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for both %g‘ rward probléemand the inverse problem, is then lllustratea@m the third slice.*Baséd on® Bﬂog/eﬁmﬁ:gj%me@m@/we @G’rﬁﬁlfhg Gcgﬂ)PWard
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problem of'uneertainty guantification is conducted. Parameter est/marlons based on some data‘of aturbulentflametexperiment for theccomparison of three
differentiturbulent:time scales are demonstrated in this forward problem. Aftenthat, an inverse problemiisiintroduced. With>Data Free inference{DFI) code

developed in CRF, an inverse problem of uncertain parameters,in chemical models will-beinvestigated-:in thisssummer.
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Initial temperature [K] What is Bayesian inference? A forward problem: Parameter estimations of three turbulent time scales
Bayes’ theoremand marginalization: based on data of a turbulent flame experiment
prob(Y| X, I) x prob(X|I) On the right side, it is a real g N Comparllson oftlhree turtlaulenttlrlne scalelmodelsl
prob(X|Y, 1) = Drob(Y 1) forward ~ problem  based on ¢ ottt sl
. and Bayesian inference. The data © a| s e
% +o0 shown by symbols are measured E o o
g prob(X|I) :/ prob(X, Y |I)dY from a turbulent flame :
% The importance of this property to data analysis becomes apparent if X and | | experiment. Three turbulent time g‘
- Y are replaced by hypothesis and data: scale models with additive error &
prob(hypothesis|data, I) o< prob(data|hypothesis, I') x prob(hypothesis|I) are proposed as following: %
5 . . L 1 The power of Bayes’s theorem lies in the fact that it relates the quantity of || Integral: yi = azx; + o§; ; oy e e a0 5 ar
1000 2000 3000 4000 5000 ” =~ » e : 5 5
MCMC step # interest, the probability that the hypothesis is true given the data, to the Kolmogorov: yi = ox;) T+ 0§ RMS velocity / Laminar flame speed (Urms/SL)
term having a better chance of being able to assign, the probability that ITNFS: yi = ay/ 'z + 0§ and D(z;) = A+ Be™"
should be observed from the measured data if the hypothesis was true. Then, a common way for parameter estimation of forward problems with

The various terms in Bayes’ theorem have formal names. The quantity on || Bayesian inference is shown in the following flow path:
_ the far right, prob(hypothesis|l), is called the prior probability; it represents
Sand|a our state of knowledge about the truth of the hypothesis before we have
N t I analyzed the current data. This is modified by the experimental

a Iona measurements through the likelihood function, or prob(data|hypothesis,l), || The PDFs of a (and B for model 3) and o of the three cases can be given

laboratorles and vields the posterior probability, prob(hypothesis|data,l), representing||through the above process and the best fitting models are demonstrated in
our state of knowledge about the truth of the hypothesis in the light of the || the above figure.
data. It should be note, however, that the equality of Bayes’s theorem has 5°°°°_ T ot 30000 - g of MONIG Samping 0 T B o NOMG Sarpling
been replaced with a proportionality, because the term prob(data|l) has || .. [Wwed
‘ been omitted. oocg |
Excep tz 0 ndl » Reference: Sivia, D. S., & Skilling, J. (1996). Data analysis: a Bayesian tutorial. AMC, 10, 12. 20000 1 10000 12222
Comparison of Least-Square Method with Maximum Likelihood Function Uone s e e e 2 M e s oo w2 wa e os 1w e i s Te
Sservice L L . . : PDF of o in Model 1 PDF of o in Model 2 PDF of o in Model 3
For parameter estimation problems with simple linear relation model, Colin , o o
, : From of PDFs of g, the bias showed by PDF of o distribution of fitting model
and co-workers (2010) pointed out that least-square method is the same as _ ,
. : likelih H H h : . 3 is obviously smaller than other two models. However, for a model
17 tbe maximum likelihood method when the errors are Gaussian and additive.In , . : o
selection process based on Bayesian inference, the summarized bias is not

the following, a trivial problem will be taken as an example to demonstrate

the only thing need to be considered. There are two estimated parameters
the above theory.

in integral model and Kolmogorov model, but there are three estimated
yi=x+&; (1=1,2...N) parameters in ITNFS model. That illustrates the Ockham factor in fitting
ITNFS model will be larger than other two models. Thus, for model selection
of above problem, more detailed investigation need to be conducted and
Ockham factor need to be considered.

national

. In the above additive error fitting model, where y. is the data, x is the
interest parameter to be estimated and ¢ are the errors.

N
rrs =3 w/N =7

With least-square method, the pest estmate of y.is given as the mean as

shown above. On the other hand, Maximum likelihood function method is

conducted. The likelihood function is given in the following:

An inverse problem: Data-free inference of uncertain parameters in
chemical models
The rate coefficient data for the reaction H+O, ->OH +0O provided in the
paper by Masten and Hanson (1990), obtained by fitting kinetic models to
experimentally observed OH time histories, are used in performing Bayesian
inference of the rate coefficient using a DFI algorithm proposed herein.

z) = p(y1lz)p(ya|z) - . . p(yn|x)
1 1

p((y;)i =1,2,..N
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Voro NG N Maste.n and.Hanson (1990) repprt experimental rgsults of .shock tgbe
O N (z2—g)? experiments in the form of reaction rates for the chain-branching reaction
— 202\ . . e ey .
( QWU)N(? : above at various starting initial temperatures and mixtures. They also report
L , , o L , . |luncertainty associated with the reported values. These results are given in
It is interesting to find out the likelihood function is in Gaussian form and x is the table
given in the following: : . : K s oot mol% mo% oot o
o2 Given an assigned uncertainty of 40% to k, L
~ | . . " 1449 1457 1225 254 0.492 0.601
z ~ N(y, z\) k, as a random variable will be modeled. 1 ua 12 i om0 o
which can give the same results with least-square method. However, when || \jqre specifically, the pre-exponential factor 5 o ods 497 o6 o850
1635 1.100 0.820 3.18 0.317 0.971
the error is not Gau55|a.n angl additive, or the mod.els are not simple Imgar A, will be modeled as a log-normal rv., while 7o os o 21 o2 i
models, parameter estimation and model selection based on Bayesian|| assigning n, and E, nominal values. igég 075 073 i §§§§ 1
. . . . . . . . 41 . . .
inference can give more detailed information, which are more appropriate || for the DFI problem at hand, the following s oin o 491 o4 24
than least-square method. summary statistics denoted by I: 206 0412 029 497 8:33§ 31‘3’3
Reference: Colin Fox, Geoff K. Nicholls, Sze M. Tan “An Introduction To Inverse Problems” 2010. .. . . . g;gf g:ggg g:?gg 3:;?1 321«36 6:%
1. Initial temperatures at which k statistics 3¢ o3 o016 318 037 6a
. . Reflected Shock Waves
Why Markov Chain Monte Carlo (MCMC)? are available T, 1=1, ......, 30 1960 2525 LST0 L8 0181 184
In general, MCMC provides a means of sampling (“simulating”) from an||2. Nominal values for k for all initial 25 2 15 0% oxe 27
: TR : : 298 2219 1209 0906 O0l8 3.3
arbitrary distribution. The purpose of MCMC method is for sampling from temperatures 2386 2345 sl 0w 3k
. . e .. e 2616  2.037 94 0.461 . 3
probability distributions. A Markov chain is built up to sample the desired || 3. Standard deviations for k for all initial 281 208 oo 1oie o215 57
. . . . . . 2898 1.984 0.834 1.10 0.208 7.11
distribution. Each point is based on and only based on the last point. Thus, temperatures 30 1590 0575 0709 0122 1080
the MCMC is not given a iid (individual independent distribution), which is || With the above given information |, the state vector for the outer chain,
the price to be paid for using this sampling method. denoted by € and the state vector for the inner chain denoted by A are
. MCMC Sampling for A Linear Regressian Model The left side is an||demonstrated in the following. Thus, the outer chain will be solving the
1]
: | MCMC Sampling example of MCMC || Bayesian problem
& sampling. The MCMC p(&|1I) < p(L|§)m(§)
5 method used in CRE is || and the inner chain solving
d based on Metropolis- p(A|L) o< p(L|A\)m(N)
g Hastings algorithm. | | With the DFI code developed In CKF, the inverse problem can be solved by
E . . . . After a short term of || MCMCsampling.
> 1000 2000 2000 4000 5000 Reference: Masten, D. A., Hanson, R. K., & Bowman, C. T. (1990). Shock tube study of the reaction hydrogen atom+ oxygen.

ra ndom Wad I k, the fwdarw. hydroxyl+ oxygen atom using hydroxyl laser absorption. Journal of physical chemistry, 94(18), 7119-7128.
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2 25000 | range. The probability || 1. Bayesian inference is a powerful tool for uncertainty quantification
= . . . .
20000 | density distribution combined with MCMC sampling, both for forward problems and inverse
I_
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2 10000 | value can be obtained !l 2. A forward problem is investigated, which shows Bayesian inference can
o . . . . .

S 5000 | from binning of the provide a reliable way for parameter estimation and model selection.

g O T T e e T e sampling points. 3. An inverse problem will be investigated in the summer, which produce a
= possible way to analyze uncertain parameters in chemical models with
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missing data.
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