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Additive Manufacturing (AM)

LENS® deposition process

PhenixTM Systems powder bed process

Advantages

1. Eliminates conventional manufacturing 
restrictions 

2. Expands design space

3. Opportunity to engineer geometries and 
materials to satisfy intended function 

4. Rapid prototyping

Needs & Opportunities (Bourell, D.L. et al.)

1. Design

2. Process modeling & control

3. Material processes & machines

4. Biomedical applications

5. Energy & sustainability applications



Topology Optimization

Problem Definition

Let � and � denote Banach spaces 
where �~�	∀	� ∈ �. Lets also define 
an objective function and equality 
constraint of the form  �: � → ℝ and
�: � → �. This leads to a linear 
programming problem of the form:

min
�∈�

� � 		�. �. 	� � = 0

where � = �	|	� ≤ � ≤ � .

Derivative Operators

��, ��� , ��
∗, ���

∗



Topology Optimization Timeline

Foundational Work

1. Method of moving asymptotes 
introduced (Svanberg, K.)

2. Homogenization method 
introduced (Bendsøe, M. et al.)

3. Structural design via optimality 
criteria (Rozvany, G.)

4. Numerical instabilities in 
topology optimization (Sigmund, 
O. et al.)

5. Krylov subspace methods with 
recycling (Wang, S. et al.)

6. Topology optimization survey 
(Sigmund, O. et al.)
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Linear Programming (LP) Method

LP Formulation

min
�∈�

� � 		�. �. 	� � = 0

Advantages
1. Second-order formulation: Four 

derivative operators required, 
��, 	��� , �� , ���
a. First-order formulation: Two 

derivative operators are 
usually derived and 
implemented, �� and ��

2. Equality constraint derivative 
operators are not reassembled at 
each iteration

3. Ease of implementation

Simplification

Apply optimality criteria (OC) 
approach (Rozvany, 1989)

min
�∈�

� �

Advantages
1. Only � � 	 first- and second-

order derivative operators 
are used

2. � � 	first- and second-
order derivative operators 
are not required

3. Ease of implementation



LP Method Cont.

Equality Constraint: 

min
�∈�

� � 		�. �. 	� � = 0

leads to inaccurate first- and 
second-order derivative 
operators.

Why? Let � denote a Banach
space | �~�	∀	� ∈ �. Then,   
�:�	x	� → � and	� � : � → �

Why? Nonlinear programming 
method require to properly 
solve optimization problem

Disadvantages

Unconstraint:

min
�∈�

� �

yields accurate first- and 
second-order derivative 
operators but inaccurate 
problem formulation is solved



Nonlinear Programming Method

Problem Definition

Let �, �, and � denote Banach spaces where �~�	∀	� ∈ �,
�~�	∀	� ∈ �. Lets also define an objective function and equality 
constraint of the form  �: �	x	� → ℝ and �:�	x	� → �. This leads 
to a nonlinear programming problem (NLP) of the form:

min
�,� 	∈���

� �, � 		�. �. 	� �, � = 0

where � = �	|	� ≤ � ≤ � .

Lagrangian functional

Let � �, �, � : �	x	�	x	� → ℝ be defined as � �, �, � = � �, � +
�, � �, � �∗,� , where �∗: � → �	x	� and ∙,∙ : �	x	� → ℝ

denotes the inner product for a given Banach space �.



Solution Strategy: Full-Space

Full-Space Formulation

1. Derive first-order necessary optimality conditions (FONOC)

2. Apply Newton’s method to FONOC 

3. Solve Karush-Kuhn-Tucker (KKT) optimality system 
��� �, �, � = −�� �, �, � , where1

��� ��� ��
∗

��� ��� ��
∗

�� �� 0

��
��
��

= −

�� + ��
∗, �	 �∗,�

�� + ��
∗, �	 �∗,�

�

Here,

��� = ��� + ���
∗, � �∗,� ��� = ��� + ���

∗, �	 �∗,�

��� = ��� + ���
∗, � �∗,� ��� = ��� + ���

∗, �	 �∗,�

1. Operators dependency on �, �, � drop for simplicity



Solution Strategy: Reduced-Space

Reduced-Space Formulation

The implicit function (Danilov, V.) theorem admits the definition 
of a solution operator ��: � → � such that �� � , � 	|	� ∈ � =
�, � ∈ �	x	�	|	� �, � = 0 . This allows to redefine the 

optimization problem as 

min
�∈�

� �� � , �

Solution Strategy (First-order information)

1. Solve � �� � , � = 0 for  �� � ∈ �

2. Solve �� �� � , � ∗� = −�� �� � , � for � ∈ �

3. Compute reduced gradient operator 

�� �� � , � = �� �� � , � ∗ + �� �� � , � ∗, � �∗,�



Solution Strategy: Reduced-Space
Solution Strategy (Second-order information)

4. Solve �� �� � , � �� = −�� �� � , � �� for �� ∈ �, where 
�� ∈ � denotes the trial step 

5. Solve 
�� �� � , � ∗�� = − ��� �� � , �, � �� + ��� �� � , �, � ��
for �� ∈ �

6. Compute application of reduced Hessian operator to ��
��� �� � , �

= ��� �� � , �, � �� + ��� �� � , �, � ��
+ ��� �� � , �, � ��

Notes

 Step 1-3 are applied for first-order methods

 Step 1-6 are applied for second-order methods



Common Elements

Both full- and reduced-space formulation strategies required the 
same set of operators to solve a given optimization problem. 

Objective Function Operators

� �, � , 	�� �, � ,	�� �, � , 	��� �, � ,	��� �, � ,	��� �, � ,	��� �, �

Equality Constraint Operators

� �, � ,	�� �, � , 	�� �, � ∗, �� �, � , �� �, � ∗,

��� �, � ∗, ��� �, � ∗, ��� �, � ∗, ��� �, � ∗

Note

Additional operators may be required for certain classes of 
inequality constraints.



Design Optimization Toolkit (DOTk)
 Stand-alone C++ software package

 Range of solution methods for 
general gradient- and nongradient-
based constrained optimization

 Nonlinear CG, line search quasi-Newton, 
trust region quasi-Newton, line search 
Newton CG, trust region Newton CG, 
trust region inexact SQP

 Matrix-free

 Other tools include
 In situ solvers

 In situ preconditioners

 In situ derivative operators diagnostics 
tools

 MATLAB API to enable direct used 
of DOTk solution methods through 
MATLAB

 Python API in progress



Application Programming Interface
Linear Algebra API

Operators API

� �, � ≡ �:��� → ℝ

�� �, �, ������ ≡ ��: ��� → ������

�� �, �, ������ ≡ ��: ��� → ������

��� �, �, ��, ������ ≡ ���: ������ → ������

��� �, �, ��, ������ ≡ ���: ������ → ������

��� �, �, ��, ������ ≡ ���:������ → ������

��� �, �, ��, ������ ≡ ���: ������ → ������

� �, �, ������ ≡ �:��� → ������

�� �, �, ��, ������ ≡ ��: ������ → ������

�� �, �, ��, ������ ≡ ��: �����̅ → ������

�� �, �, �, ������ ∗ ≡ ��: ����� → ������

�� �, �, �, ������ ∗ ≡ ��: ����� → ������

��� �, �, �, ��, ������ ∗ ≡ ���: �������� → ������

��� �, �, �, ��, ������ ∗ ≡ ���: �������� → ������

��� �, �, �, ��, ������ ∗ ≡ ���: �������� → ������

��� �, �, �, ��, ������ ∗ ≡ ���: �������� → ������

���� �, � : �� → �

���� �, �, � : �� + � → �

���� �, � : ��� → ℝ

����� � : �� ��� → ℝ



Endless Possibilities
Crack IdentificationLarge-Scale Optimization Inverse Problems

Target

Result

Deformed
Grid

Topology Optimization



Example: Topology Optimization 
Problem Definition

A topology optimization problem is 
often formulated as 

min
�,� ∈���

� �, � 	

s. t.																																				
� �, � = 0	
� � ≤ ���

were � = �	|	� ≤ � ≤ � .

Alternate Definition

The above topology optimization 
problem can be formulated as

min
�,� ∈���

� �, � + � � − ���
�

s. t.																																				
� �, � = 0	

were � = �	|	� ≤ � ≤ � .

Density Field Definition

Lets define Lebesgue space � ≡
�� Ω,ℝ of square measurable C0-
functions endowed with inner 
product  

�, �	 � = ∫ �	�
�

for  z ∈ �

and norm  � � = �, �	 �
�/�.

Alternate Definition

Lets define Lebesgue space �� ≡
�� Ω,ℝ of square measurable C1-
functions endowed with inner 
product 

�, �	 �� = �, �	 � + ∑ �,� , �,�	 �
��� �
���

and norm � �� = �, �	 ��
�/�.



Case Study

Equality Constraint

− �������� ,�
= 0	in	Ω

�� = 0	on	�Ω�

�������� �� = �� 	on	�Ω�

Objective Function

� �� , � =
�

2
� � �������� , ��� + � �

Volume Term:	

� � =
�

�
∑ ��� − ���
��
���

�

Density Model:

� � = ���� + �� �� − ����



Results

Notes:

1. Trust region Newton CG algorithm
2. 210 Iterations needed to reach optimal solution, i.e. 

�� < 1x10��� and �� < 1x10���

3. Filtering operator was not used



Results: Nonlinear CG
30x10 FEM Grid

60x20 FEM Grid



Results: Line Search Newton CG
30x10 FEM Grid

60x20 FEM Grid



Results: Trust Region Newton CG
30x10 FEM Grid

60x20 FEM Grid



The Vision
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Further Advances

Precise Embedding of Uncertainty into the Topology 
Optimization Problem

To directly incorporate the notion of uncertainty into the mathematical 
formulation of the topology optimization problem we require

 Research: Advances in algorithmic research such as new parallel 
optimization algorithms, formulation strategies, faster sampling 
algorithms, parallel solvers, preconditioners, numerical methods for 
stochastic topology optimization, and more

 Numerical Tool: Proper implementation of the advances in algorithmic 
research into a common optimization library suited for general 
constrained optimization problems 

DOTk



Final Remarks

For constrained topology optimization problems:

 Optimization framework enables separation of physics 
modeling software packages from the optimization library

 Alternate topology optimization formulation was successfully 
applied

 General-purpose optimization algorithms can be successfully 
applied to solve topology optimization problems

 Filtering operator was not needed in the present case study

 Research in interior-point methods is required for accurate 
modeling of general constraints
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