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Motivation 

 Numerous problems with 
moving or topologically 
complex interfaces with 
discontinuous physics and 
fields 

Capillary Hydrodynamics 

Transport in topologically complex 

domains including composite  

energetic materials and batteries 

Organic Material Decomposition (OMD) 

with coupled porous and low Ma flow 

Conductive burn 

of energetic materials 

Laser welding 

Material death 



Conformal Decomposition Finite 
Element Method (CDFEM) 

 Simple Concept 

 Use one or more level set fields to define materials or phases 

 Decompose non-conformal elements into conformal ones 

 Obtain solutions on conformal elements 

 Related Work 

 Li et al. (2003) FEM on Cartesian Grid with Added Nodes 

 Ilinca and Hetu (2010) Finite Element Immersed Boundary 

 Properties 

 Supports wide variety of interfacial conditions (identical to 
boundary fitted mesh) 

 Avoids manual generation of boundary fitted mesh 

 Supports general topological evolution (subject to mesh 
resolution) 

 Similar to finite element adaptivity 

 Uses standard finite element assembly including data 
structures, interpolation, quadrature 

 



 What do we do when nodes change 
material? 
 
 
 
 
 

 

Moving Interfaces in Enriched Finite 
Element Methods 

 How do we handle the moving 
interface? 
 
 
 
 
 
 

 

 This is an issue for all enriched finite 
element methods 
 CDFEM 
 XFEM – Issue when nodes change 

material 
 
 
 
 
 

 



Model Problem: Scalar Advection-
Diffusion 

 Level Set Equation for interface 
motion 
 
 
 

 Scalar advection-diffusion 
 
 
 

 Allow arbitrary discontinuities in 
fields across interface 
 Discontinuous value and gradient 

 
 
 

 



 XFEM – Immersed Interface Approach 
 Integration done over the 4 subdomains 

 

 
 
 
 Scalar advection – Backward Euler 

 
 

 
 Careful formation of the time term evaluates fields at times when that field is 

present, 𝜓𝐽
𝑛+1 𝐱  when 𝐱 ∈ Ω𝐽

𝑛+1and 𝜓𝐼
𝑛 𝐱  when 𝐱 ∈ Ω𝐼

𝑛 

 However, this does involve differencing across material boundaries: 𝜓𝐽
𝑛+1-𝜓𝐼

𝑛 
when 𝐼 ≠ 𝐽 

 Proposed by Fries and Zilian (2009) but shown to be insufficient for strong 
discontinuities by Henke et al. (2014) 

 
 
 
 
 
 

 

Approach for Dynamic Discretizations: 
Subdomain Integration 



 Semi-Lagrangian advection 
 Discretize time and advection terms simultaneously to avoid dispersive errors 

 

 
 For straight line characteristics: 
 Quantity evaluated by interpolation 

– May be overly diffusive 

 Avoids differencing across material boundaries by tracing back to previous location 
 Less clear how to handle arbitrary interface motion (i.e. phase change) 

 
 
 
 
 
 

 

Approach for Dynamic Discretizations: 
Semi-Lagrangian Advection 



 Extrapolation from previous  location 
 Essentially method by Henke et al. (2014) for XFEM (termed semi-Lagrangean) 

 

 
 

 

 

 Allows time and advection terms to be handled separately 

 Avoids differencing across material boundaries by tracing back to previous location 

 Involves extrapolation from previous location to current location 

 Extrapolation may be poorly defined because of multi-valued gradient in 2-D and 3-D 

 Even for weakly discontinuous fields, the extrapolated field is strongly discontinuous 

 

 
 
 
 
 
 

 

Approach for Dynamic Discretizations: 
Extrapolation from Previous Location 

𝑆𝑛+1 𝐱  is set of all  
materials present at 𝐱 



 Extrapolation from closest point on previous interface 
 

 

 

 Point 𝑃𝑛 𝐱  is the nearest point to 𝐱 on the previous interface 

 Identical to extrapolation from previous location in 1-D if CFL<1 

 Extrapolation may be poorly defined due to discontinuous gradient in 2-D and 3-D 

 Even for weakly discontinuous fields, the extrapolated field is strongly discontinuous 

 
 
 
 
 
 

 

Approach for Dynamic Discretizations: 
Interface Extrapolation (IE) 



 Uses Arbitrary Lagrangian Eulerian (ALE) technology for moving meshes 
 Relates time derivative following a moving point to the time derivative fixed in space 

 

 

 

 

 

 

 

 

 Using the closest point projection 
 

 
 
 
 
 

 Recovers semi-Lagrangian in limit of 𝐱 = 𝐮 

Approach for Dynamic Discretizations: 
Moving Mesh (MM) 



 Second order time accuracy via Crank-Nicolson (CN) 
 Straightforward to average advection operator 

 

 

 

 

 

 

 

 Second order time accuracy via BDF2 
 Requires extrapolation of n-1 state 

 
 
 
 
 
 

 

Approach for Dynamic Discretizations: 
2nd Order Interface Extrapolation (IE) 



 Second order time accuracy via Crank-Nicolson (CN) 
 Dynamic domain requires integral to evaluated at half plane 

 

 

 

 

 

 

 

 Second order time accuracy via BDF2 
 Requires nearest point projection of n-1 state 

 
 
 
 
 
 

 

Approach for Dynamic Discretizations: 
2nd Order Moving Mesh (MM) 



 Subdomain integration 
 Requires decomposition with respect to old and new configurations 
 Differences across material boundaries 
 Not convergent for strong discontinuities (Henke et al. 2014) 

 

 Interface Extrapolation 
 Poorly defined at element boundaries in higher dimensions due to 

discontinuous gradient 
 The extrapolation of a weak discontinuity is strongly discontinuous 
 2nd order versions straightforward to implement 

 

 Moving Mesh 
 Only requires value, not gradient from nearest point, so it is well defined in 

higher dimensions 
 Crank-Nicolson requires assembly over mid-plane configuration 
 2nd order time accuracy is straightforward via BDF2 

 
 
 
 
 

 

Approach for Dynamic Discretizations: 
Method Summary 



 Constant advection of a strong discontinuity 
 Subdomain integration method does not converge (Henke et al. 2014) 

 Both interface extrapolation and moving mesh achieve machine precision 

 
 Constant advection of a weak discontinuity 

 All proposed methods should achieve machine precision (Subdomain integration 
not tested.) 

 
 
 
 
 

 

Results: Patch Tests 



 Constant advection advection of a sinusoid 
 Trivial level set solution for constant advection velocity 

 

 

 Method of manufacture solutions for advection-diffusion with both strong and 
weak discontinuity 

 

 

 
 
 
 
 
 
 

 Examine convergence with in space and time for various Courant numbers 

 
 

Results: MMS for 1-D Advection-Diffusion 
with Strong and Weak Discontinuity from 
Contact Resistance 



 Constant advection advection of a sinusoid 
 2nd order convergence using BDF2 for either Interface Extrapolation or Moving 

Mesh methods 

 
 

 

Results: MMS for 1-D Advection-Diffusion 
with Strong and Weak Discontinuity from 
Contact Resistance 



Verification via MMS for 2D Advection-
Diffusion with a Sharp Discontinuity 

Convergence plot for the 2-D advection-
diffusion problem with contact resistance, 

using the BDF2 time integrator 

 

 

 

 
 



Comparison Between TALE and CDFEM 
Simulation of Burning, Deformable Solid 



Summary 

 Capturing arbitrary discontinuities on moving interfaces 

 All enriched methods require specialized method for handling dynamic 
discretization 

 Subdomain Integration 

 Requires integration over domains that conform with both new and old 
interface locations 

 Not sufficient for strongly discontinuous fields 

 Interface Extrapolation 

 Capable of optimal accuracy with arbitrary discontinuities 

 Extrapolation of weakly discontinuous fields are strongly discontinuous 

 Not uniquely defined in higher dimensions 

 Moving Mesh 

 Capable of optimal accuracy for arbitrary discontinuities 

 Implementation somewhat complicated for Crank-Nicolson (but 
straightforward for BDF2) 

 

 



 Uses mixture of decomposition and moving nodes of 
background mesh 
 Based on edge cut bounds 

 Improved minimum angle and condition number of resulting linear 
system of equations 

 

CDFEM with Guaranteed Quality 



XFEM - CDFEM Requirements 
Comparison for Thermal/Fluids 

XFEM CDFEM 

Volume Assembly Conformal subelement 

integration, specialized 

element loops to use 

modified integration rules 

Standard Volume 

Integration 

Surface Flux 

Assembly 

Specialized volume element 

loops with specialized 

quadrature 

Standard Surface 

Integration 

Phase Specific 

DOFs and 

Equations 

Different variables present at 

different nodes of the same 

block 

Block has homogenous 

dofs/equations that may 

differ from block to block 

Dynamic DOFS and 

Equations 

Require reinitializing 

linear system 

Require reinitializing 

linear system 

Various BC types 

on Interface 

Dirichlet BCs are 

research area 

Standard Techniques 

available 



XFEM – CDFEM Discretization 
Comparison 

 XFEM Approximation 

 

 

 

 CDFEM Approximation 
 

 

 

 

 Identical IFF interfacial nodes in CDFEM are constrained to 
match XFEM values at nodal locations 

 CDFEM space contains XFEM space 

 CDFEM is no less accurate than XFEM (Li et al., 2003) 

 XFEM can be recovered from CDFEM by adding constraints 

+ 

+ 


