “The Free Lunch Is Over: A 

Fundamental Turn Toward Concurrency in 
Software”, Dr. Dobb’s Journal 



Performance increases are instead being 
achieved by increasing fine-grained parallelism

• Lots of node-level parallelism at lower clock 
frequencies

– NVIDIA K40:  
• 896 double precision scalar cores @ 0.7 GHz
• Scheduler issues instructions to groups of 32 cores (1 

warp) at a time (SIMT)

– Xeon Phi:
• 61 8-wide double precision cores @ 1.2 GHZ
• Compiler/programmer issues instructions to operate on 

all components of the vector simultaneously 
(SIMD/vectorization)

• Lots of independent threads of execution that can 
easily be swapped in and out to hide latency

– No out-of-order execution and limited instruction-level 
parallelism

• Restrictive memory access patterns
– Access memory chunks commensurate with SIMD/SIMT 

size
– Limited fastest cache size shared amongst many threads



Keys to Achieving Maximal Algorithmic 
Performance on Modern Architectures

• All modern architectures perform arithmetic on short vectors
– Intel Sandy/Ivy Bridge CPU:  4-wide double precision (AVX)
– Blue Gene/Q CPU:  4-wide double precision (QPX)
– Intel Xeon Phi Accelerator:  8-wide double precision (MIC)
– NVIDIA GPU:  32-wide single/double precision

• To achieve maximum performance, an algorithm must vectorize well:
– CPU/MIC:

• Auto-vectorization by compiler
• Explicit vector intrisics

– GPU:
• Each “vector lane” (actually GPU thread) programmed explicitly

• Load/store contiguous regions of memory
– Architectures always load whole cache lines when accessing any data from memory

• CPU/MIC:  64 Bytes, GPU 128 Bytes

– When values are stored contiguously, loading a full vector can have cost as low as accessing a single 
scalar value

• MIC:  8 doubles in one instruction
• GPU:  32 floats, 16 doubles in one instruction

• As architectures evolve, these features will become more and more important
– No increase in scalar floating-point throughput
– No decrease in memory latency



UQ in this environment

• Solving PDEs on complex domains is a challenge in this environment
– Unstructured meshes
– Sparse linear algebra

• And that makes UQ for these problems a challenge
– Traditional approach is to run independent simulations on disjoint subsets of compute nodes
– Therefore aggregate performance is limited to any single simulation

• Take a holistic view of the entire UQ workflow
– Single-point forward simulation is no longer the end-point 
– Codes are being rewritten for these architectures, why not treat UQ as the basic unit of calculation?

• Uncertainty propagation is often a better structured calculation than the original simulation
– Lots of reuse of data from simulation to simulation

• e.g., spatial mesh, matrix graph

– Many UQ methods rely on (local) smoothness, so data generated by solution process is often similar 
across samples

• E.g., preconditioner, Krylov space

• What if we propagated a collection of samples (ensemble) simultaneously?
– See Giering and Vossbeck, 2012.



Simultaneous ensemble propagation

• PDE:

• Propagating m samples – block diagonal (nonlinear) system:

• Commute Kronecker products (just a reordering of DoFs):

• Each sample-dependent scalar replaced by length-m array
– Automatically reuse non-sample dependent data
– Sparse accesses amortized across ensemble
– Math on ensemble naturally maps to vector arithmetic



Potential Speed-up for PDE Assembly

• Halo exchange
– Amortize MPI latency across 

ensemble

• Gather
– Reuse node-index map 

(mesh)
– Replace sparse with 

contiguous loads

• Local residual/Jacobian
– Vectorized math

• Scatter
– Reuse node-index map and 

element graph (mesh)
– Replace sparse with 

contiguous stores



Potential Speed-up for Sparse Solvers

• Sparse matrix-vector 
products
– Amortize MPI latency in halo 

exchange
– Reuse matrix graph
– Replace sparse with 

contiguous loads
– Vector arithmetic

• Dot-products
– Amortize MPI latency

• Preconditioners
– Sparse mat-vecs
– Sparse 

factorizations/triangular-
solves

– Smaller, more unstructured 
matrices

• Ingredients to sparse linear 
system solvers (CG, 
GMRES, …)
– Sparse matrix-vector 

products

– Dot-products
– Preconditioners

• Relaxation-based 
(Jacobi, Gauss-Seidel, …)

• Incomplete factorizations 
(ILU, IC, …)

• Polynomial (Chebyshev, 
…)

• Multilevel 
(Algebraic/Geometric 
multigrid)



Algebraic Multigrid Generates Unstructured 
Matrices*

Level 0 Level 1 Level 2
Linear FEM discretization of 3-D Laplacian

*Matrices courtesy of J. Hu (SNL)



Application & Library Domain Layer

Kokkos: A Manycore Device Performance Portability Library for 
C++ HPC Applications*

• Standard C++ library, not a language extension
– Core:  multidimensional arrays, parallel execution, atomic operations
– Containers:  Thread-scalable implementations of common data 

structures (vector, map, CRS graph, …)
– LinAlg:  Sparse matrix/vector linear algebra

• Relies heavily on C++ template meta-programming to introduce 
abstraction without performance penalty

– Execution spaces (CPU, GPU, …)

– Memory spaces (Host memory, GPU memory, scratch-pad, texture 
cache, …)

– Layout of multidimensional data in memory

– Scalar type

Back-ends: OpenMP, pthreads, Cuda, vendor libraries ...

Kokkos Sparse Linear Algebra

Kokkos Containers

Kokkos Core

http://trilinos.sandia.gov 

*H.C. Edwards, D. Sunderland, C. Trott (SNL)

http://trilinos.sandia.gov


Stokhos:  Trilinos Tools for Embedded 
UQ Methods

• Trilinos tool originally developed for stochastic Galerkin
methods

• Provides “ensemble scalar type”
– C++ class containing an array with length fixed at compile-time

– Overloads all math operations by mapping operation across array

– Uses expression templates to fuse loops

• Enabled in simulation codes through template-based generic 
progamming

– Template C++ code on scalar type

– Instantiate template code on ensemble scalar type

• Integrated with Kokkos for many-core parallelism
– Specializes Kokkos data-structures, execution policies to map 

vectorization parallelism across ensemble

– For CUDA, currently requires manual modification of parallel 
launch to use customized execution policies

http://trilinos.sandia.gov 

http://trilinos.sandia.gov


Tpetra: Foundational Layer / Library for Sparse Linear 
Algebra Solvers on Next-Generation Architectures*

• Tpetra: Sandia’s templated C++ library for 
distributed memory (MPI) sparse linear algebra
– Builds distributed memory linear algebra on top of 

Kokkos library
– Distributed memory vectors, multi-vectors, and sparse 

matrices
– Data distribution maps and communication operations
– Fundamental computations: axpy, dot, norm, matrix-

vector multiply, ...
– Templated on “scalar” type: float, double, automatic 

differentiation, polynomial chaos, ensembles, …

 Higher level solver libraries built on Tpetra
– Preconditioned iterative algorithms (Belos)
– Incomplete factorization preconditioners (Ifpack2, 

ShyLU)
– Multigrid solvers (MueLu)
– All templated on the scalar type

http://trilinos.sandia.gov 

*M. Heroux, M. Hoemmen, et al (SNL)

http://trilinos.sandia.gov


Techniques Prototyped in FENL Mini-App

• Simple nonlinear diffusion equation

– 3-D, linear FEM discretization
– 1x1x1 cube, unstructured mesh
– KL-like random field model for diffusion coefficient

• Hybrid MPI+X parallelism
– Traditional MPI domain decomposition using threads within each domain

• Employs Kokkos for thread-scalable
– Graph construction
– PDE assembly

• Employs Tpetra for distributed linear algebra
– CG iterative solver (Belos package)
– Smoothed Aggregation AMG preconditioning (MueLu)

• Supports embedded ensemble propagation via Stokhos through entire assembly and 
solve

– Samples generated via tensor product & Smolyak sparse grid quadrature

http://trilinos.sandia.gov 

http://trilinos.sandia.gov


Multicore Architectures Studied

• CPU – Dual-socket Intel Sandy Bridge
– 16 cores/threads (hyperthreads disabled)
– 4-wide (double precision) vector ISA (AVX)

• CPU – Blue Gene/Q
– 16 cores x 4 threads/core = 64 threads
– 4-wide (double precision) vector ISA (QPX)
– Vector instructions not supported by GNU compiler (IBM compiler is not C++ standard 

compliant)

• GPU – NVIDIA Kepler K20X
– 1430 GFLOPS peak floating point
– 12 GB global memory
– 288 GB/s global memory bandwidth
– 1.5 MB L2 cache, 48 kB shared (L1 cache) memory

• Accelerator:  Intel Xeon Phi
– Pre-production hardware
– 56 (usable) cores x 4 threads/core = 224 threads
– 8-wide (double precision) vector ISA, no scalar ISA



Ensemble Assembly Speed-Up
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Ensemble MPI Halo-Exchange Speed-Up
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Ensemble Matrix-Vector Product Speed-Up
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Ensemble CG Speed-Up
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Problem with current implementation 
that will be fixed soon



Ensemble AMG-Preconditioned CG Speed-Up

Problem with current implementation 
that will be fixed soon
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Concluding Remarks

• Results demonstrate substantial improvements in 
performance are possible by propagating multiple samples 
together
– However these are “fake” UQ problems where all samples are 

the same

– But results provide an upper bound on performance

• What happens when this is applied to real UQ samples?
– Will number of CG iterations increase substantially?

– What is the effectiveness of propagating ensembles directly 
through preconditioners?

– What about other approaches, e.g., applying a single-point 
preconditioner across an ensemble?

– See J. Hu talk in Part II of this session, MS45 for answers!



Future Work

• How do we decide when/which samples to propagate 
together
– You’re not going to do all of them

– Some things really do change dramatically between some 
samples

• Bifurcations

• Discontinuities

• Adaptivity (time, spatial)

• Branches in the simulation code

• Software implementation
– Fix remaining CUDA kernels not optimized for ensembles

– Investigate approaches that don’t require modifying parallel 
launch


