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Motivation

Despite improved algorithms and powerful
supercomputers, “high-fidelity” models are
often too expensive for use in a design or
analysis setting.

Targeted application area in which this
situation arises: compressible cavity flow
problem.

— Large Eddy Simulations (LES) with very fine
meshes and long times are required to predict
accurately dynamic pressure loads in cavity.

These simulations take weeks even
when run in parallel on state-of-the-
art supercomputers!




roper Orthogonal Decomposition (POD)/

Galerkin Method to Model Reduction

High-Fidelity

Simulations:

Snapshot 1

Snapshot 2

Step 1

i

Snapshot K

Modal
Decomposition
(POD): Slapie

——

x(t) =~ ®&arxar(t)

SVD: X = UXVT

Snapshot matrix: X = (x!, ..., xK) € RV*K
Truncation: @, = (¢, ...,¢Py) = UG, 1: M)

Galerkin Projection
of LTI FOM:

&7 [x(t) = Ax(t) + Bu(t)]

“Small” ROM
LTI System:

JN = # of dofs in high-

fidelity simulation

K = # of snapshots

M = # of dofs in ROM
(M << N,M << K)

XA {i}
yar(t)

ST AP\ xp(t) + 1, Bul(t)
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Discrete vs. Continuous Galerkin
Projection

Discrete Projection

Governing PDEs
q=Lq

This talk

Continuous Projection

focuses on

CFD model
qy = Apxqy

Discrete modal
basis @

Projection of CFD model

(matrix operation)

If PDEs are
linear or have
polynomial
non-linearities,
projection can
be calculated in
offline stage of
MOR.

ROM
a, = ®TA,®a,,

* Continuous functions space is defined using finite elements.

\ 4

Governing PDEs

q=Lq
CFD model
qy = Apxqy

Continuous modal
basis* ¢;(x)

Projection of governing PDEs
(numerical integration)

ROM
a; = (¢, L )ay
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i Stability Issues of POD/Galerkin ROMs

Full Order Model (FOM)
q(t) = Lq(t) + N (q(t))

Reduced Order Model (ROM)
qu(t) = Ayqy(t) + Ny (qy,(0))

Problem: FOM stable & ROM stable!

* There is no a priori stability guarantee for POD/Galerkin ROM:s.
» Stability of a ROM is commonly evaluated a posteriori — RISKY!

* Instability of POD/Galerkin ROMs is a real problem in some

applications...

...e.g., compressible flows, high-Reynolds number

flows.

Top right: FOM
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Literature Review

This talk.

Approaches for building stability-preserving POD/Galerkin
ROMs found in the literature fall into two categories:

Stability Preserving ROM Approaches:

Can have an *

intrusive -
implementation

—

1. ROMs which derive a priori a stability-preserving model reduction
framework (usually specific to an equation set).

ROMs based on projection in special ‘energy-based’ (not L?)

inner products, e.g., Rowley et al. (2004), Barone & Kalashnikova
et al. (2009), Serre et al. (2012).

2. ROMs which stabilize an unstable ROM through an a posteriori post-
processing stabilization step applied to the algebraic ROM system.

—

Can have
inconsistencies
between ROM —

and FOM physics | *

Approaches in which an optimization problem that stabilizes an
unstable ROM is formulated and solved, e.g., Amsallem et al.
(2012), Bond et al. (2008), Kalashnikova et al. (2014).

ROMs with increased numerical stability due to inclusion of

‘stabilizing’ terms in the ROM equations, e.g., Wang et al.
(2012).
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7
- ‘ Energy-Stability

* Practical Definition: Numerical solution does not “blow up” in finite time.

* More Precise Definition: Numerical discretization does not introduce any spurious
instabilities inconsistent with natural instability modes supported by the governing
continuous PDEs.

Numerical solutions must maintain proper energy balance.

» Stability of ROM is intimately tied to choice of inner product for the Galerkin
projection.

Stability-preserving inner product derived using the energy method:

* Bounds numerical solution energy in a physical way.
* Borrowed from spectral methods community.
* Analysis is straightforward for ROMs constructed via continuous projection.

Can show: if a Galerkin ROM is constructed in an energy inner
product, the ROM system energy will be bounded in a way that is
consistent with the behavior of the exact solution to the PDEs,
i.e., the ROM will be energy-stable. ) o
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Linearized Compressible Flow
Equations

Energy-Stability for Linearized PDEs:
FOM linearly stable = ROM built in energy inner product linearly stable (Re(1) < 0)
(WCCM X talk and paper: Kalashnikova & Arunajatesan, 2012).

Linearized compressible Euler/Navier-Stokes equations are appropriate
when a compressible fluid system can be described by small-amplitude
perturbations about a steady-state mean flow.

* Linearization of full compressible Euler/Navier-Stokes equations obtained as follows:

1. Decompose fluid field as steady mean plus unsteady fluctuation

q(x,t) =q(x) + q'(x,t)

2. Linearize full nonlinear compressible Navier-Stokes equations around steady
mean to yield linear hyperbolic/incompletely parabolic system

- _.0q" 0 __aq’
q +4@Q il Oxj [Kij(q) oxi| 0
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Energy-Stable ROMs for Linearized
Compressible Flow

Linearized compressible Euler/Navier-Stokes equations are symmetrizable
(Barone & Kalashnikova, 2009; Kalashnikova & Arunajatesan, 2012).

* There exists a symmetric positive definite matrix H = H(q) (system “symmetrizer”) s.t.:

e The convective flux matrices HA; are symmetric
e The following augmented viscosity matrix is symmetric positive semi-definite
HK,, HK,, HK ,
Ks =

HK,, HK,, HK,,
HK,, HK;, HK,

Symmetry Inner Product (weighted L? inner product):

(‘hrCIz)H:f q.Hq,d()
Q

e If ROMis built in symmetry inner product, Galerkin approximation will satisfy the
same energy expression as continuous PDEs:

1q' (x, Ol < ePtllq’,,(x, 0]y (= 2y < 0 for uniform base flow)
M H M H It
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Symmetrizers for Several Hyperbolic/
Incompletely Parabolic Systems

2 0%u 9q . Ou _(1 O
Wave equation: u—aazorq A whereq (u,ax) :>H—( )

oxi

. , ¢ 0 0
Shallow water equations: q' + A.(q) — %' _ g =>H= 0 ¢ 0
0 0 1

, , p 0 0
Linearized compressible Euler: q' + A,(q) afa =0 =o>H=[(0 a*p*p pa?
0 0 (1+a®

147
aql
Linearized compressible Navier-Stokes: q' + A,(q ) Py L+ o%] [K (@) = P
p 0 0
PR e Barone & Kalashnikova, JCP, 2009.
>H=|0 m 0 » Kalashnikova & Arunajatesan, WCCM X, 2012.
Y _ * Kalashnikova et al., SAND report, 2014.
0 0 -
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Continuous Projection
Implementation: “Spirit” Code

“Spirit” ROM Code = 3D parallel C++ POD/Galerkin test-bed ROM code that uses data-structures
and eigensolvers from Trilinos to build energy-stable ROMs for compressible flow problems
— stand-alone code that can be synchronized with any high-fidelity code!

 POD modes defined using piecewise smooth finite elements.

* Gauss quadrature rules of sufficient accuracy are used to compute exactly
inner products with the help of the 1ibmesh library.

* Physics in Spirit: First, testing
. : : 5 : of ROMs for
* Linearized compressible Euler (L-, energy inner product). these
* Linearized compressible Navier-Stokes (L?, energy inner product). ohysics

* Nonlinear isentropic compressible Navier-Stokes (L%, stagnation
energy, stagnation enthalpy inner product).

* Nonlinear compressible Navier-Stokes (L?, energy inner product).

“SIGMA CFD” High-Fidelity Code = Sandia in-house finite volume flow solver derived from
LESLIE3D (Genin & Menon, 2010), an LES flow solver originally developed in the Computational

Combustion Laboratory at Georgia Tech. _
() i
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Numerical Experiment: 2D Inviscid
Pressure Pulse

Inviscid pulse in a uniform base flow (linear dynamics).
High-fidelity simulation run on mesh with 3362 nodes, up totime t = 0.01 seconds.

200 snapshots of solution used to construct M = 20 mode ROM in L% and symmetry
inner products.

Xm,i(t) vs.(q crp, @) fori = 1,2

L? ROM 008, Symmetry ROM
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Numerical Experiment: 2D Inviscid
Pressure Pulse (cont’d)

* Inviscid pulse in a uniform base flow (linear dynamics).
e High-fidelity simulation run on mesh with 3362 nodes, up totime t = 0.01 seconds.

¢ 200 snapshots of solution used to construct M = 20 mode ROM in L? and symmetry
inner products.

p’: High-fidelity p’: Symmetry ROM p’: L> ROM

Pressore p Solution - 20 Mode L2 ROM

High Fidelity p Solution - Snapshot #160
- T
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Nonlinear Compressible Flow Equations

Energy-Stability for Nonlinear PDEs:
ROM built in energy inner product will preserve stability of an equilibrium point at O for
the governing nonlinear system of PDEs (Rowley, 2004; Kalashnikova et al., 2014).

 Compressible isentropic Navier-Stokes equations (cold flows, moderate Mach #):

Dh _
gt ) u = velocity vector
—u+l7h——Au —0 p = density
Dt Re T = temperature
T = viscous stress tensor

* Full compressible Navier-Stokes equations:

Du+ 1 v(oT) 117 P
Poc Tym2 P TRe T -
Dp+ v =0
pr TPV ( - B
DT y y(y —1)M

P + (y — 1)pTV - u_PR V-(&VT) — ( = Vu-t=0
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Energy-Stable ROMs for Nonlinear
Compressible Flow (Isentropic NS)

In (Rowley, 2004), Rowley et al. showed that energy inner product for the
compressible isentropic Navier-Stokes equations can be defined following a
transformation of these equations.

Transformed compressible isentropic
Navier-Stokes equations:

¢ = speed of sound

Dc y-1 (¢ = (y — Dh)
V- =0 u = velocit

Dt+ 5 cl/u Y

Du+ 2 v 1A — 0

Dt y—1C ¢ Re =

If Galerkin projection step of

Family of inner products: model reduction is performed in a

20 inner product, then the Galerkin
(91,92, = f u -u, + —)/ 1“1t ds} projection will preserve the
¢ stability of an equilibrium point at
{1 = ||ql|, = stagnation enthalpy the origin (Rowley, 2004).
> a=<1
— = ||ql|, = stagnation energy Santia
y ) taoat




Energy-Stable ROMs for Nonlinear
Compressible Flow (Full NS)

Present work extends ideas in (Rowley, 2004) to full compressible Navier-Stokes equations.

e First, full compressible Navier-Stokes
equations are transformed into the

following variables:

a=+/p, b=au, d=ae

* Next, the following “total energy” inner product is

defined:

(@1, 9)rr = f (b, b, + a,d, + a,d,)dQ
Q

— Norm induced by total energy inner product is the

total energy of the fluid system:

e =internal
energy

1
||q||TE = f <Pe +
Q

2

puiui> d(}

If Galerkin projection step of
model reduction is performed in
total energy inner product, then

the Galerkin projection will

preserve the stability of an
equilibrium point at the origin
(Kalashnikova et al., 2014)

© Transformed equations have only
polynomial non-linearities (projection of
which can be computed in offline stage of
MOR and stored).

@® Transformation introduces higher order
polynomial non-linearities.

© Efficiency of online stage of MOR
can be recovered using interpolation
(e.g., DEIM, gappy POD). Sandia
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Continuous Projection

Implementation: “Spirit” Code

“Spirit” ROM Code = 3D parallel C++ POD/Galerkin test-bed ROM code that uses data-structures
and eigensolvers from Trilinos to build energy-stable ROMs for compressible flow problems

— stand-alone code that can be synchronized with any high-fidelity code!

 POD modes defined using piecewise smooth finite elements.

* Gauss quadrature rules of sufficient accuracy are used to compute exactly

inner products with the help of the libmesh library.
* Physics in spirit:
* Linearized compressible Euler (L%, energy inner product).
* Linearized compressible Navier-Stokes (L?, energy inner product).

* Nonlinear isentropic compressible Navier-Stokes (L%, stagnation
energy, stagnation enthalpy inner product).

* Nonlinear compressible Navier-Stokes (L?, energy inner product).

Now, testing
of ROMs for
these
physics

“SIGMA CFD” High-Fidelity Code = Sandia in-house finite volume flow solver derived from
LESLIE3D (Genin & Menon, 2010), a LES flow solver originally developed in the Computational

Combustion Laboratory at Georgia Tech.

Sandia
m National
Laboratories




Cavity

Viscous cavity problemat M = 0.6,
Re = 1500 (laminar regime).

High-fidelity simulation: DNS based on
full nonlinear compressible Navier-
Stokes equations with = 117,000 nodes
(right).

500 snapshots collected, every

Atg,,, = 1Xx107* seconds.
Snapshots used to construct M = 15
mode ROM for nonlinear compressible
Navier-Stokes equations in L? and total
energy inner products.

M = 15 mode POD bases capture
~ 99% of snapshot energy.

Numerical Experiment: Viscous Laminar

Figure above: viscous laminar
cavity problem domain/mesh.

30
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'
‘ " . Numerical Experiment: Viscous Laminar
g Cavity (cont’d)

5 High-Fidelity

ROM (M = 15 modes)

'
no

e L2 ROM exhibited
instability for for
M > 5 modes.

Error (L% norm)

05 0 0.5 | 15
. Nonlinear L2 ROM

NaN

15 mode total energy ROM

5.52 x 1072

: Total Energy ROM
1
- * In contrast, total

0 - - : .
. i i | stable and agreed well
-0.5 0 0.5 1 1.5 2
X

-

2.5

w

with high-fidelity

solution!

Figure above: u-component of
velocity as a function of time ¢t
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ummary & Future Work

A Galerkin model reduction approach in which the continuous equations are
projected onto the basis modes in a continuous inner product is proposed.

It is shown that the choice of inner product for the Galerkin projection step is crucial

to stability of the ROM.

* For linearized compressible flow, Galerkin projection in the “symmetry” inner
product leads to a ROM that is energy-stable for any choice of basis.

* For nonlinear compressible flow, an inner product that induces the total energy
of the fluid system is developed. A ROM constructed in this inner product will

preserve the stability of an equilibrium point at O for the system.

Results are promising for a nonlinear problem involving compressible viscous laminar
flow over an open cavity: a total energy ROM remains stable whereas an L2 ROM

exhibits an instability.

Ongoing/Future Work

Improve efficiency of nonlinear ROMs through interpolation (e.g., DEIM, gappy POD

Studies of predictive capabilities of ROMs (robustness w.r.t. parameter changes).

i

Sandia
National
Laboratories



21'A

cknowledgements

This work was funded by the Laboratories’ Directed Research and
Development (LDRD) Program at Sandia National Laboratories.

Thank You! Questions? Saqdia
ikalash@sandia.gov National _
LABORATORY DIRECTED RESEARCH & DEVELOPVENT http://www.sandia.gov/~ikalash I.abﬂl'atunes

Some references on these ideas:

* |. Kalashnikova, S. Arunajatesan, M.F. Barone, B.G. van Bloemen Waanders, J.A.
Fike. Reduced Order Modeling for Prediction and Control of Large-Scale
Systems. Sandia National Laboratories Report, SAND No. 2014-4693 (2014).

* |. Kalashnikova, S. Arunajatesan. A Stable Galerkin Reduced Order Model
(ROM) for Compressible Flow, WCCM-2012-18407, 10t" World Congress on
Computational Mechanics (WCCM X), Sao Paulo, Brazil (2012).

Sandia
m National

Laboratories



http://www.sandia.gov/~ikalash
mailto:ikalash@sandia.gov

's, 22'R

eferences

I. Kalashnikova, B.G. van Bloemen Waanders, S. Arunajatesan, M.F. Barone. "Stabilization of
Projection-Based Reduced Order Models for Linear Time-Invariant Systems via Optimization-
Based Eigenvalue Reassignment". Comput. Meth. Appl. Mech. Engng. 272 (2014) 251-270.

 M.F. Barone, I. Kalashnikova, D.J. Segalman, H. Thornquist. Stable Galerkin reduced order
models for linearized compressible flow. J. Comput. Phys. 288: 1932-1946, 2009.

« C.W. Rowley, T. Colonius, R.M. Murray. Model reduction for compressible flows using POD and
Galerkin projection. Physica D. 189: 115-129, 2004.

* G. Serre, P. Lafon, X. Gloerfelt, C. Bailly. Reliable reduced-order models for time-dependent
linearized Euler equations. J. Comput. Phys. 231(15): 5176-5194, 2012.

 B.Bond, L. Daniel, Guaranteed stable projection-based model reduction for indefinite and
unstable linear systems, In: Proceedings of the 2008 IEEE/ACM International Conference on
Computer-Aided Design, 728-735, 2008.

 D. Amsallem, C. Farhat. Stabilization of projection-based reduced order models. Int. J. Numer.
Methods Engng. 91 (4) (2012) 358-377.

* F. Genin and S. Menon. Studies of shock/turbulent shear layer interaction using large-eddy
simulation. Computers and Fluids, 39 800-819 (2010). 'I" Sandia

National
Laboratories




st 23'R

eferences (continued)

Z. Wang, |. Akhtar, J. Borggaard, T. lliescu. Proper orthogonal decomposition closure models for
turbulent flows: a numerical comparison. Comput. Methods Appl. Mech. Engrg. 237-240:10-26,
2012.

I. Kalashnikova, S. Arunajatesan, M.F. Barone, B.G. van Bloemen Waanders, J.A. Fike. Reduced
Order Modeling for Prediction and Control of Large-Scale Systems. Sandia National Laboratories
Report, SAND No. 2014-4693 (2014).

I. Kalashnikova, S. Arunajatesan. A Stable Galerkin Reduced Order Model (ROM) for Compressible
Flow, WCCM-2012-18407, 10t World Congress on Computational Mechanics (WCCM X), Sao Paulo,
Brazil (2012).

K. Carlberg, C. Bou-Mosleh, C. Farhat. Efficient nonlinear model reduction via a least-squares
Petrov-Galerkin projection and compressive tensor approximations. Int. J. Numer. Meth. Engng. 86
(2) 155-181 (2011).

S. Chaturantabut, D.C. Sorensen. Discrete empirical interpolation for nonlinear model reduction.
Technical Report TR0O9-05, Department of Computational and Applied Mathematics, Rice University
(2009).

I. Kalashnikova, B.G. van Bloemen Waanders, S. Arunajatesan, M.F. Barone. "Stabilization of
Projection-Based Reduced Order Models for Linear Time-Invariant Systems via Optimizationel\iarll_diaI
Eigenvalue Reassignment". Comput. Meth. Appl. Mech. Engng. 272 (2014) 251-270. o

Laboratories



