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Motivation

• Despite improved algorithms and powerful 
supercomputers, “high-fidelity” models are 
often too expensive for use in a design or 
analysis setting.

• Targeted application area in which this 
situation arises: compressible cavity flow 
problem.

→ Large Eddy Simulations (LES) with very fine 
meshes and long times are required to predict 
accurately dynamic pressure loads in cavity.

These simulations take weeks even 
when run in parallel on state-of-the-

art supercomputers!
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Proper Orthogonal Decomposition (POD)/
Galerkin Method to Model Reduction

• Snapshot matrix: � = (��, …, ��) ∈ ℝ���

• SVD: � = ����

• Truncation: �� = (��, … ,��) = � : , 1:�

�	 = # of dofs in high-
fidelity simulation
�	 = # of snapshots
�	 = # of dofs in ROM 
(�	 << 	�, �	 << 	�)
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Discrete vs. Continuous Galerkin
Projection

Discrete Projection Continuous Projection

Governing PDEs
�̇ = ℒ�

Governing PDEs
�̇ = ℒ�

CFD model
�̇� = ����

CFD model
�̇� = ����

Discrete modal 
basis �

Continuous modal 
basis* ��(�)

Projection of CFD model 
(matrix operation)

Projection of governing PDEs 
(numerical integration)

ROM
�̇� = �������

ROM
�̇� = ��, ℒ�� ��

* Continuous functions space is defined using finite elements.

This talk 
focuses on
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If PDEs are 
linear or have 

polynomial 
non-linearities, 
projection can 

be calculated in 
offline stage of 

MOR.



Stability Issues of POD/Galerkin ROMs

Full Order Model (FOM)

�̇ � = ℒ� � +�(� � )

Reduced Order Model (ROM)

�̇� � = ���� � + ��(�� � )

Problem: FOM stable ⇏	 ROM stable!

• There is no a priori stability guarantee for POD/Galerkin ROMs.  

• Stability of a ROM is commonly evaluated a posteriori – RISKY!

• Instability of POD/Galerkin ROMs is a real problem in some 
applications…

…e.g., compressible flows, high-Reynolds number 
flows.

Top right: FOM
\

Bottom right: ROM

5



1. ROMs which derive a priori a stability-preserving model reduction 
framework (usually specific to an equation set).

• ROMs based on projection in special ‘energy-based’ (not �2) 
inner products, e.g., Rowley et al. (2004), Barone & Kalashnikova 
et al. (2009), Serre et al. (2012).

2.  ROMs which stabilize an unstable ROM through an a posteriori post-
processing stabilization step applied to the algebraic ROM system. 

• Approaches in which an optimization problem  that stabilizes an 
unstable ROM is formulated and solved, e.g., Amsallem et al. 
(2012), Bond et al. (2008), Kalashnikova et al. (2014).

• ROMs with increased numerical stability due to inclusion of 
‘stabilizing’ terms in the ROM equations, e.g., Wang et al. 
(2012).  

Can have
inconsistencies 
between ROM 

and FOM physics

Can have an
intrusive 

implementation

Stability Preserving ROM Approaches: 
Literature Review

Approaches for building stability-preserving POD/Galerkin
ROMs found in the literature fall into two categories: 

This talk.
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Energy-Stability

• Practical Definition: Numerical solution does not “blow up” in finite time.

• More Precise Definition: Numerical discretization does not introduce any spurious 
instabilities inconsistent with natural instability modes supported by the governing 
continuous PDEs.

Numerical solutions must maintain proper energy balance.

• Stability of ROM is intimately tied to choice of inner product for the Galerkin
projection. 

• Stability-preserving inner product derived using the energy method:

• Bounds numerical solution energy in a physical way.  
• Borrowed from spectral methods community.
• Analysis is straightforward for ROMs constructed via continuous projection.

Can show: if a Galerkin ROM is constructed in an energy inner 
product, the ROM system energy will be bounded in a way that is 

consistent with the behavior of the exact solution to the PDEs, 
i.e., the ROM will be energy-stable.
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Linearized Compressible Flow 
Equations

• Linearization of full compressible Euler/Navier-Stokes equations obtained as follows:

1. Decompose fluid field as steady mean plus unsteady fluctuation

� �, � = �� � + �′(�, �)

2. Linearize full nonlinear compressible Navier-Stokes equations around steady 
mean to yield linear hyperbolic/incompletely parabolic system

Energy-Stability for Linearized PDEs: 
FOM linearly stable ⇒ ROM built in energy inner product linearly stable (��(�) < 0)

(WCCM X talk and paper: Kalashnikova & Arunajatesan, 2012).

Linearized compressible Euler/Navier-Stokes equations are appropriate 
when a compressible fluid system can be described by small-amplitude 

perturbations about a steady-state mean flow.

�′̇ + �� ��
��′

���
+

�

���
���(��)

��′

���
= �
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Energy-Stable ROMs for Linearized
Compressible Flow

• There exists a symmetric positive definite matrix � ≡ � �� 	(system “symmetrizer”) s.t.:

• The convective flux matrices ��� are symmetric

• The following augmented viscosity matrix is symmetric positive semi-definite

�� =
��11

��21
��31

		��12

		��22
		��32

		��13

		��23
		��33

Linearized compressible Euler/Navier-Stokes equations are symmetrizable
(Barone & Kalashnikova, 2009; Kalashnikova & Arunajatesan, 2012).

Symmetry Inner Product (weighted �2 inner product):

�1, �2 � = � �1��2�Ω
�

• If ROM is built in symmetry inner product, Galerkin approximation will satisfy the 
same energy expression as continuous PDEs: 

��� �, � � ≤ ���| ��� �, 0 |� (⇒
���
��

≤ 0 for uniform base flow)
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Symmetrizers for Several Hyperbolic/
Incompletely Parabolic Systems

• Wave equation: �̈ = �2
���

���
	 or 	�̇ = �

��

��
where � = �̇,

��

��

• Shallow water equations: �′̇ + �� ��
���

���
= �

• Linearized compressible Euler: �′̇ + �� ��
���

���
= �

• Linearized compressible Navier-Stokes: �′̇ + �� ��
���

���
+

�

���
���(��)

���

���
= �

⇒ � =
1 0
0 �2

⇒ � =

	
��					0 0

0					�� 0
0					0 1

⇒ � =

	
�̅												0 								0
0					�2��̅2�̅ �̅�2

0 			0											(���
�)

��̅

⇒ � =

	
�̅												0 								0

0											
�̅�

��(� − 1)
	0

0 									0											��
�

��
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• Barone & Kalashnikova, JCP, 2009.
• Kalashnikova & Arunajatesan, WCCM X, 2012.
• Kalashnikova et al., SAND report, 2014.



Continuous Projection 
Implementation: “Spirit” Code

• POD modes defined using piecewise smooth finite elements.

• Gauss quadrature rules of sufficient accuracy are used to compute exactly 
inner products with the help of the libmesh library. 

• Physics in Spirit: 

• Linearized compressible Euler (�2, energy inner product).

• Linearized compressible Navier-Stokes (�2, energy inner product). 

• Nonlinear isentropic compressible Navier-Stokes (�2, stagnation 
energy, stagnation enthalpy inner product).

• Nonlinear compressible Navier-Stokes (�2, energy inner product).

“Spirit” ROM Code = 3D parallel C++ POD/Galerkin test-bed ROM code that uses data-structures 
and eigensolvers from Trilinos to build energy-stable ROMs for compressible flow problems

→ stand-alone code that can be synchronized with any high-fidelity code!

“SIGMA CFD” High-Fidelity Code = Sandia in-house finite volume flow solver derived from 
LESLIE3D (Genin & Menon, 2010), an LES flow solver originally developed in the Computational 

Combustion Laboratory at Georgia Tech. 

First, testing 
of ROMs for 

these 
physics
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Numerical Experiment: 2D Inviscid
Pressure Pulse

• Inviscid pulse in a uniform base flow (linear dynamics).

• High-fidelity simulation run on mesh with 3362 nodes, up to time �	 = 	0.01 seconds.

• 200 snapshots of solution used to construct � = 20 mode ROM in �2 and symmetry 
inner products.

��,�(�)	vs.(�’���, ��) for � = 1,2

��	ROM Symmetry ROM
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Numerical Experiment: 2D Inviscid
Pressure Pulse (cont’d)

• Inviscid pulse in a uniform base flow (linear dynamics).

• High-fidelity simulation run on mesh with 3362 nodes, up to time �	 = 	0.01 seconds.

• 200 snapshots of solution used to construct � = 20 mode ROM in �2 and symmetry 
inner products.

p’: �� ROMp’: Symmetry ROMp’: High-fidelity

time of snapshot 0 time of snapshot 160 
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Nonlinear Compressible Flow Equations

• Compressible isentropic Navier-Stokes equations (cold flows, moderate Mach #):

�ℎ

��
+ � − 1 ℎ� ∙ � = 0

��

��
+ �ℎ	 −

1

��
∆�		 = �

�
��

��
+

1

��2
� �� −

1

��
� ∙ �																																																																			 = �

��

��
+ �� ∙ �																																																																																																			 = 0

�
��

��
+ � − 1 ��� ∙ � −

�

����
� ∙ ��� −

� � − 1 �2

��
�� ∙ � = 0

• Full compressible Navier-Stokes equations:

ℎ =	enthalpy
�	 = velocity vector
� = density
�	 = temperature
� =	viscous stress tensor
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Energy-Stability for Nonlinear PDEs: 
ROM built in energy inner product will preserve stability of an equilibrium point at 0 for 

the governing nonlinear system of PDEs (Rowley, 2004; Kalashnikova et al., 2014).



Energy-Stable ROMs for Nonlinear 
Compressible Flow (Isentropic NS)

In (Rowley, 2004), Rowley et al. showed that energy inner product for the 
compressible isentropic Navier-Stokes equations can be defined following a 

transformation of these equations. 

• Transformed compressible isentropic 
Navier-Stokes equations:

• Family of inner products: 

� = �

1 ⇒ � � = stagnation enthalpy

1

�
⇒ � � = stagnation energy

��

��
+
� − 1

2
�� ∙ �																 = 0

��

��
+

2

� − 1
���	 −

1

��
∆�		 = �

If Galerkin projection step of 
model reduction is performed in �

inner product, then the Galerkin
projection will preserve the 

stability of an equilibrium point at 
the origin (Rowley, 2004).

�1, �2 � = � �1 ∙ �2+
2�

� − 1
�1�2 �Ω

�

�	 = speed of sound 
(�2 = (� − 1)ℎ)

�	 = velocity
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Energy-Stable ROMs for Nonlinear 
Compressible Flow (Full NS)

Present work extends ideas in (Rowley, 2004) to full compressible Navier-Stokes equations.  

• First, full compressible Navier-Stokes 
equations are transformed into the 
following variables:

• Next, the following “total energy” inner product is 
defined:

If Galerkin projection step of 
model reduction is performed in 
total energy inner product, then 

the Galerkin projection will 
preserve the stability of an 

equilibrium point at the origin
(Kalashnikova et al., 2014)

→ Norm induced by total energy inner product is the 
total energy of the fluid system:

 Transformed equations have only
polynomial non-linearities (projection of
which can be computed in offline stage of
MOR and stored).

 Transformation introduces higher order
polynomial non-linearities.

 Efficiency of online stage of MOR
can be recovered using interpolation
(e.g., DEIM, gappy POD).

�1, �2 �� = � �1 ∙ �2+ �1�2+ �2�1 �Ω
�

� �� = � �� +
1

2
�����

�

�Ω

� = �,   � = ��, 	� = ��
� =internal 

energy
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Continuous Projection 
Implementation: “Spirit” Code

• POD modes defined using piecewise smooth finite elements.

• Gauss quadrature rules of sufficient accuracy are used to compute exactly 
inner products with the help of the libmesh library. 

• Physics in spirit: 

• Linearized compressible Euler (�2, energy inner product).

• Linearized compressible Navier-Stokes (�2, energy inner product). 

• Nonlinear isentropic compressible Navier-Stokes (�2, stagnation 
energy, stagnation enthalpy inner product).

• Nonlinear compressible Navier-Stokes (�2, energy inner product).

“Spirit” ROM Code = 3D parallel C++ POD/Galerkin test-bed ROM code that uses data-structures 
and eigensolvers from Trilinos to build energy-stable ROMs for compressible flow problems

→ stand-alone code that can be synchronized with any high-fidelity code!

“SIGMA CFD” High-Fidelity Code = Sandia in-house finite volume flow solver derived from 
LESLIE3D (Genin & Menon, 2010), a  LES flow solver originally developed in the Computational 

Combustion Laboratory at Georgia Tech. 

Now, testing 
of ROMs for  

these 
physics
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Numerical Experiment: Viscous Laminar 
Cavity

• Viscous cavity problem at �	 = 	0.6, 
��	 = 	1500	(laminar regime). 

• High-fidelity simulation: DNS based on 
full nonlinear compressible Navier-
Stokes equations with ≈ 117,000	nodes 
(right).

• 500 snapshots collected, every 
∆�����	 = 	1 × 10��	seconds.

• Snapshots used to construct � = 15
mode ROM for nonlinear compressible 
Navier-Stokes equations in �� and total 
energy inner products. 

• � = 15 mode POD bases capture 
≈ 	99% of snapshot energy.  

Figure above: viscous laminar 
cavity problem domain/mesh.
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Numerical Experiment: Viscous Laminar 
Cavity (cont’d)

High-Fidelity

15 mode total energy ROM

ROM (� = 15 modes) Error (�2 norm)

Nonlinear �2 ROM ���

Total Energy ROM 5.52 × 10��

• �2 ROM exhibited 
instability for for 
� > 5 modes.

• In contrast, total 
energy ROM remained 
stable and agreed well 
with high-fidelity 
solution!

Figure above: �-component of  
velocity as a function of time �
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Summary & Future Work

Ongoing/Future Work

• Improve efficiency of nonlinear ROMs through interpolation (e.g., DEIM, gappy POD

• Studies of predictive capabilities of ROMs (robustness w.r.t. parameter changes).

• A Galerkin model reduction approach in which the continuous equations are 
projected onto the basis modes in a continuous inner product is proposed.

• It is shown that the choice of inner product for the Galerkin projection step is crucial 
to stability of the ROM.

• For linearized compressible flow, Galerkin projection in the “symmetry” inner 
product leads to a ROM that is energy-stable for any choice of basis.

• For nonlinear compressible flow, an inner product that induces the total energy 
of the fluid system is developed.  A ROM constructed in this inner product will 
preserve the stability of an equilibrium point at 0 for the system.  

• Results are promising for a nonlinear problem involving compressible viscous laminar 
flow over an open cavity: a total energy ROM remains stable whereas an �2 ROM 
exhibits an instability.  
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Thank You!  Questions?
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http://www.sandia.gov/~ikalash

Some references on these ideas: 

• I. Kalashnikova, S. Arunajatesan, M.F. Barone, B.G. van Bloemen Waanders, J.A. 
Fike.  Reduced Order Modeling for Prediction and Control of Large-Scale 
Systems.  Sandia National Laboratories Report, SAND No. 2014-4693 (2014).

• I. Kalashnikova, S. Arunajatesan.  A Stable Galerkin Reduced Order Model 
(ROM) for Compressible Flow, WCCM-2012-18407, 10th World Congress on 
Computational Mechanics (WCCM X), Sao Paulo, Brazil (2012).
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