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Motivation

Objective: Reduce the computational time of our explicit dynamics 
simulations while maintaining accuracy in the solution.

 Incorporating fine scale details into a large scale model presents 
many computational challenges.
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Motivation

 Refining the finite element mesh to capture these details can 
result in a very large model.

 In explicit time integration, the critical time step is governed by 
the smallest elements in the model. As defined by Richtmeyer
and Morton (1967) for explicit finite element methods, this 
critical time step is: 

 High level of refinement can lead to extremely small time steps.
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Motivation

 A wide variety of problems need high spatial resolution as 
opposed to temporal resolution.

 Many times the contributions of the low frequencies dynamics of 
the system are the ones of most interest, not necessarily the high-
frequency dynamics themselves. 

 Our goals center in performing an efficient decomposition of the 
problem into coarse and fine scales. 

 We will attempt to improve performance, and maintain accuracy 
by allowing special treatment of each of those scales.
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Governing equations
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Governing equations
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Multiscale mass scaling approach 
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Multiscale mass scaling approach 
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Multiscale mass scaling approach 
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Multiscale mass scaling approach 
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Multiscale mass scaling approach 
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Multiscale mass scaling approach 
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Multiscale mass scaling approach 
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Multiscale mass scaling approach 
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Proper Orthogonal Decomposition

 Proper Orthogonal Decomposition (POD) has been widely used 
for data analysis and reduced order modeling.

 The main objective of POD is to obtain a low dimensional 
orthogonal basis for representing an ensemble of high 
dimensional data. 

 POD makes no assumptions about the linearity of the problem 
to which is applied, so it can be used with any type of nonlinear 
problem.

 Berkooz, Holmes and Lumley (1993) showed that the 
eigenvalues associated with the POD modes are related to the 
kinetic energy of the system.

 Consequently, POD modes are good candidates for building the 
coarse space represented by the interpolation matrix
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Proper Orthogonal Decomposition
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Proper Orthogonal Decomposition
 In this work, the ensemble of functions needed to compute the 

POD modes were taken as the displacements obtained at early 
time steps of the full scale simulation.

 These functions turn out to be snapshots of the displacement 
solution vectors at specific times during the simulation. 
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Numerical Results
 What effect does this approach have on the accelerations?
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Numerical Results
 What effect does this approach have on the accelerations?
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Numerical Results
 What effect does this approach have on the accelerations?
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Numerical Results – Example 1
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 Linear elastic material

 Fixed displacements in bottom 
of legs.

 Load on selected nodes 
increases linearly over time.

 Termination time is 5×10-4 s

 ~45K  HEX8 elements



Numerical Results – Example 1
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 Displacement magnitude at a time of 5 × 10−4 s: a) using conventional 
central difference algorithm; b) using multiscale approach with 10 snapshots, 
5 POD modes and 3(∆tc) time step. 

(a)                                                      (b)



Numerical Results – Example 1
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Numerical Results – Example 1

 Parallel computing 
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 a) Speedup and b) Efficiency results for 2,771,712 element 
problem in Example 1 

(a)                                                      (b)



Numerical Results – Example 2
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 Elastic-plastic non-linear 
material

 Bottom of cylinder fixed.

 Load on selected nodes varies 
linearly over time.

 Termination time is 5×10-4 s

 ~44K  HEX8 elements



Numerical Results – Example 2
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 Displacement magnitude results at termination time of 5 × 10−4 s: a) using 
conventional central difference algorithm; b) using multiscale approach with 
20 snapshots and 5 POD modes. 

(a)                                                 (b)



Numerical Results – Example 2
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 Von Mises results at termination time of 5 × 10−4 s: a) using conventional 
central difference algorithm; b) using multiscale approach with 20 snapshots 
and 5 POD modes. 

(a)                                                 (b)



Numerical Results – Example 2
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Numerical Results – Example 3
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 Thermoelastic-plastic failure material 
model.

 Prescribed constant temperature on all 
blocks.

 Piecewise linearly increasing pressure 
function applied to internal surfaces.

 ~370K  HEX8 elements



Numerical Results – Example 3
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Numerical Results – Example 3
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 Von Mises results at termination time of 1 × 10−4 s: a) using conventional 
central difference algorithm; b) using multiscale approach with 15 snapshots 
collected in initial 10% of the simulation, and 5 POD modes. 

(a)                                             (b)



Conclusions
 Reduced the computational time of our explicit dynamics simulations 

while maintaining accuracy in the solution, for problems dominated by 
low frequency responses over time. This was accomplished with our 
multiscale mass scaling approach using proper orthogonal 
decomposition.

 In some cases, significantly larger time steps were achieved, without 
compromising accuracy.

 Using a larger number of POD modes to build the coarse space 
decreased the error in the solution. 

 Increasing the number of snapshots used to build the POD modes led 
to smaller errors. 

 Accuracy was improved by refreshing the POD modes during the 
simulation.

 The implementation of this multiscale mass scaling approach proved 
to be very scalable, adhering to SIERRA Mechanics code standards. 
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Future directions
 We should focus on improving the overall robustness of this method by 

studying how the difference sources of error influence accuracy and stability. 

 Understanding how the different sources of error relate to each other and 
affect the solution of the problem can help in choosing more appropriate 
coarse time step estimates. 

 Explore new ideas that can provide further guidance in choosing an 
appropriate amount of snapshots and POD modes “on the fly” during a 
simulation, and that can guarantee accuracy while still delivering performance 
improvements. 

 Selective block implementation of this approach might also improve 
performance and increase accuracy.

 We have observed that problems involving contact still present a big 
challenge.
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Future directions
 Can we tackle these problems with this approach?

35



Acknowledgments

 Sandia National Laboratories
 Computational Solid Mechanics and Structural Dynamics Department

 Multi-Physics Modeling and Simulation Department

 Cornell University
 Prof. Wilkins Aquino

 Sloan Foundation

36



References
 de Frías, G. J., Aquino, W., Pierson, K. H., Heinstein, M. W. and Spencer, B. W. (2014), A 

multiscale mass scaling approach for explicit time integration using proper orthogonal 
decomposition. Int. J. Numer. Meth. Engng., 97: 799–818. doi: 10.1002/nme.4608

 Spencer BW, Heinstein MW, Hales JD, Pierson KH. Multi-length scale algorithms for failure 
modeling in solid mechanics. Technical Report SAND2008-6499, Sandia National Laboratories, 
Albuquerque, New Mexico 87185, 2008. 

 Heinstein MW, Mello FJ, Dohrmann CR. A nodal-based stable time step predictor for transient 
dynamics with explicit time integration. ASME Piping Division Publication PVP 1996; 343:225–229. 

37



Questions?
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