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Methods broadly applicable 
§  Provide regularized techniques for modeling localization and fracture/failure 
§  For ductile failure, provide infrastructure for local damage models variational nonlocal 

adaption & localization elements 

adaption & cohesive elements 



Stress-strain curve has one or more peaks. 
Softening behavior 

Stored energy function becomes non-convex.  

Loss of convexity 

Tangent modulus becomes non-positive definite 
(singular acoustic tensor).  

Singular Acoustic Tensor 

Loss of ellipticity 
Governing partial differential equation changes character. 

Loss of Ellipticity 



l  Begin from fundamental physical 
principles. 

l  Governing equations from optimization. 
l  Allow better analysis for uniqueness of 

solutions. 
l  Lead to robust numerical methods. 
l  Help identify correct conjugate fields. 
l  Et cetera. 

Variational Methods	
  



Variational Nonlocal Method 
Three-Field Mixed Finite Element Formulation: 

Helmholtz Free 
Energy 

Constraint Enforced by 
Lagrange Multiplier 

Deformation Mapping 

Deformation 
Mapping 

Nonlocal 
Internal 
Variable 

l  Motivated through studies of non-locality 
l  Fully variational approach. 
l  Entirely by-passes ad hoc approaches. 
l  Does not require any modifications to constitutive 
models. 
l  Nonlocal domain is defined naturally by support of 
mixed interpolation functions. 
l Natural parallelization by domain decomposition of 
coarse discretization. 
l  Does not require cut-off approaches at boundary. 

Natural 
boundary for 
both levels 

Standard node 
fine level 
Mixed node 
coarse level 



Finite Element Formulation 
Three-Field Mixed Finite Element Formulation: 

Variations: 



Regularization 
Discrete Statement of Equilibrium, 
Internal Variables and Conjugate Forces: 

Unit Interpolation, Regularized Variables: 

Volume averaging 
provides nonlocal 
regularization  



Connection to Gradients 

Expansion in Taylor Series: 

Apply to Regularized Variables: 

Obtain Gradient Regularization: 



Leverage domain decomposition 
IDEA: Simple volume averaging enables non-conformal meshes. We can leverage 
an entire community devoted to domain decomposition 

§  Domain	
  decomposi-on	
  algorithms	
  minimize	
  communica-on	
  

§  	
  Geometric	
  par--ons	
  (Zoltan	
  RCB,	
  Zoltan	
  RIB)	
  

§  Graph-­‐based	
  par--ons	
  (Zoltan	
  Hypergraph,	
  Me-s)	
  

§  We	
  can	
  constrain	
  domains	
  to	
  be	
  of	
  common	
  volume,	
  l3	
  	
  

Zoltan RCB Zoltan RCB w/bounding box Zoltan RCB w/bounding box, larger l 

Initial analysis illustrates that domain shape can affect the solution. We are 
introducing anisotropy into nonlocal ISV evolution!  
NOTE: Meyerhenke and co-authors have considered domain shape. "A New Diffusion-based Multilevel 
Algorithm for Computing Graph Partitions", H. Meyerhenke, B. Monien, T. Sauerwald, JPDC 69, 2009. 



Rethinking domain shape 
§  Geometric	
  and	
  graph-­‐based	
  par--oners	
  are	
  not	
  adequate	
  

§  Using	
  these	
  methods	
  outside	
  space	
  of	
  applicability	
  

§  Domains	
  must	
  have	
  common	
  volume	
  and	
  be	
  isotropic	
  

§  Boundary	
  volumes	
  can	
  be	
  cri-cal	
  to	
  crack	
  ini-a-on	
  	
  

§  Consider	
  Centroidal Voronoi Tesselation (Burkardtetal, 2002) 	
  

§  Create a background grid to establish boundaries of general domain 

§  Employ graph based decomposition algorithms to find an initial guess 

§  Use Lloyd’s algorithm to iteratively find CVT – use background grid for clustering 

§  When finished with CVT – find element centroids closest to partition centroids  

mesh size = 125 µm cartesian grid size = 100 µm length scale = 1.3 mm 

mesh on processor specify background  
grid intervals 

on 
processor 



Learn with hyperelastic damage 
(Holzapfel, Miehe, Simo) 

§   Softening causes a transition in the partial differential equation and yields non-uniqueness  
§   Local material models will yield this behavior for any numerical method 

ISV for nonlocality:  

Nonlocality for domain i: 

begin parameters for model hyperelastic_damage!
      youngs modulus = 200e9!
      poissons ratio = 0.25!
      damage max = 1.0!
      damage saturation = 1.0e9!
end!



Notched geometries 
Motivated to employ the notched bars for characterizing ductile fracture  

geometry: notched tension 
length: 25.4 mm 
diameter: 12.7 mm 
notch radius: 0.99 mm  

typical mesh for 3D studies 

element size: 125 µm 
nodes: 807,177      
elements: 786,560 

typical meshes for 2.5D studies 

elem. size: 62.5 m  
nodes: 100,562      
elements: 49,744 

elem. size: 125 µm  
nodes: 25,410      
elements: 12,436 

elem. size: 250 µm  
nodes: 6,574      
elements: 3,150   



Mesh-dependent local damage 

h = 31 µm 

h = 62 µm 

h = 125 µm 

h = 250 µm 
Quasi-statics. The crack nucleation process is unstable. Drop 
added for visualization. Dynamics employed for solution. 



Nonlocality regularizes solution 

h = 62 µm, l/8 

h = 125 µm, l/4 

h = 250 µm, l/2 
Nonlocal length scale is 500 µm. Consider element 
discretizations of 250 µm, 167µm, 125 µm, and 62 µm. 



Nonlocality in IVs 

0 < nonlocal damage < 0.3 0 < nonlocal alpha < 3.5e8 J/m3 

0 < local damage < 0.3 0 < axial stress < 9 GPa 

l = 500 µm 
h = 250 µm 
h = l/2 0 < axial stress < 9 GPa 

0 < nonlocal alpha < 3e8 J/m3 0 < nonlocal damage < 0.25 



Converged nonlocality in ISV 

0 < local damage < 0.3 0 < axial stress < 9 GPa 

l = 500 µm 
h = 62 µm 
h = l/8 

0 < nonlocal damage < 0.25 0 < nonlocal alpha < 3e8 J/m3 



Length scale governs nucleation 

l = 1000 µm, h = 62 µm 

l = 500 µm, h = 62 µm 

l = 250 µm, h = 62 µm 

radius of notch, r: 991 µm 
arc length of notch, c : 3112 µm   

c/l = 3.11 

c/l = 6.22 

c/l = 12.4 

Nonlocal length scale l governs crack nucleation. Variability 
increases as l approaches geometric dimensions of body. 
More work needed. 



Nucleation in 3D 

Larger simulations are forthcoming to examine convergence. 
Debugging many processor simulations.  

nonlocal damage 

prior to failure 

axial stress  

prior to failure 
nonlocal damage 

after failure 



Conclusions 

Acknowledgments: This works was partially funded by the DOD Joint Munitions Program. 
Many thanks to the Sierra Code Team & Devin O’Connor (Northwestern). Devin investigated 
the weaknesses of currently available domain decomposition algorithms.  

§  Employ the micromechanics dictated by the dominant mechanism 
§  Variational nonlocal method convergent – effective for regularization  
§  Future work will consider void growth in ductile metals 
§  Derived naturally from variational principle. 
§  Strong connection to gradient methods. 
§  No special boundary considerations. 
§  Simple form with unit interpolation functions. 
begin parameters for block block_1!
      material simo!
      solid mechanics use model hyperelastic_damage!
      section = solid_1!
      nonlocal regularization on alpha with length scale = 0.0005!
      nonlocal regularization partitioning scheme = kmeans!
      nonlocal regularization kmeans cell size = 0.00005!
      nonlocal regularization kmeans maximum iterations = 128!
      nonlocal regularization kmeans tolerance = 0.1 # percentage of cell size!
end parameters for block block_1!



EXTRA	
  SLIDES	
  



Focus on a length scale 

lc= 2.0 mm, h = 125 µm lc= 1.0 mm, h = 125 µm lc= 660 µm, h = 125 µm 

R
C

B
 

C
V

T 

Centroidal voronoi tesselation (CVT) is independent of discretization – looks good.  



l  1D Proof of concept problem. 
l  Area proportional to square root of length. 
l  Strong singularity on left end of bar. 
l  Simple hyperelestic model with damage. 
l  Code written in Matlab. 

Example: Foulk’s Singular Bar	
  

u(0) = 0 u(L) = ū
X

A = ↵
p
X

E = E0

L0(B0)
L(B)



Constant Unit Interpolation 



N=16384 
h~0.125mm 

N=2048 
h~0.25mm 

N=256 
h~0.5mm 

N=32 
h~1mm 

Simple finite-deformation elastic model with damage:  
Mesh Dependence 



N=16384 
h~0.125mm 

N=2048 
h~0.25mm 

N=256 
h~0.5mm 

N=32 
h~1mm 

Mesh Dependence 

Damage 



Mesh Dependence 

Load - Displacement 



Implementation 

Use Zoltan to create domains D 
vol(D)=(lengh scale)³=(1.6mm)³ 

Constant interpolation leads to 
simple averaging: 



Partitions 

N=16384 
h~0.125mm 

N=2048 
h~0.25mm 

N=256 
h~0.5mm 

N=32 
h~1mm 



Regularized Solution 

Load - Displacement 



N=16384 
h~0.125mm 

N=2048 
h~0.25mm 

N=256 
h~0.5mm 

N=32 
h~1mm 

Regularized Solution 

Damage 



Regularized Solution (deformed) 

N=16384 
h~0.125mm 

N=2048 
h~0.25mm 

N=256 
h~0.5mm 

N=32 
h~1mm 



1 

2 

3 

§  Sierra	
  Mechanics	
  implementa:on	
  
§  Regulariza:on	
  parameter	
  and	
  length	
  

scale	
  
§  Nonlocal	
  volume	
  	
  
§  Influenced	
  by	
  material	
  (e.g.	
  process	
  

zone)	
  
§  Nonlocal	
  par::oning	
  schemes	
  

§  zoltan_RCB,	
  zoltan_RIB,	
  METIS,	
  
zoltan_hypergraph	
  	
  

§  Nonlocal	
  domain	
  par::oning	
  
procedure	
  
1.  Domain	
  decomposi:on	
  for	
  

parallel	
  computa:on	
  	
  
2.  On	
  each	
  processor	
  nonlocal	
  

domains	
  are	
  created	
   Nonlocal domain partitioning procedure 

3D Implementation 



§  Expec:ng	
  a	
  band	
  of	
  fully	
  
damaged	
  elements	
  on	
  the	
  
order	
  of	
  the	
  nonlocal	
  length	
  

Domain Shape Effect	
  



Domain Shape Quality	
  



Domain Shape Examination	
  

§  Domain	
  decomposi:on	
  for	
  parallel	
  computa:on	
  
§  3,	
  5,	
  7,	
  9	
  and	
  11	
  processor	
  runs	
  

§  Looking	
  for	
  different	
  nonlocal	
  domain	
  shapes	
  with	
  equivalent	
  volumes	
  



Domain Shape Examination	
  

§  Effect	
  less	
  
pronounced	
  in	
  
load	
  displacement	
  
curve	
  

§  Nonlocal	
  volumes	
  
are	
  similar	
  

§  Shows	
  importance	
  
of	
  shape	
  quality	
  



Improving Domain Shape	
  

•  Element Type 
•  Tetrahedrons 

•  Partitioning scheme 
•  Hypergraph 
•  RCB 

Tets: Hypergraph Tets: RCB 



Blue Noise	
  

Blue Noise Delauney Mesh 

Even, isotropic and unstructured distribution of points 
(deGoes 2012). 

Voronoi Cells 



Shape Improved by Blue Noise	
  
Voronoi cells of blue noise are the nonlocal domains. 



Conclusions 

l  Regularization effective. 
l  Derived naturally from variational principle. 
l  Strong connection to gradient methods. 
l  No special boundary considerations. 
l  Simple form with unit interpolation functions. 
l  Domain shape is an issue. 
l  Introduce blue noise for partitioning. 


