SAND2014- 15844P

Sandia

Exceptional service in the national interest @ National
Laboratories

A Multiscale Mass Scaling Approach For Accelerating

Explicit Dynamics Computations Using Proper

Orthogonal Decomposition
Gabriel de Frias, Ph.D.

Sandia National I.aboratories
DEPARTMENT OF M/n ' DQ’Q

A S
NERGY ﬂ' VA' w‘ﬂ Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Hational Nustear Security Administraion Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP




Sandia

O u t]_in e m Iluaat}Erg?éries

" Motivation

* Governing equations

" Multiscale mass scaling approach

= Proper Orthogonal Decomposition (POD)
" Numerical Results

= Conclusions

= Final Remarks

= Acknowledgments

= References




Motivation Wi

Objective: Reduce the computational time of our explicit dynamics
simulations while maintaining accuracy in the solution.

" Incorporating fine scale details into a large scale model presents
many computational challenges.

Figure 5.8. Fine mesh of plug drop specimen showing detail of
weld region




Motivation Wi

o Reﬁning the finite element mesh to capture these details can
result in a very large model.

" In explicit time integration, the critical time step is governed by
the smallest elements in the model. As defined by Richtmeyer
and Morton (1967) for explicit finite element methods, this
critical time step 1s:

!
C

where At,. is the critical time step, [ is the characteristic length of an
element in a finite element mesh and c is the material sound speed.

At <

= High level of refinement can lead to extremely small time steps.
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Motivation Wi

= A wide variety of problems need high spatial resolution as
opposed to temporal resolution.

" Many times the contributions of the low frequencies dynamics of
the system are the ones of most interest, not necessarily the high-
frequency dynamics themselves.

" QOur goals center in performing an efficient decomposition of the
problem into coarse and fine scales.

= We will attempt to improve performance, and maintain accuracy
by allowing special treatment of each of those scales.




Governing equations ) e

Starting with the initial boundary value problem (IBVP) describing the
deformation of a solid body over time is given as

V.o + pb= pii in Q2

on=T71onl-
u=uonly,

w(x,0) = vo(x)

u(x,0) = ug(x)

where (2 is the physical domain with boundary I', p is the density of the
material, b is a body force, i is the acceleration, u is the displacement, and 7
represents traction. The unit normal vector on the boundary is denoted as n.
Furthermore, I', NT; =0 and I' =T", UT;. The initial displacement and
velocity fields are denoted as ug and v, respectively.
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Governiﬂg equations r.h lat:]n:turies

It is assumed that the Cauchy stress o is given from a constitutive equation
that relates the stress to the strain € and its rates as

o(w,1) = F (6(w,t), Oelet) 6”2:@) |

where the specific form of F' is determined by the material model used.

Taking the variational form of the IBVP presented before, and discretizing
using finite elements, we obtain the following semi-discrete system of equations
in vector form

[M]{U} — {feact} - {fint}°

[May = 1f}-

This will be the starting point to describe and derive our approach.
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Multiscale mass scaling approach h) e,

Consider the acceleration vector {i} to be in a finite dimensional space
ur=Uy e U/, where Uy and U' represent the fine scale space and coarse
scale space, respectively. Then, accelerations can be represented as

{ay = {a} + {a'}, {u} e U7 {al} e UY,

where the dominant low frequency accelerations are captured in {4}, and the
high frequency ones are contained in {ii/ }. Assume that U" = span({¢};)™, .
Then, the coarse scale accelerations can be represented as

{u} = [®]{4},

where [®] represents a matrix whose columns are the vectors {¢}; and {§} is a
vector of coefficients whose dimension is that of the coarse space. Now we can
express the semi-discrete governing equations as

{f} = [M{a“} + [M){a }.




Multiscale mass scaling approach h) e,

An expression for the coarse accelerations can be obtained using a Galerkin
approach. That is, finding the coarse accelerations that satisfy

@ ({f} — [M{{i}) = 0.

which is equivalent to the following orthogonality condition between the coarse
and fine scale accelerations.

{i} ' [M){@'} =0, v {i} e UZ, {u}} € UF.
Defining a matrix [M,] = [®]7[M][®], we get
[@]7{f} — [M]{q} = {0}.
from which we can obtain the coarse scale acceleration coefficients as

{@}t = M)~ @] {f}

Then, the coarse scale acceleration vector can be written as
{a°} = [®][M ] @] {f}.




Multiscale mass scaling approach h) e,

Now the coarse scale acceleration vector can be written as

{a°} = [@][M] @] {/}-

The fine scale component of the inertial force can now be computed as

(M]{a'} = {f} — [M{u}
= {f} - IM][@][M] [ {/}
= ([1] = [M][@][M]~ [@]"){f}

= [PIUf}

where [P] = [I] — [M][®][M_.]~1[®]! is an orthogonal matrix projection.
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Multiscale mass scaling approach h) e,

The next step in the formulation is to scale the mass matrix of the high
frequency accelerations as to increase the critical time step. To this end, we
introduce a modified mass matrix defined as

—_~

[M] = | [M],

where || is a diagonal scaling matrix whose components are defined as

~

{ A% (5) if At > At,
o; = */ max over 1

1 otherwise.

Here, At is a user-defined time step, K, is an element nodal stiffness, and M;
is the element lumped mass at Node 1.




Multiscale mass scaling approach h) e,

The fine scale accelerations can now be expressed as

{af} = [M]'[PI{f}.

The total acceleration vector is obtained as

{i} = [@)[M.] 1 [@]T{f} + [M]'[PI{f}.




Multiscale mass scaling approach

The fine scale accelerations can now be expressed as

{af} = [M]'[PI{f}.

The total acceleration vector is obtained as

{i} = [@)[M.] 1 [@]T{f} + [M]'[PI{f}.

How do we build this matrix [®]?

Sandia
National _
Laboratories




Multiscale mass scaling approach

The fine scale accelerations can now be expressed as

{af} = [M]'[PI{f}.

The total acceleration vector is obtained as

{i} = [@)[M.] 1 [@]T{f} + [M]'[PI{f}.

How do we build this matrix [®]?

Multigrid approach

Fine grid

Coarse grid
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Multiscale mass scaling approach ) .
The fine scale accelerations can now be expressed as
{al} = [MITPI/
The total acceleration vector is obtained as
{i} = [@)[M] 7 [@]"{f} + [M]T[PH Y.

How do we build this matrix [®]?

Proper Orthogonal
Decomposition approach

Multigrid approach

Fine grid \

Fine grid POD space

Coarse grid 15
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Proper Orthogonal Decomposition Wi

" Proper Orthogonal Decomposition (POD) has been widely used
for data analysis and reduced order modeling.

" 'The main objective of POD is to obtain a low dimensional
orthogonal basis for representing an ensemble of high
dimensional data.

= POD makes no assumptions about the linearity of the problem
to which is applied, so it can be used with any type of nonlinear
problem.

" Berkooz, Holmes and Lumley (1993) showed that the
eigenvalues associated with the POD modes are related to the
kinetic energy of the system.

" Consequently, POD modes are good candidates for building the
coarse space represented by the interpolation mattix ||
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Proper Orthogonal Decomposition @&

Given an ensemble of functions {uy}}_; € La. The main goal in POD is to
find a sequence of subspaces such that the average distance between the
members of the ensemble and these subspaces is minimal.

In other words, find finite dimensional
representations of the form:

u(x) = Zajqu ()

where ¢,(x) denotes the j* POD mode
and a; is a scalar coeflicient.




Proper Orthogonal Decomposition .

= In this work, the ensemble of functions needed to compute the
POD modes were taken as the displacements obtained at early
time steps of the full scale simulation.

= These functions turn out to be snapshots of the displacement

solution vectors at speciﬁc times during the simulation.
u N




Numerical Results rh) toies

= What effect does this approach have on the accelerations?




Numerical Results rh) toies

= What effect does this approach have on the accelerations?
Remember:

{ii} = [@][M] @] {1} + [M] ' [PI{/}




Numerical Results

= What effect does this approach have on the accelerations?
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Numerical Results — Example 1 h) i

Linear elastic material

Fixed displacements in bottom

of legs.

Load on selected nodes
increases linearly over time.

Termination time is 5 X 10* s
~45K HEXS elements

POD Modes computed with 10% of the run

1 Mode
~+2 Modes
-3 Modes

4 Modes
—5 Modes

i el )

Pt
= ] 0 10 20 30 40 50 60 70 80 90 100

A ] (at/(at)

7 0. 125 '
J 0. %31
v’
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Numerical Results — Example 1 h) i

displ_ Magnitude displ_ Magnitude
0.048902 0.048902
-0.04 .0.04
0.03 0.03
0.02 0.02
0.01 -0.01

0 0

(2) (b)

= Displacement magnitude at a time of 5 X 107* s: 2) using conventional
central difference algorithm; b) using multiscale approach with 10 snapshots,
5 POD modes and 3(At,) time step.
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Numerical Results — Example 1 h) i

Table 1: POD modes computed at 10% of the simulation time

(a) Performance improvements for total simulation time

Method Time CPU PIF  Von Mises Stress

step (s) time (s) relative error %

Explicit dynamics At. 2396.29 - -

Multiscale explicit — 3(At.)  1176.92 2.04 1.58%
dynamics using 10(At.) 582.33 4.11 2.24%
5 POD modes 20(At.)  448.76  5.34 3.14%




Numerical Results — Example 1 ) i

= Parallel computing

=+|deal -*-Presto -*'Presto + ECM + POD

0 100 200 300 400 500
Number of processors

(2)

Speedup
2,771,712 elements

=+|deal =*‘Presto -*-Presto+ ECM + POD

= a) Speedup and b) Efficiency results for 2,771,712 element

problem in Example 1
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Numerical Results — Example 2 h) i

= Elastic-plastic non-linear
material

" Bottom of cylinder fixed.

"  J.oad on selected nodes varies
linearly over time.

=  Termination time is 5X 10* s
= ~44K HEXS elements

POD Modes computed with 10% of the run

=1 Mode
~+2 Modes
~#-3 Modes

4 Modes

—=5 Modes

-0.275

7 s
2500 s 0.00
oy 0125 o.oo 1259 ~f), 55500 0 5 10 15 20 25 30 35 40 a5 50
: ' Y (at)(at,)




Numerical Results — Example 2 () b,

displ_ Magnitude displ_ Magnitude
0.063306 0.063306
0.06 0.06

|0.04 lOOll

0.02 0.02

0 0

(2) (b)

= Displacement magnitude results at termination time of 5 X 107* s: a) using
conventional central difference algorithm; b) using multiscale approach with

20 snapshots and 5 POD modes.




Numerical Results — Example 2

VON_Mmises
10000

8000
!Acco
2000

1.2481658

(b)
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12481658

" Von Mises results at termination time of 5 X 107 s: a) using conventional
central difference algorithm; b) using multiscale approach with 20 snapshots

and 5 POD modes.




Numerical Results — Example 2 h) i

Table 1: POD modes computed at 10% of the simulation time

(a) Performance improvements for total simulation time

Method Time CpPU PIF Displacement

step (s)  time (s) relative error %

Explicit dynamics At. 3014.24 - -

Multiscale explicit ~ 2(At.)  2135.01 1.41 8.09%
dynamics using 3(Ate)  1587.55  1.90 11.14%
5 POD modes 5(Atc) 1068.09  2.82 13.57%

POD modes refresh

Table 2: Multiscale approach using 5 POD modes and POD modes refresh

Performance Improvement Factor  Displacement relative error %

Time step POD modes POD modes POD modes POD modes

At, not recomputed recomputed not recomputed recomputed
2(At.) 1.41 1.12 8.09 5.67
3(At.) 1.90 1.59 11.14 6.52
5(At.) 2.82 2.22 13.57 8.23
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Numerical Results — Example 3 h) e,

" Thermoelastic-plastic failure material
model.

"  Prescribed constant temperature on all

blocks.

"  DPiecewise linearly increasing pressure
tunction applied to internal surfaces.

= ~370K HEXS elements

30




Numerical Results — Example 3 h) e,

Table 1: POD modes computed at 10% of the simulation time

(a) Performance improvements for total simulation time

Method Time CPU PIF  Max displacement  Max Von Mises

step (s)  time (s) relative error % relative error %

Explicit dynamics At 1644.56 - -

Multiscale explicit — 2(Atc) 924.92  1.79 0.17% 0.14%
dynamics using
5 POD modcs




Numerical Results — Example 3 h) e,

von_mises von_mises
75

(o
o

o
o

(2) (b)
" Von Mises results at termination time of 1 X 107* s: a) using conventional

central difference algorithm; b) using multiscale approach with 15 snapshots

collected in initial 10% of the simulation, and 5 POD modes.
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Reduced the computational time of our explicit dynamics simulations
while maintaining accuracy in the solution, for problems dominated by
low frequency responses over time. This was accomplished with our
multiscale mass scaling approach using proper orthogonal
decomposition.

In some cases, significantly larger time steps were achieved, without
compromising accuracy.

Using a larger number of POD modes to build the coarse space
decreased the error in the solution.

Increasing the number of snapshots used to build the POD modes led
to smaller errorts.

Accuracy was improved by refreshing the POD modes during the

simulation.

The implementation of this multiscale mass scaling approach proved
to be very scalable, adhering to SIERRA Mechanics code standards.
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Future directions ) i

= We should focus on improving the overall robustness of this method by

studying how the difference sources of error influence accuracy and stability.

" Understanding how the different sources of error relate to each other and
affect the solution of the problem can help in choosing more appropriate
coarse time step estimates.

= Explore new ideas that can provide further guidance in choosing an
appropriate amount of snapshots and POD modes “on the fly” during a
simulation, and that can guarantee accuracy while still delivering performance
improvements.

= Selective block implementation of this approach might also improve
performance and increase accuracy.

= We have observed that problems involving contact still present a big

challenge.




Future directions ) i

= (Can we tackle these problems with this approach?

Quality
1
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