
Improving Performance of Sampling-Based
Uncertainty Quantification on Advanced

Computing Architectures Through Embedded
Ensemble Propagation

Eric Phipps (etphipp@sandia.gov)
& H. Carter Edwards

Sandia National Laboratories

SIAM Annual Meeting

July 7-11, 2014

SAND 2014-xxxx C

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of
Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND2014-15555PE

mailto:etphipp@sandia.gov
mailto:etphipp@sandia.gov

Forward Uncertainty Quantification

• Uncertainty Quantification (UQ) means many things
– Best estimate + uncertainty
– Model validation
– Model calibration
– Reliability analysis
– Robust design/optimization, …

• A key to many UQ tasks is forward uncertainty propagation
– Given uncertainty model of input data (aleatory, epistemic, …)
– Propagate uncertainty to output quantities of interest

• There are many forward uncertainty propagation approaches
– Monte Carlo
– Stochastic collocation
– NISP/NIPC
– Regression PCE (“point/probabilistic collocation”)
– Stochastic Galerkin, …

• Key challenges:
– Achieving good accuracy
– High dimensional uncertain spaces
– Expensive forward simulations

Emerging Architectures Motivate New
Approaches to Uncertainty Quantification

• UQ is a significant driver for exascale computing:
– 1000x increase in performance would make many UQ problems tractable

• UQ approaches traditionally implemented as an outer loop:

– Aggregate UQ performance limited to that of underlying deterministic simulation

• Emerging architectures leading to dramatically increased on-node compute power
– Will require very good strong scalability to very high thread-counts

• Achieving this is difficult for many PDE simulation problems
– Poor memory access patterns
– Inability to expose sufficient fine-grained parallelism

• Can this be remedied by inverting the outer UQ/inner solver loop?
– Expose new dimensions of parallelism through embedded approaches

http://dakota.sandia.gov

http://trilinos.sandia.gov

Computer Architectures Are Changing
Dramatically

• Historically (super)computers have
gotten faster by

– Decreasing transistor size
– Increasing clock frequency
– Making memory appear faster (hiding

latency) by
• Executing multiple instructions

simultaneously
• Reordering instructions on-the-fly

– Adding more compute nodes that
communicate through an interconnect

• These techniques have hit a wall
– Nearing physical limits on transistor

sizes
– Pumping up frequency makes the chips

run hotter, which requires too much
power to cool them

– Adding more compute nodes increases
power usage, failure rate Herb Sutter, “The Free Lunch Is Over: A

Fundamental Turn Toward Concurrency in
Software”, Dr. Dobb’s Journal

Performance increases are instead being
achieved by increasing fine-grained parallelism

• Lots of node-level parallelism at lower clock
frequencies

– NVIDIA K40:
• 896 double precision scalar cores @ 0.7 GHz
• Scheduler issues instructions to groups of 32 cores (1

warp) at a time (SIMT)

– Xeon Phi:
• 61 8-wide double precision cores @ 1.2 GHZ
• Compiler/programmer issues instructions to operate on

all components of the vector simultaneously
(SIMD/vectorization)

• Lots of independent threads of execution that can
easily be swapped in and out to hide latency

– No out-of-order execution and limited instruction-level
parallelism

• Restrictive memory access patterns
– Access memory chunks commensurate with SIMD/SIMT

size
– Limited fastest cache size shared amongst many threads

Keys to Achieving Maximal Algorithmic
Performance on Modern Architectures

• All modern architectures perform arithmetic on short vectors
– Intel Sandy/Ivy Bridge CPU: 4-wide double precision (AVX)
– Blue Gene/Q CPU: 4-wide double precision (QPX)
– Intel Xeon Phi Accelerator: 8-wide double precision (MIC)
– NVIDIA GPU: 32-wide single/double precision

• To achieve maximum performance, an algorithm must vectorize well:
– CPU/MIC:

• Auto-vectorization by compiler
• Explicit vector intrisics

– GPU:
• Each “vector lane” (actually GPU thread) programmed explicitly

• Load/store contiguous regions of memory
– Architectures always load whole cache lines when accessing any data from memory

• CPU/MIC: 64 Bytes, GPU 128 Bytes

– When values are stored contiguously, loading a full vector can have cost as low as accessing a single
scalar value

• MIC: 8 doubles in one instruction
• GPU: 32 floats, 16 doubles in one instruction

• As architectures evolve, these features will become more and more important
– No increase in scalar floating-point throughput
– No decrease in memory latency

UQ in this environment

• Solving PDEs on complex domains is a challenge in this environment
– Unstructured meshes
– Sparse linear algebra

• And that makes UQ for these problems a challenge
– Traditional approach is to run independent simulations on disjoint subsets of compute nodes
– Therefore aggregate performance is limited to any single simulation

• Take a holistic view of the entire UQ workflow
– Single-point forward simulation is no longer the end-point
– Codes are being rewritten for these architectures, why not treat UQ as the basic unit of calculation?

• Uncertainty propagation is often a better structured calculation than the original simulation
– Lots of reuse of data from simulation to simulation

• e.g., spatial mesh, matrix graph

– Many UQ methods rely on (local) smoothness, so data generated by solution process is often similar
across samples

• E.g., preconditioner, Krylov space

• What if we propagated a collection of samples (ensemble) simultaneously?
– See Giering and Vossbeck, 2012.

Simultaneous ensemble propagation

• PDE:

• Propagating m samples – block diagonal (nonlinear) system:

• Commute Kronecker products (just a reordering of DoFs):

• Each sample-dependent scalar replaced by length-m array
– Automatically reuse non-sample dependent data
– Sparse accesses amortized across ensemble
– Math on ensemble naturally maps to vector arithmetic

Potential Speed-up for PDE Assembly

• Halo exchange
– Amortize MPI latency across

ensemble

• Gather
– Reuse node-index map

(mesh)
– Replace sparse with

contiguous loads

• Local residual/Jacobian
– Vectorized math

• Scatter
– Reuse node-index map and

element graph (mesh)
– Replace sparse with

contiguous stores

Potential Speed-up for Sparse Solvers

• Sparse matrix-vector
products
– Amortize MPI latency in halo

exchange
– Reuse matrix graph
– Replace sparse with

contiguous loads
– Vector arithmetic

• Dot-products
– Amortize MPI latency

• Preconditioners
– Sparse mat-vecs
– Sparse

factorizations/triangular-
solves

– Smaller, more unstructured
matrices

• Ingredients to sparse linear
system solvers (CG,
GMRES, …)
– Sparse matrix-vector

products

– Dot-products
– Preconditioners

• Relaxation-based
(Jacobi, Gauss-Seidel, …)

• Incomplete factorizations
(ILU, IC, …)

• Polynomial (Chebyshev,
…)

• Multilevel
(Algebraic/Geometric
multigrid)

Algebraic Multigrid Generates Unstructured
Matrices*

Level 0 Level 1 Level 2
Linear FEM discretization of 3-D Laplacian

*Matrices courtesy of J. Hu (SNL)

Application & Library Domain Layer

Kokkos: A Manycore Device Performance Portability Library for
C++ HPC Applications*

• Standard C++ library, not a language extension
– Core: multidimensional arrays, parallel execution, atomic operations
– Containers: Thread-scalable implementations of common data

structures (vector, map, CRS graph, …)
– LinAlg: Sparse matrix/vector linear algebra

• Relies heavily on C++ template meta-programming to introduce
abstraction without performance penalty

– Execution spaces (CPU, GPU, …)

– Memory spaces (Host memory, GPU memory, scratch-pad, texture
cache, …)

– Layout of multidimensional data in memory

– Scalar type

Back-ends: OpenMP, pthreads, Cuda, vendor libraries ...

Kokkos Sparse Linear Algebra

Kokkos Containers

Kokkos Core

http://trilinos.sandia.gov

*H.C. Edwards, D. Sunderland, C. Trott (SNL)

http://trilinos.sandia.gov

Stokhos: Trilinos Tools for Embedded
UQ Methods

• Trilinos tool originally developed for stochastic Galerkin
methods

• Provides “ensemble scalar type”
– C++ class containing an array with length fixed at compile-time

– Overloads all math operations by mapping operation across array

– Uses expression templates to fuse loops

• Enabled in simulation codes through template-based generic
progamming

– Template C++ code on scalar type

– Instantiate template code on ensemble scalar type

• Integrated with Kokkos for many-core parallelism
– Specializes Kokkos data-structures, execution policies to map

vectorization parallelism across ensemble

– For CUDA, currently requires manual modification of parallel
launch to use customized execution policies

http://trilinos.sandia.gov

http://trilinos.sandia.gov

Tpetra: Foundational Layer / Library for Sparse Linear
Algebra Solvers on Next-Generation Architectures*

• Tpetra: Sandia’s templated C++ library for
distributed memory (MPI) sparse linear algebra
– Builds distributed memory linear algebra on top of

Kokkos library
– Distributed memory vectors, multi-vectors, and sparse

matrices
– Data distribution maps and communication operations
– Fundamental computations: axpy, dot, norm, matrix-

vector multiply, ...
– Templated on “scalar” type: float, double, automatic

differentiation, polynomial chaos, ensembles, …

 Higher level solver libraries built on Tpetra
– Preconditioned iterative algorithms (Belos)
– Incomplete factorization preconditioners (Ifpack2,

ShyLU)
– Multigrid solvers (MueLu)
– All templated on the scalar type

http://trilinos.sandia.gov

*M. Heroux, M. Hoemmen, et al (SNL)

http://trilinos.sandia.gov

Techniques Prototyped in FENL Mini-App

• Simple nonlinear diffusion equation

– 3-D, linear FEM discretization
– 1x1x1 cube, unstructured mesh
– KL-like random field model for diffusion coefficient

• Hybrid MPI+X parallelism
– Traditional MPI domain decomposition using threads within each domain

• Employs Kokkos for thread-scalable
– Graph construction
– PDE assembly

• Employs Tpetra for distributed linear algebra
– CG iterative solver (Belos package)
– Smoothed Aggregation AMG preconditioning (MueLu)

• Supports embedded ensemble propagation via Stokhos through entire assembly and
solve

– Samples generated via tensor product & Smolyak sparse grid quadrature

http://trilinos.sandia.gov

http://trilinos.sandia.gov

Multicore Architectures Studied

• CPU – Dual-socket Intel Sandy Bridge
– 16 cores/threads (hyperthreads disabled)
– 4-wide (double precision) vector ISA (AVX)

• CPU – Blue Gene/Q
– 16 cores x 4 threads/core = 64 threads
– 4-wide (double precision) vector ISA (QPX)
– Vector instructions not supported by GNU compiler (IBM compiler is not C++ standard

compliant)

• GPU – NVIDIA Kepler K20X
– 1430 GFLOPS peak floating point
– 12 GB global memory
– 288 GB/s global memory bandwidth
– 1.5 MB L2 cache, 48 kB shared (L1 cache) memory

• Accelerator: Intel Xeon Phi
– Pre-production hardware
– 56 (usable) cores x 4 threads/core = 224 threads
– 8-wide (double precision) vector ISA, no scalar ISA

Ensemble Assembly Speed-Up

0

0.5

1

1.5

2

2.5

3

4 8 12 16 20 24 28 32En
se

m
b

le
A

ss
em

b
ly

Sp
ee

d
-U

p

Ensemble Size

Sandy Bridge (16 threads)

16x16x16

32x32x32

64x64x64

0

0.2

0.4

0.6

0.8

1

1.2

1.4

4 8 12 16 20 24 28 32En
se

m
b

le
A

ss
em

b
ly

Sp
ee

d
-U

p

Ensemble Size

Blue Gene/Q (64 threads)

16x16x16

32x32x32

64x64x64

0

0.5

1

1.5

2

2.5

3

3.5

16 32 48 64En
se

m
b

le
A

ss
em

b
ly

Sp
ee

d
-U

p

Ensemble Size

NVIDIA K20X GPU

16x16x16

32x32x32

64x64x64

0

0.5

1

1.5

2

2.5

3

3.5

8 16 24 32 40 48En
se

m
b

le
A

ss
em

b
ly

Sp
ee

d
-U

p

Ensemble Size

Intel Xeon Phi (224 Threads)

16x16x16

32x32x32

64x64x64

Ensemble MPI Halo-Exchange Speed-Up

0

5

10

15

20

25

30

4 12 20 28

En
se

m
b

le
Sp

e
e

d
-U

p

Ensemble Size

Halo Exchange -- Sandy Bridge
1 MPI Rank/Node, 16 Threads/Rank

(~ 64x64x64 Mesh/Node)

2 Nodes

4 Nodes

8 Nodes

16 Nodes

0

5

10

15

20

25

4 12 20 28

En
se

m
b

le
Sp

e
e

d
-U

p

Ensemble Size

Halo Exchange -- BG/Q
1 MPI Rank/Node, 64 Threads/Rank

(~ 64x64x64 Mesh/Node)

2 Nodes

4 Nodes

8 Nodes

16 Nodes

32 Nodes

64 Nodes

128 Nodes

Ensemble Matrix-Vector Product Speed-Up

0

0.5

1

1.5

2

2.5

3

3.5

4

4 8 12 16 20 24 28 32

En
se

m
b

le
M

at
-V

ec
Sp

ee
d

-U
p

Ensemble Size

Blue Gene/Q (64 threads)

16x16x16

32x32x32

64x64x64

0

0.5
1

1.5

2
2.5

3
3.5

4
4.5

4 8 12 16 20 24 28 32

En
se

m
b

le
M

at
-V

ec
Sp

ee
d

-U
p

Ensemble Size

Sandy Bridge (16 threads)

16x16x16

32x32x32

64x64x64

0

0.5
1

1.5

2
2.5

3
3.5

4
4.5

16 32 48 64

En
se

m
b

le
M

at
-V

ec
Sp

ee
d

-U
p

Ensemble Size

NVIDIA K20X GPU

16x16x16

32x32x32

64x64x64

0

1

2

3

4

5

6

7

8

8 16 24 32 40 48

En
se

m
b

le
M

at
-V

ec
Sp

ee
d

-U
p

Ensemble Size

Intel Xeon Phi (224 Threads)

16x16x16

32x32x32

64x64x64

Ensemble CG Speed-Up

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1 2 4 8 16

En
se

m
b

le
C

G
Sp

ee
d

-U
p

Nodes

Sandy Bridge
1 MPI Rank/Node, 16 Threads/Rank

(~ 64x64x64 Mesh/Node)

Ensemble = 16

Ensemble = 32

1.0

1.2

1.4

1.6

1.8

2.0

1 2 4 8 16 32 64 128

En
se

m
b

le
C

G
Sp

ee
d

-U
p

Nodes

Blue Gene/Q
1 MPI Rank/Node, 64 Threads/Rank

(~ 64x64x64 Mesh/Node)

Ensemble = 16

Ensemble = 32

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1 2 4 8 16

En
se

m
b

le
C

G
Sp

ee
d

-U
p

Nodes

Intel Xeon Phi
1 MPI Rank/Node, 224 Threads/Rank

(~ 48x48x48 Mesh/Node)

Ensemble = 16

Ensemble = 32

0.0

0.5

1.0

1.5

2.0

2.5

1 2 4 8 16

En
se

m
b

le
C

G
Sp

ee
d

-U
p

Nodes

NVIDIA K20X GPU
1 MPI Rank/Node

(~ 64x64x64 Mesh/Node)

Ensemble = 16

Ensemble = 32

Problem with current implementation
that will be fixed soon

Ensemble AMG-Preconditioned CG Speed-Up

Problem with current implementation
that will be fixed soon

1.0

2.0

3.0

4.0

5.0

1 2 4 8 16

En
se

m
b

le
Sp

ee
d

-U
p

Nodes

Sandy Bridge
1 MPI Rank/Node, 16 Threads/Rank

(~ 64x64x64 Mesh/Node)

PCG Solve
Ensemble = 16

PCG Solve
Ensemble = 32

AMG Setup
Ensemble = 16

AMG Setup
Ensemble = 32

1.0

3.0

5.0

7.0

9.0

1 2 4 8 16

En
se

m
b

le
Sp

ee
d

-U
p

Nodes

Intel Xeon Phi
1 MPI Rank/Node, 224 Threads/Rank

(~ 48x48x48 Mesh/Node)

PCG Solve
Ensemble = 16

PCG Solve
Ensemble = 32

AMG Setup
Ensemble = 16

AMG Setup
Ensemble = 32

1.0

2.0

3.0

4.0

5.0

1 2 4 8 16 32 64 128

En
se

m
b

le
Sp

ee
d

-U
p

Nodes

Blue Gene/Q
1 MPI Rank/Node, 64 Threads/Rank

(~ 64x64x64 Mesh/Node)

PCG Solve
Ensemble = 16

PCG Solve
Ensemble = 32

AMG Setup
Ensemble = 16

AMG Setup
Ensemble = 32

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 4 8 16

En
se

m
b

le
Sp

ee
d

-U
p

Nodes

NVIDIA K20X GPU
1 MPI Rank/Node

(~ 64x64x64 Mesh/Node)

PCG Solve
Ensemble = 16

PCG Solve
Ensemble = 32

AMG Setup
Ensemble = 16

AMG Setup
Ensemble = 32

Concluding Remarks

• Results demonstrate substantial improvements in
performance are possible by propagating multiple samples
together
– However these are “fake” UQ problems where all samples are

the same

– But results provide an upper bound on performance

• What happens when this is applied to real UQ samples?
– Will number of CG iterations increase substantially?

– What is the effectiveness of propagating ensembles directly
through preconditioners?

– What about other approaches, e.g., applying a single-point
preconditioner across an ensemble?

– See J. Hu talk in Part II of this session, MS45 for answers!

Future Work

• How do we decide when/which samples to propagate
together
– You’re not going to do all of them

– Some things really do change dramatically between some
samples

• Bifurcations

• Discontinuities

• Adaptivity (time, spatial)

• Branches in the simulation code

• Software implementation
– Fix remaining CUDA kernels not optimized for ensembles

– Investigate approaches that don’t require modifying parallel
launch

