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The Mission Has Evolved for Decades (@i
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Defense Systems & Assessments ) 5.

Synthetic aperture radar Support for NASA Support for ballistic

M missile defense
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Ground sensors for future
combat systems
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Silicon Photonics at SNL

High-speed  Photonics-CMOS
Broadband Mach-Zehnder Ge D g‘tector Integration
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Microsystems Design, Fabrication and Test
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Part |I: Modulators




TW Mach-Zehnder Modulator (MZM) (@) ...
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Problem: Require high speed low oVl -
voltage MZM L.
Solution: Capacitively loaded travelling - L
wave design with vertical pn junction JE{
- Travelling wave design improves N e [ o
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C.T. DeRose, et al. “High Speed Travelling wave carrier depletion silicon Mach-Zehnder modulator” OIC 2012
M.R. Watts, et al. “Compact Low Voltage Depletion Mode Modulators” JSTQE 2010
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Adiabatic 3-dB Splitter
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C.T. DeRose, M.R. Watts, et al., “Low Power 2X2 Thermo-Optic switch” OFC (2009)




Capacitively Loaded TW MZM
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Modulator RF characterlstlcs ) i,

= Traveling wave design shows:
= good impedance matching
= enhanced bandwidth
= |ow halfwave voltage operation
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TW Modulator Performance ) e,

5
5
~ 0 3l
S i
5 =2
§-10- 2 o
X it
0 _15- -2/ |—Applied Voltage
A —OpticaIISignal . . |
20 A A e _5 0 ® Time (8) 1° . 2
10" 10° 10 10° "
Frequency (GHz)
Bias Voltage Insertion Extinction i Small Signal
Loss Ratio (3Vpp) Bandwidth
0 7.9 dB 12.3 dB 3.2V 7 GHz
-1 7.8 dB 9.3 dB X 10 GHz
-2 7.6 dB 7.3 dB X 12 GHz




Modulator requirements: e

Microwave vs. Digital
= High Dynamic range = |Low Power
= Low noise figure " Forward Error Correction

= Multiple bits per symbol

= High Sensitivity
= Just enough bandwidth

= High Bandwidth

ER =4.2dB, L = 1mm, Vb = -2V
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Spurious Free Dynamic Range (SFDR) @
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Intermodulation Distortion () i,

Would like to suppress this term for
wide dynamic range operation
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Nonlinear Phase Shift ) iz,
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Effect of nonlinear phase shift on
modulator SFDR
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« |IMD3 suppression possible

 SFDR depends on both bias
phase and reverse bias voltage

« Wide range of ‘good operation’

Bias Phase (radians)

 Model does not include loss

modulation

95
» Best operating point depends

90
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on other system parameters (@B*HZ)
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Calculated SFDR for 10 mW output power




Confirmation in the literature ) e,
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[11A. Khilo, C.M. Sorace, and F.X. Kartner, “Broadband linearized silicon modulator” OPEX 4485 (2011)

[2] A.M. Gutierrez, A. Brimont, J. Herrera, M. Aamer, D.J. Thomson, F.Y. Gardes, G.T. Reed, J-M Fedeli and P. Sanchis
“Analytical Model for Calculating the Nonlinear Distortion in Silicon-Based Electro-Optic Mach-Zehnder Modulators” JLT 3603 (2013)




Laboratories

SFDR measured results ) &

130
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* 1mm travelling wave modulator
* 1 Volt reverse bias

7 dB insertion Loss

| 0.5 mA peak photocurrent
within 2 dB of best reported si

92 ;
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Bias Phase (rad) \ MZM reSUlt [3]

10 Gbps, 5V commercial LINbO3 biased at
quadrature measured with the same peak

photocurrent!

[3] M. Streshinsky, et al., “Highly linear silicon traveling wave Mach-Zehnder carrier depletion modulator based on
differential drive” OPEX 3818 (2013)




Received Power (dBm)
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Measured points on RF spectrum analyzer
then fit with lines of slope

m=1 and m=3. OIP3 intercept is found
and SFDR is calculated from measured
noise floor or -166 dBm/Hz.

Did not observe complete suppression of
IMD3 saw evidence in one case that IMD5
could become limiting distortion in SFDR
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Part Il: Photodiodes




Detectors for digital communications:

Rx energy/bit vs. input capacitance
No previous analysis comparing Rx ﬁi

power to receiver capacitance for E _E E

multistage receivers
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= Existing analyses comparing TCn G Co G G
technologies focus on transmit
power
) ) Recelver Energy per bit vs. input capamtance
= Receiver power greatly influenced 1¢°, T —
by input capacitance (fiber choice) :?\zi g::gg a5 nm”r‘](';ép” power |
= Analysis here is over simplified, 2  —ThreesStage '° °°P°
provides lower bound 5, 2 [T FourStage
o i
= Uses gain stage chains: i = CdV/dt % | ;
= Current/Capacitance Ratio (f;) o MCE
L
= Gain (Constant gain-bandwidth) 10" SM+FCR
= Sizing (Drive capability) T S=SM T 7T el
. . . 10° 10’ 10° 10°
calculation courtesy of A.L. Lentine Capacitance (fF)
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Detector requirements for RF ) i

= Require as much photocurrent as possible for:
" [mproved dynamic range
" Low noise figure
= Working in the quantum limited noise regime

.« . . . Rx
= Obtaining Link gain ym T T .
1 Photodiode 1
; LG outt
Tx 1 DI @ :
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Nonlinearities in detectors ) e

= Carrier screening effects MM B SRR B I

Thermal runaway
= Series impedance effects

vgw b

= Effects are all dependent

on carrier densities. Can be

partially mitigated with nove

Electric Field (KV/cm)
o
=

detector structures. 150 |

[5] K.J. Williams, et al., “Effects of high space-charge fields on the properties of microwave photodetectors” PTL (1994)




Ge in Modern CMOS e

Strain engineering in CMOS

Intel 45nm

Germanium old semiconductor

technology. I
- Indirect Bandgap at 0.66 eV. y
- Direct Bandgap at 0.8 eV (1550 nm) in telecom
band. '
- Not efficient optical emitter.

Selective epitaxial growth of Ge on Si
has enabled advanced strain englneerlrm
in modern CMOS.

Fully CMOS Compatible.

High electron and hole mobilities.

Ge optoelectronics: direct bandgap

at 1550nm implies good absorption. i
Ge Quantum-well Ge MISFET Transistor

Sources: (1) ESSDERC 2008, (2) www.intel.com/silicon research/R&D pipeline




Selective Area Growth ) i,

= All silicon processing and high temperature anneals are
performed first

= Trench opened in oxide

= Germanium epitaxy with low fill factors occurs in oxide window
= Epitaxy conditions designed to allow lateral overgrowth

= Germanium CMP and planar processing continue

W Via W Via

Si

det| cur | WO |mag 0| HFW | fitt | HV e | I et

86 pA /4.0 mm 47046 5,44 um|52° 11,00 kV




Low Dark Current Detection ) e,

Our Selective Ge on Si
gives low defect count
at Si/Ge interface.

Leverages CMOS
compatible processing

Apply analytic tools to
reduce defects at
interface.

= Very low threading
dislocations.

Selective growth enables
aspect ratio trapping

Our Ge device

Edge dislocations



Digital Germanium Optoelectronics ) e

Applications: Low power receivers for
data communications

Accomplishments:
Demonstrated CMOS compatible
Ge photodiode with

- Record low capacitance (~1 fF)

- Best-in-class dark current (3 nA)

- Best-in-class bandwidth (45 GHz)
- High responsivity (0.8 A/W)

- Small footprint (1.3um x 4.0um)

- High-power detector designs next
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W Vias '

p+ doped (implanted) Si
n+ doped (implanted) Ge

p+ doped (in-situ) Ge

Si waveguide feed

* Measured
— Fit

3db roll off

Relative Response (dB)
A

10 10° 10’ . 10?
Frequency (GHz)

C.T. DeRose, et. al., OPEX, 19, pp. 24897-24904 (2011)




Distributed absorption Ge photodiode g,
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= Desire a linear absorption
profile to minimize localized
high carrier densities

u SeIeCtive area growth p+ doped (implanted) Si
eliminates typical 1llI-V designs

n+ doped (implanted) Ge

p+ doped (in-situ) Ge
= Use tapered coupler structure

Si waveguide feed

retarCormtacts

— Exporieniial Profile
— Distributed Profile
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Distributed absorption Ge photodiodems.,

= Nonadiabatic transfer of power
to Ge waveguide structure

= Requires growth on partially
etched silicon for fabrication

= Gap =350 nm, Width = 2um,
Thickness = 700 nm
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FDTD Simulations ) i
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Dist. Abs. Ge Cut

End Fire Ge Cut
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Distributed Absorption )

H . 1 ; —125 um Det |
= Simulation and measurement ; 100 um Det |
. . . < 4 —50 um Det ||
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Power Handling

= 10 Ximprovement in DC
current operation over initial
end fire coupled design
demonstrated

= Measurements indicate that
thermal runaway is main
limiter

" Increase in area and
improvements to thermal
management needed to reach
state of the art 125 mA in
waveguide Ge photodiode [4]

o 1V
. 100 | —-1V fit
< o -2V
Ig — -2V fit
g 10-0.2_ o =3V
S -3V fit
o ° -4V
240 — -4V fit
o o -5V
—-5V fit
’ 0-0.65 . . . . .
-18 -16 -14 12 -10
Optical Attenuation (dB)
End Fire Detector
2

Photo Current (mA)
o

o -1V
—-1V fit
o -2V
—-2V fit
o -3V
-3V fit
o -4V
—-4V fit
o -5V
—-5V fit

—
1 O
a o

Optical Attenuation (dB)
Distributed Absorption

[4] A. Ramaswamy, et al., “High Power Silicon-Germanium Photodiodes for Microwave Applications” IEEE Microwave (2010)
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Summary ) g
« Silicon photonics is a promising platform for

pursuing RF photonics
- High speed travelling wave MZMs with 935.5
dBHz%3 SFDR were presented

-- Can be further optimized

- Initial results on a novel distributed absorption
germanium photodiode for improved power handling
~20 mA photo current was presented

-- Expect significant improvement with thermal

management and improved geometry
Acknowledgements: M.R. Watts for initial designs and helpful discussions
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