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Methods broadly applicable

= Provide regularized techniques for modeling localization and fracture/failure
" For ductile failure, provide infrastructure for local damage models  variational nonlocal
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Loss of Ellipticity

mesh mesh
independent | dependent

A

‘\ post-bifurcation
\ ;
\\\ (softening)

stress, ¢

Softening behavior

Stress-strain curve has one or more peaks.

strain, ¢

Loss of ellipticity

Governing partial differential equation changes character.
DivP+ B =0 %4
= A

Loss of convexity

Stored energy function becomes non-convex.

@[go]:/W(F,Z,T)dV—/B-cpdV— T dS
B B orB

Singular Acoustic Tensor

Tangent modulus becomes non-positive definite

(singular acoustic tensor).
2
c=42"
oC




Variational Methods

» Begin from fundamental physical

principles.

« Governing equations from optimization.

» Allow better analysis for uniqueness of

solutions.
o Lead to robust numerica

» Help identify correct conj

. Et cetera.

methods.
ugate fields.
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Variational Nonlocal Method

Three-Field Mixed Finite Element Formulation:

. Z, V] ::/W(F,Z,Q,T) dV+/ Y (Z-2) dV—/pOB-godV— T ds
\ B "‘ \ B B orB
Deformation Helmholtz Free ~ Nonlocal ConstraintTEnforced by
Mapping Energy Internal Lagrange Multiplier
Variable

« Motivated through studies of non-locality

. Fully variational approach.

. Entirely by-passes ad hoc approaches.

« Does not require any modifications to constitutive

models. Natural
.. . boundary for
« Nonlocal domain is defined naturally by support of both levels
mixed interpolation functions. \ '
«Natural parallelization by domain decomposition of
coarse discretization. o Standard node
Does not require cut-off approaches at bounda fine level
¢ q PP ry. O Mixed node
coarse level
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Finite Element Formulation

Three-Field Mixed Finite Element Formulation:

Plp, Z,Y] ::/W(F,Z,Q,T) dV+/Y-(Z—Z) dV—/pOB-godV— T ¢ dS
B B B orB

Variations:
p €V, =(W3(B))?’, ZcVy:=(Wy(B))?and Y € Vy := (W3 (B))"

neVy, (cVzand £ € Vy

Dq)[cp,Z,Y](n):/P:Gradn dV—/poB-ndV— T -ndS =0,
B B

orB
D3l ZY)¢) = [ (¥ =¥)-¢av =0,

P = 0W/oF Y = —0W/0Z
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Regularization

Discrete Statement of Equilibrium,

Internal Variables and Conjugate Forces:

/ P -Grad N, dV — / poBN, dV — TN, dS = 0,
B B

orB

—1
Z =)\, (/ AaA3 dV) / A\gZ dV,
B B

Unit Interpolation, Regularized Variables:

_ 1
Y = Y dV.
o f¥ v
A =1, Ag =1 > Z = / Z dv,
“ 7 Vol(D
Volume averaging
vol(e) := / dV, provides nonlocal
(o) reqularization
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Connection to Gradients

Expansion in Taylor Series:
04 1 0°Z
Z =2+ 6‘—X(XO) (X — Xo) + §(X—X0) e

(Xo) - (X —Xo)+ -

Apply to Regularized Variables:
_ 1 0*Z
2 =20t 500D ax?

(Xo)Z/D(X—XO)@)(X—XO) dV + - ..

Obtain Gradient Regularization:

Z=27Zy+V*Z(Xy):HD)+---
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Leverage domain decomposition™

IDEA: Simple volume averaging enables non-conformal meshes. We can leverage

an entire community devoted to domain decomposition
"  Domain decomposition algorithms minimize communication

" Geometric partitions (Zoltan RCB, Zoltan RIB)

"  Graph-based partitions (Zoltan Hypergraph, Metis)

®  We can constrain domains to be of common volume, I?

rrrrrrrrrrrr

FHEEHH
rrrrrr

Zoltan RCB Zoltan RCB w/bounng box Zoltan RCB w/bounding box, larger |

Initial analysis illustrates that domain shape can affect the solution. We are

introducing anisotropy into nonlocal ISV evolution!
NOTE: Meyerhenke and co-authors have considered domain shape. "A New Diffusion-based Multilevel

Algorithm for Computing Graph Partitions", H. Meyerhenke, B. Monien, T. Sauerwald, JPDC 69, 2009.
I ——



Rethinking domain shape ) &

Geometric and graph-based partitioners are not adequate
Using these methods outside space of applicability
Domains must have common volume and be isotropic
Boundary volumes can be critical to crack initiation

Consider Centroidal Voronoi Tesselation (Burkardtetal, 2002)

Create a background grid to establish boundaries of general domain

Employ graph based decomposition algorithms to find an initial guess

Use Lloyd’s algorithm to iteratively find CVT — use background grid for clustering

When finished with CVT — find element centroids closest to partition centroids
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Learn with hyperelastic damage @&
U =U(C,p)=(1—¢)Ve(C) (Holzapfel, Miehe, Simo)
¢ = Pmax(l — exp(—a/i))
a(t) = max(¥y)

unique : non-unique
.o Solution :_solution

1
elliptic | hyperbolic v JB;

ISV for nonlocality: «

Nonlocality for domain 1:

0.6 -
011 :

04+

begin parameters for model hyperelastic damage
youngs modulus = 200e9
poissons ratio = 0.25
damage max = 1.0
damage saturation = 1.0e9

0.2
end

| | ! | | | ! 1 | | |
005 0.10 0.15 0.20 025 030 035 El 1

® Softening causes a transition in the partial differential equation and yields non-uniqueness
= | ocal material models will yield this behavior for any numerical method
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Mesh-dependent local damage ®&=-

3.5 T
3l _
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T 2 R local, h = 31.2 microns |
local, h = 62.5 microns
local, h = 125 microns
local, h = 250 microns
0.5 local, h =500 microns ]
local, h = 1000 microns
O | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

far—field displacement (mm)

Quasi-statics. The crack nucleation process is unstable. Drop
added for visualization. Dynamics employed for solution.



Nonlocality regularizes solution ®&=-

3.5 T T T T
—— | =500 microns, h = 250 microns
| = 500 microns, h = 167 microns / .
3" | —— 1 =500 microns, h = 125 microns S ]
— | =500 microns, h = 62.5 microns 6
local, h = 500 microns e
ol | local, h = 62.5 microns a -
h=62um, /8 ®
©
o
S
» 2r |
)
o
k7]
o
D 15F i
T
S
1 [ —
h=1/2
05F i
h=1/3
h=1/4
h=1/8
0 | | | | | |
0 0.1 0.2 0.3 04 0.5 0.6 0.7

far—field displacement (mm)

Nonlocal length scale is 500 um. Consider element
discretizations of 250 um, 167um, 125 um, and 62 um.




Nonlocality in IVs ).

1
Oéizvi/BiadV

0 < nonlocal alpha < 3e8 J/m3 0 < nonlocal damage < 0.25

| =500 um
h =250 um
h=1/2




Converged nonlocality in ISV @

1
547;:—/ adV
Vi /B,

0 < nonlocal alpha < 3e8 J/m?3 0 < nonlocal damage < 0.25

| = 500 um

, h =62 um
0 < local damage < 0.3 0 < axial stress < 9 GPa h=1/8




Length scale governs nucleation®=:.

/=311 | N | =250 microns, h =1/3 -
—— | = 250 microns, h = 1/4 -
35r | =500 microns, h = I/2 o .
----- | = 500 microns, h = /3 !
— — —1=500 microns, h = I/4 3 !
8[" | ———1=500 microns, h = /8 / : !I : |
[=1000 um, h = 62 um | T | = 1000 microns, h = 1/2 ! S
T | |- | = 1000 microns, h = 1/4 . : | !
?5 251 | = = —1=1000 microns, h = 1/8 : o ! |
g —— 1 =1000 microns, h =1/16 : | HE
7 . A
3 ¥ i
= o ot
k=500 um, h = 62 um = ¥ N
| | ik
c/l=12.4 'I : :
os i o
' | |
|
0 | 1 | | 1 |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
| =250 um, h =62 um far—field displacement (mm)

Nonlocal length scale | governs crack nucleation. Variability
increases as | approaches geometric dimensions of body.
More work needed.

radius of notch, r: 991 um
arc length of notch, ¢ : 3112 um



Nucleation

nonlocal damage

prior to failure

axial stress

prior to failure

nonlocal damage

after failure
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far-field stress (GPa)

gL | —1=500microns, h =2 f,/ﬂf/” |
’ | = 500 microns, h = 1/3

—— | =500 microns, h =1/4

141 local, h = 125 microns

_02 | | | | | | |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

far—field displacement (mm)

Larger simulations are forthcoming to examine convergence.
Debugging many processor simulations.



- Sandia
Conclusions Lt
=  Employ the micromechanics dictated by the dominant mechanism

= Variational nonlocal method convergent — effective for regularization

= Future work will consider void growth in ductile metals

= Derived naturally from variational principle.

= Strong connection to gradient methods.

= No special boundary considerations.

= Simple form with unit interpolation functions.
begin parameters for block block 1
material simo
solid mechanics use model hyperelastic damage
section = solid 1
nonlocal regularization on alpha with length scale = 0.0005
nonlocal regularization partitioning scheme = kmeans
nonlocal regularization kmeans cell size = 0.00005
nonlocal regularization kmeans maximum iterations = 128
nonlocal regularization kmeans tolerance = 0.1 # percentage of cell size
end parameters for block block 1

Acknowledgments: This works was partially funded by the DOD Joint Munitions Program.
Many thanks to the Sierra Code Team & Devin O’Connor (Northwestern). Devin investigated
the weaknesses of currently available domain decomposition algorithms.
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Focus on a length scale

Centroidal voronoi tesselation (CVT) is independent of discretization — looks good.

d0d

o 1AD



Example: Foulk’s Singular Bar @&
« 1D Proof of concept problem.
« Area proportional to square root of length.
« Strong singularity on left end of bar.

« Simple hyperelestic model with damage.

o Code written in Matlab.

A=avX
u(0) =0 E = E, u(L) =u

a X
L'(B')

| L(B)




Load [N]

Load [N]

Constant Unit Interpolation

Stretching of Tapered Bar
Mesh-dependent solutions, A = sqrt(x)
2e405 T . T . T . .
- — 4 -
— 8
— 16
Lse0sE | o -
— 128
| 256 |
— 512
1024
les0s= | T 208 .
50000 — —
0 | L | L | L
0 0.2 0.4 0.6 0.8 1
Displacement [m]
Stretching of Tapered Bar
Averaging level = 3. A = sqrt(x)
2e+05 T T T T T T T T
1.5e+05
le+05
50000
o

04 0.6 0.8 1
Displacement [m]

1.5¢+05

Load [N]

Load [N]

Stretching of Tapered Bar

Discontinuous Interpolation, Avg Mesh: 4

2e+05

le+05

50000

T T T T T T T T

| L 1 L | L | L

2e+05

1.5e+05

le+05

50000

0.2 04 0.6 08 1
Displacement [m]

Stretching of Tapered Bar

Discontinuous Interpolation, Avg Mesh: 32

0.6 0.8 1

0.2 04
Displacement [m]

1.5e+05

Load [N]

Load [N]
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Stretching of Tapered Bar

Discontinuous Interpolation, Avg Mesh: 8

2e+05

Le+05

50000

T T T T T T T

| L | L | L

0 0.2 04 0.6 0.8 1
Displacement [m]
Stretching of Tapered Bar
Averaging level = 5. A = sqrt(x)
2e+05 T T T T T T T T
L — 4 |
— 8
— 16
— 32
1.5e+05— 64 -
— 128
| 256 ]
— 512
1024
N — 2048 -
le+05 T ee
50000 [~ -
0 . 1 . | . | .
0 02 0.4 0.6 0.8 1

Displacement [m]
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Mesh Dependence

Simple finite-deformation elastic model with damage:

W(C,¢) = (1-Wo(C) Wo(C) = Wl (6) + W (&), (@) = ([l — exp(—ar/t)]
a(t) := max Wy(s)
e = S1og(C) WYl(9) = = fexp(20) — 1 — 2], selo.1)
2 & ﬁ (o0: maximum possible damage
€ = dev(e), Wi (e) = 5 [tr(exp€) — 3]. ¢: damage saturation parameter

E =200GPa
v =0.25
k =133GPa
u =67GPa
(o =1.0
¢t =100GJm ™~

N=32

N=256

N=2048 N=16384
h~1mm h~0.5mm h~0.25mm h~0.125mm



Sandia
m National
Laboratories

Mesh Dependence

dor&?ge dor&)oge dq,&qge
|O'4 |O'4 I0.4
0.3 0.3 0.3
0.2 09 0.2
Io.1 Im Io.1
0. 0. 0.
N=32 N=256 N=2048 N=16384
h~1mm h~0.5mm h~0.25mm h~0.125mm

Damage
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Mesh Dependence

3.0x10°" l | | | | | :
2.5%10° — |
2.0x10° — |
Z 5
= — |
— n = h~0.5mm |
= h~(0.25mm
5.0><104 — ]
O‘O“I | | | | | I | | | = ,
0 2%10” 4x10° 6x10” 8x10™ 1x10™

Displacement [m]
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Implementation

_ 1
Y Y dV.
vol(D) /D ’

_ 1
Z Z d
vol(D) /D v

vol(e) := /(.) av,

Constant interpolation leads to
simple averaging:

Use Zoltan to create domains D
vol(D)=(lengh scale)*=(1.6mm)?
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Partitions

N=32 N=256 N=2048 N=16384
h~1mm h~0.5mm h~0.25mm h~0.125mm
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Regularized Solution

3.0x10°" I | T | T | | ,

2.5%10° i

2.0x10° =~
& 5
v-d pu—
g 1.5x10 b lom
= =+ h~0.5mm _
= + h~0.25mm
1.0x10° h~0.125mm | |
—— h~1mm reg
—— h~0.5mm reg ]
4 — h~025mmreg |
>.0x10 h~0.125mm reg
0‘01 | | | | | | | | | ,
0 2x10° 4x10” 6x10° 8x10° 1x10~

Displacement [m]

| oad - Disglacement
T
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Regularized Solution

age age

N=32 N=256 N=2048 N=16384
h~1mm h~0 5mm h~0.25mm h~0.125mm

Damage
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3D Implementation

= Sierra Mechanics implementation
= Regularization parameter and length
scale
= Nonlocal volume

= Influenced by material (e.g. process
zone)

= Nonlocal partitioning schemes

= zoltan_RCB, zoltan_RIB, METIS,
zoltan_hypergraph
= Nonlocal domain partitioning
procedure

1. Domain decomposition for
parallel computation

2. On each processor nonlocal
domains are created Nonlocal domain partitioning procedure



Domain Shape Effect ) .

= Expecting a band of fully
damaged elements on the
order of the nonlocal length

[
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Domain Shape Quality ) ..

e Our current shape quality
metric (Aspect Ratio)
— Division of the largest and X

smallest eigenvalue of the
tensor H(V,;;) X,

* AR = \/Amax/'lmin
— Script written to calculate
AR

HVw) = 5~ [ (X = Xo) ® (X — Xo)aVy
* Example: Plate-like nt

geometry
c
AR = -
a c
 Example: Sphere a
AR =1 b

We desire AR =~ 1 to ensure the same [, throughout the domain and good shape quality




Domain Shape Examination  ®&.

= Domain decomposition for parallel computation
= 3,5,7,9and 11 processor runs

= Looking for different nonlocal domain shapes with equivalent volumes




Domain Shape Examination  ®&.

4000 ................. ................. ................. . ...............

= Effect less
pronounced in

| . _ : , load displacement

T TR ................. ............... .............. curve

2000 oo ................ ................. ............... ................ m Nonlocal VOlumeS
1500 b ................ ................. ................ are S|m||ar

3500_\ ................. ................. ............ ................

3000 F e ................. - ................ ............. ................ ,

load (N)

m— 3 Processors |

A b= % x i mien ................. ................. ...... it Piroicagsnr ] ShOWS importa nce

w7 Processors |:

SO0k Ao ................. ...... 9 Processors Of Shape quality

=11 Processors |:
T |

1 1
0 0.05 01 015 0.2 0.25
displacement (mm)
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Improving Domain Shape

* Element Type
* Tetrahedrons
« Partitioning scheme
« Hypergraph
« RCB

Tets: Hypergraph Tets: RCB
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Blue Noise

Even, isotropic and unstructured distribution of points
(deGoes 2012).
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Shape Improved by Blue Noise

Voronoi cells of blue noise are the nonlocal domains.




Conclusions

Regularization effective.

« Derived naturally from variational principle.
« Strong connection to gradient methods.

« No special boundary considerations.

« Simple form with unit interpolation functions.

« Domain shape is an issue.
« Introduce blue noise for partitioning.



