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Motivation

= Numerous problems with

moving or topologically
complex interfaces with

Laser welding

Conductive burn

discontinuous physics and  of energetic materials

fields

Material death

Time = 0.3500

SRR IS B AL Transport in topologically complex
domains including composite
energetic materials and batteries

Organic Material Decomposition (OMD)
with coupled porous and low Ma flow

Capillary Hydrodynamics




Conformal Decomposition Finite
Element Method (CDFEM)
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= Simple Concept

= Use one or more level set fields to define materials or phases

= Decompose non-conformal elements into conformal ones

=  (Obtain solutions on conformal elements
= Related Work

= Lietal.(2003) FEM on Cartesian Grid with Added Nodes
= |linca and Hetu (2010) Finite Element Immersed Boundary

= Properties

= Supports wide variety of interfacial conditions (identical to
boundary fitted mesh)

= Avoids manual generation of boundary fitted mesh

= Supports general topological evolution (subject to mesh
resolution)

= Similar to finite element adaptivity
= Uses standard finite element assembly including data
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Moving Interfaces in Enriched Finite
Element Methods
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= How do we handle the moving = What do we do when nodes change
interface? material?

= This is an issue for all enriched finite
element methods

= CDFEM

= XFEM — Issue when nodes change
material




Model Problem: Scalar Advection-
Diffusion
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= |Level Set Equation for interface
motion

J¢

m—l—u Vo =0

= Scalar advection-diffusion

o

—-u Vi) — aV21) = s(x, 1)

= Allow arbitrary discontinuities in
fields across interface
= Discontinuous value and gradient




Approach for Dynamic Discretizations: .
Subdomain Integration
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= XFEM — Immersed Interface Approach
" Integration done over the 4 subdomains

Qp Nyt arnapt!
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= Scalar advection — Backward Euler

w n+1 w N
/Q( tu. vw) w;dQ = ZZ/%W( o u v +1> w;d9

= Careful formation of the time term evaluates fields at times when that field is
present, Y71 (x) when x € Q}"'and Y['(x) when x € QF

= However, this does involve dlfferencmg across material boundaries: Y7+ -7
when [ # |

" Proposed by Fries and Zilian (2009) but shown to be insufficient for strong
discontinuities by Henke et al. (2014)




Approach for Dynamic Discretizations: .
Semi-Lagrangian Advection
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= Semi-Lagrangian advection
= Discretize time and advection terms simultaneously to avoid dispersive errors

aw Dw n+1
](E—Fu Vzﬂ)widﬂz —wdQNZ]QnH

For straight line characteristics: x* = x — uA{
Quantity 7 (x*) evaluated by interpolation
— May be overly diffusive
Avoids differencing across material boundaries by tracing back to previous location
Less clear how to handle arbitrary interface motion (i.e. phase change)
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Approach for Dynamic Discretizations:

Extrapolation from Previous Location

= Extrapolation from previous location
= Essentially method by Henke et aI (2014) for XFEM (termed semi-Lagrangean)

n+1
/ Dy 9= 2 /Q( wJ( N )) wid2

i {w%xw, §700) = 570l §mHL() s set of all
’ Y(x*) + (xk = x*) - VY (x*),  S™(xk) # S (xk) materials present at X
= Allows time and advection terms to be handled separately
= Avoids differencing across material boundaries by tracing back to previous location
= Involves extrapolation from previous location to current location
= Extrapolation may be poorly defined because of multi-valued gradient in 2-D and 3-D
= Even for weakly discontinuous fields, the extrapolated field is strongly discontinuous

n+1 n+1 n+1 n+1
Xp—1 Xp Xr Xkt1
i1 g o ' )
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Approach for Dynamic Discretizations:
Interface Extrapolation (IE)
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= Extrapolation from closest point on previous interface

P ) 7 (x4) = S+ (1)
PR P () + ek — P(xk)) - VOB (P(xk)), S (xk) £ S ()

= Point P™(X) is the nearest point to X on the previous interface

= |dentical to extrapolation from previous location in 1-D if CFL<1

= Extrapolation may be poorly defined due to discontinuous gradient in 2-D and 3-D

= Even for weakly discontinuous fields, the extrapolated field is strongly discontinuous

n+1 ntl ntl n+1
Xk—1 Xy Xp Xpt1

fni1g ® 10 ? ®
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X — uAit n
" k X X Xkt1




Approach for Dynamic Discretizations:
Moving Mesh (MM)
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= Uses Arbitrary Lagrangian Eulerian (ALE) technology for moving meshes
= Relates time derivative following a moving point to the time derivative fixed in space

o0 0wl ox Coe|
o, o), T, VU= TRV
A :

o), ol T VY

|7 —wzdﬂNZ / ( AR )+<u—>'<)wj<x)) wae =%

= Using the closest point projection
n—l—l n
/ w;d€) ~ E /n+1 ( + (11 X(X)) ij (X)) w;df2

I % S™(xp) = 5" (xk) Wy = VGER) 0 =Y xp -
Pr(xg), S™(xp) # ST (xy)  UG(E) =)W - At
k

= Recovers semi-Lagrangianinlimitof x = u

W




Approach for Dynamic Discretizations:

2"d Order Interface Extrapolation (IE)

= Second order time accuracy via Crank-Nicolson (CN)
: Straightforward to average advection operator

T (x) — 0 (x) Vit (x) + Vi (x)
ZLR+1 ( +u- 5 ) w;d€2

= Second order time accuracy via BDF2
= Requires extrapolation of n-1 state

3 n+1 . l “n—1
2 /Q+( R )) wde
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Approach for Dynamic Discretizations:
2"d Order Moving Mesh (MM)
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= Second order time accuracy via Crank-Nicolson (CN)
* Dynamic domain requires integral to evaluated at half plane

n+1 n+1 n %
Z/ ( B Y P A LR AL ))w@-dﬂ
1+

= Second order time accuracy via BDF2
= Requires nearest point projection of n-1 state

n+1 o l ~n—1 «
Z/QnH (2w 2¢Ai X) + 2¢J ( )—I—(u %(x)) - anﬂ( )) w,dQ




Approach for Dynamic Discretizations: .
Method Summary
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= Subdomain integration
= Requires decomposition with respect to old and new configurations
= Differences across material boundaries
= Not convergent for strong discontinuities (Henke et al. 2014)

= |nterface Extrapolation

= Poorly defined at element boundaries in higher dimensions due to
discontinuous gradient

= The extrapolation of a weak discontinuity is strongly discontinuous
= 2" order versions straightforward to implement

= Moving Mesh

= Only requires value, not gradient from nearest point, so it is well defined in
higher dimensions

= Crank-Nicolson requires assembly over mid-plane configuration
= 2" order time accuracy is straightforward via BDF2
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Results: Patch Tests

=  Constant advection of a strong discontinuity
= Subdomain integration method does not converge (Henke et al. 2014)

= Both interface extrapolation and moving mesh achieve machine precision

= Constant advection of a weak discontinuity
= All proposed methods should achieve machine precision (Subdomain integration

not tested.)
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Results: MMS for 1-D Advection-Diffusion
with Strong and Weak Discontinuity from
Contact Resistance

= Constant advection advection of a sinusoid
= Trivial level set solution for constant advection velocity

o(x,t) = (xr — x0) — ut
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= Method of manufacture solutions for advection-diffusion with both strong and
weak discontinuity

(o t) = ksin(c,[r — (xo + ut)]) exp(—t/c), » <0
| sin(colz — (20 + ut)]/K) exp(—t/c) + A, ¢ >0
ala—w :wa—w = B (¥]p=0+ — V]p=0-)

Ox | p=0- "0 lp=0+

0. ¢<0
A(t) = 2exp(—t/c)[(Beacr) (1) = { 2

T Benc? exp(—t/ct), ¢ >0

= Examine convergence with in space and time for various Courant numbers

Erao = 0" = v(x,Bllo = ( /Q (v t))Qde/z




Results: MMS for 1-D Advection-Diffusion
with Strong and Weak Discontinuity from
Contact Resistance

Constant advection advection of a sinusoid
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|
= 2" order convergence using BDF2 for either Interface Extrapolation or Moving
Mesh methods
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Verification via MMS for 2D Advection-
Diffusion with a Sharp Discontinuity
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Convergence plot for the 2-D advection-
diffusion problem with contact resistance,
using the BDF2 time integrator




Comparison Between TALE and CDFEM
Simulation of Burning, Deformable Solid

Area vs. Time
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Summary )

= Capturing arbitrary discontinuities on moving interfaces

= All enriched methods require specialized method for handling dynamic
discretization

= Subdomain Integration

= Requires integration over domains that conform with both new and old
interface locations

= Not sufficient for strongly discontinuous fields
= |nterface Extrapolation
= (Capable of optimal accuracy with arbitrary discontinuities
= Extrapolation of weakly discontinuous fields are strongly discontinuous
= Not uniquely defined in higher dimensions
=  Moving Mesh
= (Capable of optimal accuracy for arbitrary discontinuities

= Implementation somewhat complicated for Crank-Nicolson (but
straightforward for BDF2)




CDFEM with Guaranteed Quality — @&

= Uses mixture of decomposition and moving nodes of
background mesh
= Based on edge cut bounds

= |mproved minimum angle and condition number of resulting linear
system of equations




XFEM - CDFEM Requirements
Comparison for Thermal/Fluids

element loops to use
modified integration rules

XFEM CDFEM
Volume Assembly Conformal subelement Standard Volume
integration, specialized Integration

Surface Flux
Assembly

Specialized volume element
loops with specialized
guadrature

Standard Surface
Integration

Phase Specific
DOFs and
Equations

Different variables present at
different nodes of the same
block

Block has homogenous
dofs/equations that may
differ from block to block

Dynamic DOFS and
Equations

Require reinitializing
linear system

Require reinitializing
linear system

Various BC types
on Interface

Dirichlet BCs are
research area

Standard Techniques
available
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XFEM — CDFEM Discretization =
Comparison
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= XFEM Approximation

|:{>}/ +
/>\ 1 o /‘.
= CDFEM Approximation
"
/>\ J /‘.

= |dentical IFF interfacial nodes in CDFEM are constrained to
match XFEM values at nodal locations

= CDFEM space contains XFEM space
= CDFEM is no less accurate than XFEM (Li et al., 2003)
= XFEM can be recovered from CDFEM by adding constraints




