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Why Ge-Si heterostructures?
----having a balanced high capacity and high charging/discharging rate
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Si possesses the largest theoretical gravimetric capacity in the anode materials.
Ge also has large capacity (both gravimetric and volumetric), second only to silicon.
In addition, Ge has high intrinsic electronic conductivity and lithium ion diffusivity.
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Severe mechanical problem due to the
large volume expansion

New anode materials such as Si, Ge, Sn, SnO, usually experience 100% ~ 300%
volume expansion upon lithiation, which is hard to control and causes fracture of
the electrodes.

Optical micrograph of a Li-alloy film A dry lake bed

after expansion and contraction Dahn et al., Electrochem. Solid-State Lett. 4, A137
(2001)
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_ How to control the lithiation behavior 4
“ ' and thus the volume expansion?

/Example #2: SiO,-coated Si nanotube \

The normally used method:
External mechanical confinement

ﬁmple #1: carbon-coated SnO, nanovm
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Interface and nanosize effects on nano-ionics
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In the past two decades, it has been shown that ionic transport properties can be
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dominated by interfaces at the nanoscale, which provides the possibility to control the Li

diffusion pathways and to modify the volume expansion direction by introducing

heterojunctions (namely chemical and structural discontinuities).
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J. Maier et al, Nature Materials 4, 805 (2005)
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Experimental setup of in-situ TEM battery test

Si/Ge NWs
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Huang et al., Science 330, 1515 (2010) Liu et al., Adv. Energy Mater. 2, 722 (2012)
electrolyte as the solid electrolyte.

The Li,O here can be replaced by other kinds of
solid electrolytes, such as LiPON and LiAISiO.

Building a nano-battery in a TEM, allowing for real time and atomic scale
observations of battery charging and discharging processes.
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Distinct Lithiation Behavior in Hetero-nanowires
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Intensity (a.u.)
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Introducing an ultrathin (down to ~1 nm) ¢
and epitaxially-grown Si surface layer can 100nm Ge/Sicore/shelinw ~ *
dramatically change the volume '
expansion direction!!!

Y. Liu et al., Nano Letters, 13, 4876 (2013)
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&‘ Atomic Layer by Layer Lithiation Reaction
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A larger chemical potential for Si 0

surface than for Ge surface

Li Si Ge Li Ge
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Control experiments under different scenarios
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C-coated Si/Ge core/shell Li C Si Ge
nanowire Do -

Si shell removed
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SiO
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Lithium ion transport in Si-core and Ge-shell
nanowire

LixGe| Si | LixGe

Si core-Ge shell nanowire shows radial lithiation, not axial lithiation! Si

core was not lithiated, the lithium ion stopped at the Si/Ge interface. Sandia
National
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Conclusions and Perspective

* Two different lithiation behaviors with sharp contrast, i.e., core/shell
lithiation in pure Ge nanowires, in Si-core/Ge-shell nanowires versus axial
lithiation in Ge/Si core/shell nanowires, were observed, which indicate two
different Li ion transport mechanisms.

* The presence of the Si shell slows down the lithiation reaction at the
surface and forms a chemical potential barrier that blocks Li ion diffusion
through the shell, resulting in the axial lithiation of the Ge/Si core/shell
nanowires.

e The first direct observation of the dramatic interfacial effect on ionic
transport at the nanoscale.

e Also the first demonstration that the lithiation behavior of a nanostructure
can be controlled by interface and band-gap engineering.

* This work highlights the potential importance of materials design of lithium
ion battery electrodes, and proves a new and effective way to control the
volume expansion of high-energy anode materials.
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