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Non-Invasive Testing

= .. determine the characteristics
engineering systems without

disassembling or damaging them. Direct Field Acoustic Testing

/i A

= Source Inversion

= |nterested in mimicing operational
conditions within an experimental setup
to test conditions throughout the system =
= Direct Field Acoustic Testing — DFAT
= Acoustic testing of aerospace structures

e e—
http://en.wikipedia.org/wiki/Direct_Field_Acoustic_Testing

= Use an array of acoustic drivers

= Material inversion
= Characterize material properties
= Aging, cracks
= Miss-assembly
= DFAT and ultrasonic testing )




Constrained Optimization Problem
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= Subject to the acoustic wave equation
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P = fi+
ot 8 0%
(x,0) =0
(x,0) =0

U= (p7 Ui)T
k = pc — bulk modulus
p = mass density

in Q x (0,7

c = wave speed

in Qx (0, 7] /i

= force density

mg; =m3° + mfje” moment density tensor
for x € () 1
< iz = S
for x € (2

() = computational domain
T = time horizon

&s,r = receiver spatial kernel for shot s
R = selection operator

$® = optimization parameters 3
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Discontinuous Galerkin ) e,

Strong form: =14+
U’t + Ff,;’,,; — S, in (2
U(z,0) =Up(x) att=0 o0

and appropriate boundary conditions on 0f2.

+[n
Partition 2 into N subdomains (2. Up,
/ (WIU, — WIF;)dQ + / W'F,, dI' = / W''S dQ
Qe ’ 0%k Qe

Introduce numerical fluxes F,,(U) — ¥, (U™, U") and sum over all elements

Ne
> / (WI'U, - WIF; - WT8)dQ+ [ W'F,dl'=0
o—1 Y Qe O

Ne
Z/ (WHU + WIF; — W'S) dQd + f W7 (B, — F,) dr =0
e=1 e IO

for all W € V.




DGM Software ) e,

" Variety of physics
" |n- & compressible Euler, compressible Navier-Stokes (with LES)
= Darcy, Helmholtz, Wave equation

* High-order DG on unstructured meshes (low dispersion)
= Modal elements: Line, Quad, Tri, Hex
= Nodal elements: Line, Quad, Tri, Hex, Tet
= Spectral Elements: Line, Quad, Hex
= Curved elements and hybrid meshes
= Variable-order polynomial representation (For both solution and media)
= Local polynomial and mesh refinement
= Various flux functions (Lax-Friedrichs, Steger-Warming, Riemann)
= Range of explicit and implicit time integrators
= Forward & Backward Euler, Trapezoidal, 4" Order Runge-Kutta (low dispersion)

" Designed for adjoint-based optimization
= ROL, PEOpt, Dakota, MOOCHO, Aristos

= Steady-state and transient with check pointing




Modal vs. Nodal vs. Spectral
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Modal
(Karniadakis & Sherwin, 2005,
Collis, 2002)

Nodal
(Hesthaven & Warburton, 2000;
Kaser & Dumbser, 2006, 2008)

Spectral
(Karniadakis & Sherwin,
2005)

Elements Line, Tri,Quad, Hex Line, Tri, Quad, Hex, Tet Line, Quad, Hex

DoFs coefficients of polynomial bases nodes of the Lagrange GLL nodes
polynomials

Interpolation transform/Lagrange Lagrange Lagrange sampled at

Legendre zeros

Mass term
integration

constant for affine elements,
Gauss quadrature for non-affine

orthogonal bases — exact
integration for affine elements,
Gauss quadrature for non-affine

diagonal for affine and non-
affine elements

Volume Integration

Gauss-Lobatto quadrature Q=P+2;
exact integration

orthogonal bases — exact
analytic

Gauss-Lobatto quadrature,
Q=P+1

Surface integration/
Flux data

interpolate on face, Gauss
quadrature Qedg=P+1

data is native to face — no
interpolation- exact integration

no interpolation for constant
P, face interpolation for non-
const. P

Media

variable within element

constant within element

variable within element

Element Jacobian

variable within element

constant over element

variable within element

Non-linear terms

increase number of quadrature
points GLL

filter or use quadrature

filter high modes (de-alias)




Modal and Spectral Elements

* Modal (more accurate)

Uses Legendre basis (modes)
Uses quadrature for all integrals

Can exactly integrate higher-order polynomial
products by increasing quadrature (q = p+2)
Requires interpolation from nodes to quad pts.

For affine elements, mass matrix is constant and
easily inverted and stored.

For non-affine elements, mass matrix is dense
and needs inverting every time step and stage.

* In Common

Uses tensor-products of orthogonal polynomials
Support spatially variable polynomial order

Variable media, nonlinearities, & non-affine
elements produce higher-order polynomial
products

» Spectral (less accurate; less expensive)

Uses Lagrange basis on optimal node
distributions

Under inte?rates higher-order polynomial products
because of fixed quadrature (q = p+1)

May need to resort to modal or inexact quadrature
+ filtering for higher-order polynomial products

No interpolation required.

For affine & non-affine elements, mass matrix is
diagonal and easily inverted.
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Numerical Fluxes ) o,

u
= Riemann Flux (Exact flux) u u*
= Conversativeformu;+ fo=0notu;+cu, =0 - £ X
= Rankine-Hugoniot Jump Conditions clut —u~|=|fT — f| t "
-C
= Entropy Conditions
= Flux, flux Jacobian, and eigenvalues are \/ + X
F,=(AU) A= diag{\1,....\n}
__ OF;
Ai = 5y = diag {eigen(A,)}
= Lax-Friedrich Flux
F, U, UN=L[F, +F+¢U -U")] £ = max |\
= Steger-Warming Flux (Flux-Vector Splitting)
A, =AT+ A~ =TATT '+ TA T A* = (A £|A])/2

Fo=3[AU + AU +|A,|(U -UY) Al =T AT




Optimization Software

= Rapid Optimization Library (ROL)
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Release within Trilinos in October 2014 ///
Rewrite and consolidation of existing tools

= PEOpt, Aristos, Moocho, Optipack
Lead developers: Drew Kouri (primary) and Denis Ridzal

Unconstrained optimization

= Gradient descent, quasi-Newton, nonlinear CG, inexact Newton (FD
Hessvecs), with line searches and trust regions.

Inequality constraints

= Box constraints using projected gradient and projected Newton methods
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ROL: Methods — FD Hessvecs ) 5.

min J(z)

= Goal: Obtain near quadratic convergence from Newton-
CG with finite difference Hessian-times-a-vector
= Set H(z,v,t) =|VJ(z+tv) —VJ(2)]/t
= Apply inexact CG to Newton system: H(zy,s,t) = —VJ(zx)
= At ;' iteration of inexact CG require:
|H (21,05, t5) = V2T (z1)vj ]| < emer/ |71l
Constant depending on max # CG iterations, C,y,

Previous inexact G residual, €
Tolerance governed by inexact Newton’s method, 751

10
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ROL: Methods — FD Hessvecs

= Convergence
= Standard assumptions for Newton’s
If V2J(2) is Lipschitz then||H (2, v,t) — V2J(2)v|| = O(t)
= Error between inexact and true CG residuals is €,
Simoncini and Szyld 2002
= |nexact Newton’s Methods: Can satisfy Krylov tolerances which ensure
superlinear or quadratic convergence.
= Notes
= FD Hessvecs require an additional gradient computation per CG iteration
= t; =¢er/(||vjlll|rj—1]|) works well in practice.
= Use line search to globalize new step.



Mock Satellite Wi

= Modeling structure after Y. Y Ye
i\ (AN @Rt A | A
= NASA Ames Lunar Atmosphere Dust s SR AV S SR, & .‘
T T Y P )

and Environment Explorer (LADEE) ~ B§

= Crude 2D representation to
d e m O n St ra te Ca p a b i | |ti e S http://machinedesign.com/cad/software-lets-spacecraft-carry-heavier-loads
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2D Source Inversion

= 12 sources
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2D Source Inversion h) e,

= 12 sources
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2D Source Inversion h) e,
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2D Source Inversion

= 102 sources
= Supershot

—&—— Obj. Func.
—a—— |[|Grad||

o 5 '1'0_""15'
Iteration
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2D Source Inversion h) e,
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2D Source Inversion ) e,
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2D Material Inversion ) e,

22 individual sources
31 receivers Src & Rec Locations Inverted Media Results

= 16 on surface
= 15 on the interior

Sim time T = 0.015 sec.
Constantp =4
Absorbing BCs

After 11 iterations




Summary
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= Demonstration of DG inversion for non-invasive testing

= Low dispersion properties allows coarser mesh
= Variable p-order mesh allows matching order to wavelengths for every

element size
= 2D hybrid mesh using triangles and quadrilaterals

Source inversion to mimic launch conditions
= Open question whether there is enough speakers

Material inversion
= |nitial work promising
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