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Non-­‐Invasive	
  Tes-ng	
  
§  …	
  determine	
  the	
  characteris-cs	
  

engineering	
  systems	
  without	
  
disassembling	
  or	
  damaging	
  them.	
  

§  Source	
  Inversion	
  
§  Interested	
  in	
  mimicing	
  opera-onal	
  

condi-ons	
  within	
  an	
  experimental	
  setup	
  
to	
  test	
  condi-ons	
  throughout	
  the	
  system	
  

§  Direct	
  Field	
  Acous-c	
  Tes-ng	
  –	
  DFAT	
  
§  Acous-c	
  tes-ng	
  of	
  aerospace	
  structures	
  
§  Use	
  an	
  array	
  of	
  acous-c	
  drivers	
  

§  Material	
  inversion	
  
§  Characterize	
  material	
  proper-es	
  
§  Aging,	
  cracks	
  
§  Miss-­‐assembly	
  
§  DFAT	
  and	
  ultrasonic	
  tes-ng	
   2	
  

http://en.wikipedia.org/wiki/Direct_Field_Acoustic_Testing 

Direct Field Acoustic Testing 



Constrained	
  Op-miza-on	
  Problem	
  

§  Subject	
  to	
  the	
  acous-c	
  wave	
  equa-on	
  

3	
  

@p

@t

+ 

@v

i

@x

i

= �1

3

@m

iso

ii

@t

in ⌦⇥ (0, T ]

⇢

@v

i

@t

+

@p

@x

i

= f

i

+

@m

dev

ij

@x

j

in ⌦⇥ (0, T ]

p(x, 0) = 0 for x 2 ⌦

v

i

(x, 0) = 0 for x 2 ⌦

min
�

J(U,�) ⌘ 1

2

NsX

s=1

NrX

r=1

Z

Q

⇠s,r(x)
���R

�
Us � Ûs
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Discon-nuous	
  Galerkin	
  
Strong form:

and appropriate boundary conditions on @�.

Partition � into N subdomains �e.

Introduce numerical fluxes F n(U) ! bF n(U
�,U+

) and sum over all elements

for all W � V.



DGM	
  SoVware	
  
§  Variety of physics	



§  In- & compressible Euler, compressible Navier-Stokes (with LES)	


§  Darcy, Helmholtz, Wave equation	



§  High-order DG on unstructured meshes (low dispersion)	


§  Modal elements:  Line, Quad, Tri, Hex	


§  Nodal elements:  Line, Quad, Tri, Hex, Tet	


§  Spectral Elements: Line, Quad, Hex	


§  Curved elements and hybrid meshes	


§  Variable-order polynomial representation (For both solution and media) 
§  Local polynomial and mesh refinement 
§  Various flux functions (Lax-Friedrichs, Steger-Warming, Riemann)	



§  Range of explicit and implicit time integrators	


§  Forward & Backward Euler, Trapezoidal, 4th Order Runge-Kutta (low dispersion)	



§  Designed for adjoint-based optimization	


§  ROL, PEOpt, Dakota, MOOCHO, Aristos 
§  Steady-state and transient with check pointing	



5	
  



Modal vs. Nodal vs. Spectral 
Modal  
(Karniadakis & Sherwin, 2005, 
Collis, 2002) 

Nodal  
(Hesthaven & Warburton, 2000; 
Kaser & Dumbser, 2006, 2008) 

Spectral 
(Karniadakis & Sherwin, 
2005) 

Elements Line, Tri,Quad, Hex Line, Tri, Quad, Hex, Tet Line, Quad, Hex 

DoFs coefficients of polynomial bases nodes of the Lagrange 
polynomials 

GLL nodes 

Interpolation transform/Lagrange  Lagrange Lagrange sampled at 
Legendre zeros 

Mass term 
integration 

constant for affine elements, 
Gauss quadrature for non-affine 

orthogonal bases – exact 
integration for affine elements, 
Gauss quadrature for non-affine  

diagonal for affine and non-
affine elements 

Volume Integration Gauss-Lobatto quadrature Q≥P+2; 
exact integration 

orthogonal bases – exact 
analytic 

Gauss-Lobatto quadrature, 
Q=P+1 

Surface integration/
Flux data 

interpolate on face, Gauss 
quadrature Qedg=P+1 

data is native to face – no 
interpolation- exact integration 

no interpolation for constant 
P, face interpolation for non-
const. P 

Media variable within element constant within element variable within element 

Element Jacobian variable within element constant over element variable within element 

Non-linear terms increase number of quadrature 
points GLL 

filter or use quadrature filter high modes (de-alias) 



Modal and Spectral Elements	
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Quadrature Pts. 
(integration) 

Node Pts. 
(solution) 

× 

× 

× 

× 

× 

× 

× 

× 

× 

× 

× 

× 

× 
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× 
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•  Modal (more accurate) 
–  Uses Legendre basis (modes) 
–  Uses quadrature for all integrals 
–  Can exactly integrate higher-order polynomial 

products by increasing quadrature (q ≥ p+2) 
–  Requires interpolation from nodes to quad pts. 
–  For affine elements, mass matrix is constant and 

easily inverted and stored. 
–  For non-affine elements, mass matrix is dense 

and needs inverting every time step and stage. 
•  In Common 

–  Uses tensor-products of orthogonal polynomials 
–  Support spatially variable polynomial order 
–  Variable media, nonlinearities, & non-affine 

elements produce higher-order polynomial 
products 

•  Spectral (less accurate; less expensive) 
–  Uses Lagrange basis on optimal node 

distributions 
–  Under integrates higher-order polynomial products 

because of fixed quadrature (q = p+1) 
–  May need to resort to modal or inexact quadrature 

+ filtering for higher-order polynomial products 
–  No interpolation required. 
–  For affine & non-affine elements, mass matrix is 

diagonal and easily inverted. 

×- Gauss-Labatto-Legendre (GLL); ×- Gauss-Legendre (GL) 

GLL (p+1) 

GLL (p+1) GLL (q = p+1) 

GLL (q = p+2) 

GL (q = p+1) 



Numerical	
  Fluxes	
  

§  Riemann	
  Flux	
  (Exact	
  flux)	
  
§  Conversa-ve	
  form	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  not	
  
§  Rankine-­‐Hugoniot	
  Jump	
  Condi-ons	
  
§  Entropy	
  Condi-ons	
  

§  Flux,	
  flux	
  Jacobian,	
  and	
  eigenvalues	
  are	
  	
  

§  Lax-­‐Friedrich	
  Flux	
  
	
  

§  Steger-­‐Warming	
  Flux	
  (Flux-­‐Vector	
  Spli`ng)	
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Op-miza-on	
  SoVware	
  

§  Rapid	
  Op-miza-on	
  Library	
  (ROL)	
  
§  Release	
  within	
  Trilinos	
  in	
  October	
  2014	
  
§  Rewrite	
  and	
  consolida-on	
  of	
  exis-ng	
  tools	
  

§  PEOpt,	
  Aristos,	
  Moocho,	
  Op-pack	
  

§  Lead	
  developers:	
  Drew	
  Kouri	
  (primary)	
  and	
  Denis	
  Ridzal	
  
§  Unconstrained	
  op-miza-on	
  

§  Gradient	
  descent,	
  quasi-­‐Newton,	
  nonlinear	
  CG,	
  inexact	
  Newton	
  (FD	
  
Hessvecs),	
  with	
  line	
  searches	
  and	
  trust	
  regions.	
  

§  Inequality	
  constraints	
  
§  Box	
  constraints	
  using	
  projected	
  gradient	
  and	
  projected	
  Newton	
  methods	
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ROL:	
  Methods	
  –	
  FD	
  Hessvecs	
  

§  Goal:	
  Obtain	
  near	
  quadra-c	
  convergence	
  from	
  Newton-­‐
CG	
  with	
  finite	
  difference	
  Hessian-­‐-mes-­‐a-­‐vector	
  
§  Set	
  
§  Apply	
  inexact	
  CG	
  to	
  Newton	
  system:	
  
§  At	
  	
  	
  	
  	
  	
  	
  itera-on	
  of	
  inexact	
  CG	
  require:	
  

§  Constant	
  depending	
  on	
  max	
  #	
  CG	
  itera-ons,	
  	
  
§  Previous	
  inexact	
  	
  G	
  residual,	
  
§  Tolerance	
  governed	
  by	
  inexact	
  Newton’s	
  method,	
  

10	
  

min
z

J(z)

H(zk, s, t) = �rJ(zk)

H(z, v, t) = [rJ(z + tv)�rJ(z)] /t

jth

kH(zk, vj , tj)�r2J(zk)vjk  cm"k/krj�1k
cm
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ROL:	
  Methods	
  –	
  FD	
  Hessvecs	
  

§  Convergence	
  
§  Standard	
  assump-ons	
  for	
  Newton’s	
  

§  If	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  Lipschitz	
  then	
  	
  
§  Error	
  between	
  inexact	
  and	
  true	
  CG	
  residuals	
  is	
  	
  

§  Simoncini	
  and	
  Szyld	
  2002	
  

§  Inexact	
  Newton’s	
  Methods:	
  Can	
  sa-sfy	
  Krylov	
  tolerances	
  which	
  ensure	
  
superlinear	
  or	
  quadra-c	
  convergence.	
  

§  Notes	
  
§  FD	
  Hessvecs	
  require	
  an	
  addi-onal	
  gradient	
  computa-on	
  per	
  CG	
  itera-on	
  
§  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  works	
  well	
  in	
  prac-ce.	
  
§  Use	
  line	
  search	
  to	
  globalize	
  new	
  step.	
  

r2J(z) kH(z, v, t)�r2J(z)vk = O(t)

"k

tj = "k/(kvjkkrj�1k)



Mock	
  Satellite	
  
§  Modeling	
  structure	
  aVer	
  

§  NASA	
  Ames	
  Lunar	
  Atmosphere	
  Dust	
  
and	
  Environment	
  Explorer	
  (LADEE)	
  

§  Crude	
  2D	
  representa-on	
  to	
  
demonstrate	
  capabili-es	
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http://machinedesign.com/cad/software-lets-spacecraft-carry-heavier-loads 

Mesh Polynomial Order CFL 



2D	
  Source	
  Inversion	
  

§  12	
  sources	
  
§  Inversion	
  crime	
  
§  Supershot	
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2D	
  Source	
  Inversion	
  

§  12	
  sources	
  
§  Inversion	
  crime	
  
§  Supershot	
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2D	
  Source	
  Inversion	
  

§  102	
  sources	
  
§  Supershot	
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2D	
  Source	
  Inversion	
  

§  102	
  sources	
  
§  Supershot	
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2D	
  Source	
  Inversion	
  

§  12	
  sources	
  
§  Supershot	
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2D	
  Source	
  Inversion	
  

§  12	
  sources	
  
§  Supershot	
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2D	
  Material	
  Inversion	
  

§  22	
  individual	
  sources	
  
§  31	
  receivers	
  

§  16	
  on	
  surface	
  
§  15	
  on	
  the	
  interior	
  

§  Sim	
  -me	
  T	
  =	
  0.015	
  sec.	
  
§  Constant	
  p	
  =	
  4	
  
§  Absorbing	
  BCs	
  
§  AVer	
  11	
  itera-ons	
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Src & Rec Locations Inverted Media Results 



Summary	
  

§  Demonstra-on	
  of	
  DG	
  inversion	
  for	
  non-­‐invasive	
  tes-ng	
  
§  Low	
  dispersion	
  proper-es	
  allows	
  coarser	
  mesh	
  
§  Variable	
  p-­‐order	
  mesh	
  allows	
  matching	
  order	
  to	
  wavelengths	
  for	
  every	
  

element	
  size	
  
§  2D	
  hybrid	
  mesh	
  using	
  triangles	
  and	
  quadrilaterals	
  

§  Source	
  inversion	
  to	
  mimic	
  launch	
  condi-ons	
  
§  Open	
  ques-on	
  whether	
  there	
  is	
  enough	
  speakers	
  

§  Material	
  inversion	
  
§  Ini-al	
  work	
  promising	
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