

Exceptional service in the national interest

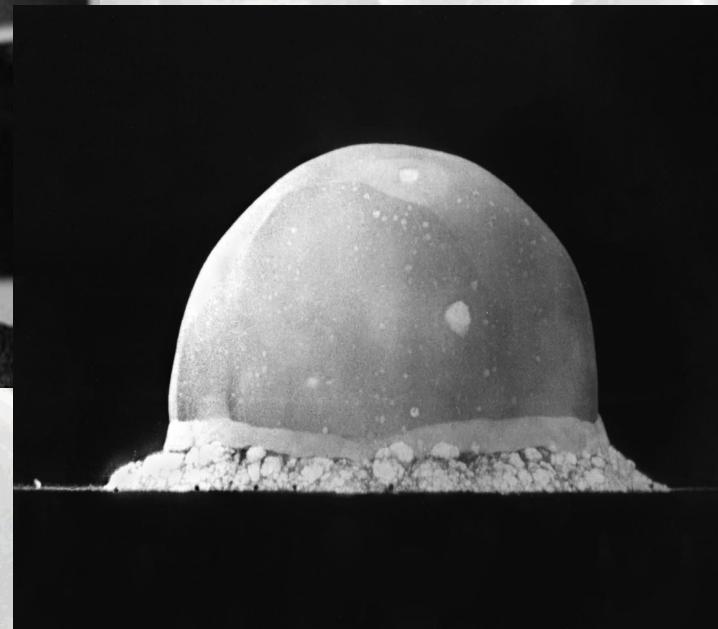
Highlights of US German Salt Repository Collaborations

Walter Steininger--PTKA
Frank Hansen--Sandia National Labs

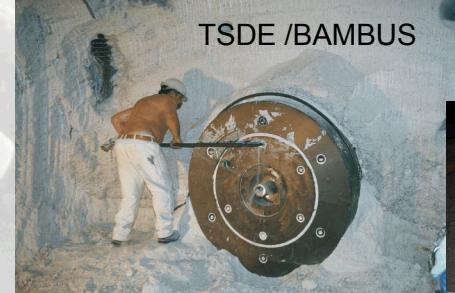
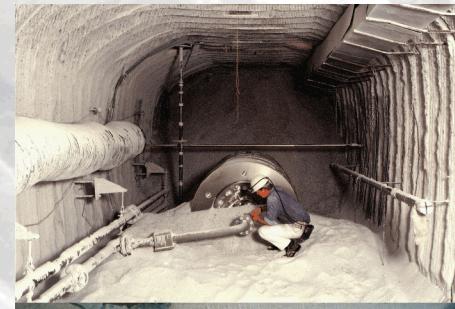
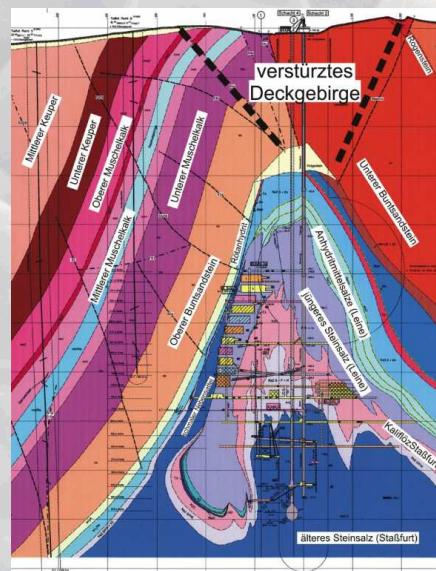
5th US/German Workshop on
Salt Repository Research, Design and Operation

Santa Fe, New Mexico, USA
September 7-11, 2014

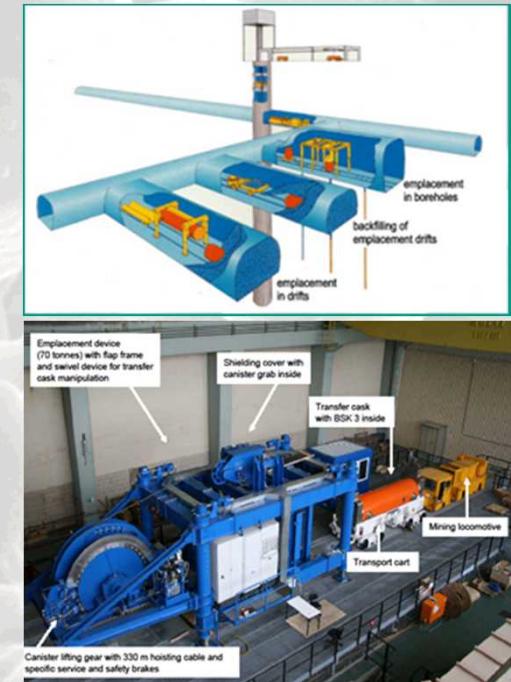
Federal Ministry
for Economic Affairs
and Energy


Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2014-XXXX

Perspectives α to Ω




Indian Detour cars in front of La Fonda Hotel • Santa Fe, New Mexico

On March 16 1943 J. Robert Oppenheimer met Dorothy Scarritt McKibbin in the La Fonda and hired her to run a discreet office that would become Los Alamos.


Welcome to the continuation of history

General Chronology of Salt Repository Research

German Accumulation of Expertise in the Past Decades

- Techniques for waste emplacement were developed (Direct Disposal = reference repository concept)
- Feasibility of vertical borehole emplacement of spent fuel & HLW (BSK-3 canister) was shown
- Instruments, tools, and methodologies for modeling and safety analysis were substantially further developed and have been applied in several exercises (e.g. vSG)
- In Germany underground disposal facilities for chemical-toxic wastes are licensed and are operational for years
- A lot of experience in rock salt available from practical application and excellent RD&D

USA Accumulation of Expertise in the Past Decades

- Sandia, as Science Advisor, developed much of the salt expertise for the Waste Isolation Pilot Plant.
- WIPP was a successful operation 1999-2014.
- Solution Mining Research, Strategic Petroleum Reserve, American Rock Mechanics Assoc., Salt Mechanics Symposia
- Salt mining is a world-wide, proven and reliable technology
- Rock salt is highly suitable for hosting a repository for heat-generating nuclear waste

Hansen, F.D. and C.D. Leigh. 2011. *Salt Disposal of Heat-Generating Nuclear Waste*. SAND2011-0161, Sandia National Laboratories Albuquerque New Mexico.

Benefits of the Strategic Partnership in National and International Cooperation

- **Collaboration hibernated for more than 10 years (different priorities in Germany and US)**
- **Re-start of collaboration in 2010 with a common US-German Workshop in Mississippi (organized by PT-KA, Sandia NL, DBE TEC)**
- **Benefits**
 - to exchange experiences and know-how, get external expertise and feedback
 - expertise and knowledge to make science-based recommendations on the pros and cons of different host rocks
 - Mutual added value, the appropriate investment of money, cost sharing and the gain of confidence
 - Internationally accepted is the opinion to cooperate with foreign partners because of the importance for any national program
- **Topics emphasized**
 - Safety Case
 - Salt repository concepts & designs
 - Modeling of groundwater flow and radionuclide transport
 - Geotechnical barriers
 - Site characterization & host rock characterization

SANDIA REPORT
SAND2012-1245C
Unlimited Release
Printed March 2012

2nd US/German Workshop on Salt Repository Research, Design and Operation

Meeting Venue Hotel Schloss Pöhl, Straße 17, 31228 Peine Germany
November 9-13, 2011

Frank D. Hansen, Sandia National Laboratories
Water Steininger, KIT/PTKA-WTE
Enrique Ríos, DBE TECHNOLOGY GmbH

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185-0400
Sandia National Laboratories is a multimission laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's
National Nuclear Security Administration under contract DE-AC04-94AL85000.

KIT SCIENTIFIC REPORTS 7569
Projektr鋐er Karlsruhe (PTKA-WTE) – Wissenschaftliche Berichte 12

US-German Workshop on Salt Repository Research, Design, and Operation

May 25 – 27, 2010
Mississippi State University, CAVS
Canton, MS
USA

A joint workshop organized by
Projektr鋐er Karlsruhe (PTKA-WTE)
SANDIA National Laboratories
DBE TECHNOLOGY GmbH

Walter Steininger (ed.)

KIT Scientific Publishing

US/German Salt Repository Research

- Collaborations between the US and West Germany began in the 1970's (Asse: Temp.Tests)
- Technical evaluations for salt disposal of heat-generating waste experienced a rather long hiatus because of "priority changes" in both countries
- Salt repository research in Germany slowed down somewhat since 2000 (political decisions, moratorium), but increased in 2010.
- Representatives of institutions in both countries wished to renew collaborations and cooperation on overall salt repository science, to coordinate a potential research agenda of mutual interest, and to leverage collective efforts for the benefit of their respective programs.
- By the first US/German Workshops on Salt Repository Research, Design and Operation collaboration was re-initiated.
- A coordinated research agenda has been pursued to maximize mutual benefit.
- The **fifth workshop** will highlight ***Repository Design and Operations*** and this topic will be the focus of the first day. The focus of the second day will be the ***Thermomechanical Behavior Of Salt, Plugging And Sealing, And The Safety Case***. Special topics will be addressed on the third day.

Accomplishments and Ongoing Activities

- Five consecutive workshops (information: http://energy.sandia.gov/page_id=17258, includes workshop proceedings and all presentations)
- Memorandum of Understanding between the German Ministry of Economic Affairs and Energy and the US-Department of Energy [Environment Management (EM) and Nuclear Energy (NE)]
- Founding of the OECD/NEA “Salt Club” (Participants: Germany, US, The Netherlands, Poland)
 - Natural analogues workshop for rock salt
 - Features, Events, and Procedures (FEP) catalogue for rock salt
 - State-of-the-art report on salt reconsolidation
 - Salt knowledge archive
- Workshops on actinide brine chemistry (ABC) with Los Alamos National Laboratory

Kuhlman, K. L., S. Wagner, D. Kicker, R. Kirkes, C. Herrick, D. Guerin. 2012. Review and Evaluation of Salt R&D Data for Disposal of Nuclear Waste in Salt. Fuel Cycle Research & Development. FCRD-UFD-2012-000380. SAND2012-8808P

Accomplishments and Ongoing Activities

- Collaboration in the Joint Project on “benchmarking constitutive models for rock salt” (Sandia & German organizations) (funding by BMWi and US-DOE)
- Contributions to conferences and workshops (American Rock Mechanics Association, Mechanical Behavior of Salt Symposia, Waste Management)
- Notably the ARMA conference had five sessions on “salt” with many contributions made by US/German collaborators
- Collaborative efforts were also completed in the EC (Euratom)-Project (7th Framework Program) “Monitoring Developments for Safe Repository Operation and Staged Closure” (MoDeRn)
- Collaboration/information exchange in the area of safety case
- Common “joint activity on Handling of Uncertainties” in the framework of the IGD-TP (Implementing Geological Disposal - Technology Platform)

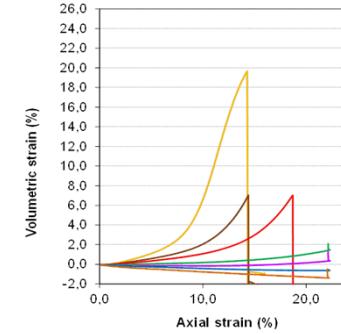
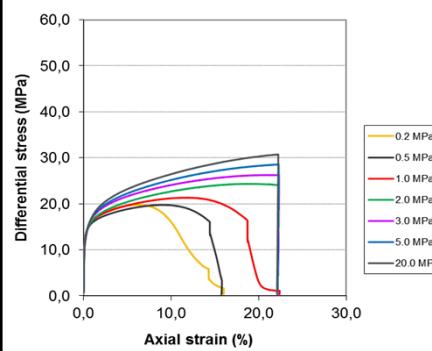
Steininger, W., F.D. Hansen, E. Biurrun and W. Bollingerfehr. 2013. *US/German Collaboration in Salt Repository Research, Design and Operation*. WM2013 Conference, February 24-28, 2013, Phoenix, Arizona, USA.

Activity Overview 5th US/German Workshop

- **Ongoing collaborations**
- Operational Safety—Key Note Rottler/Kennedy/v. Berlepsch/Hardin presentations
- Retrievability and Repository Design—Wagner/Bollingerfehr/URL
- Benchmark modeling (Joint Project III)—Hampel/Arguello presentations
- Laboratory testing of WIPP salt—Düsterloh/Popp/Plischke/Pusch presentations
- Plugging and sealing—Müller-Hoeppel/Glaubach/Hansen Presentations
- Safety case and performance assessment—
Mönig/Hammond/Wieczorek/Freeze/Wolf/Becker/Sallaberry/Rempe presentations
- Nuclear Energy Agency Salt Club—Mönig presentation
- Special topics—Researcher-to-researcher collaborations

- **Next steps**
- Proposals for joint collaboration—wrap-up session
- SALT MECH VIII
- Field-scale natural analogue observations
- Underground laboratory in the context of salt research and development

German Testing of WIPP Salt



σ_3 MPa	strain rate	T °C	quantity/lab pure salt-IGG	quantity/lab clay salt-TUC	$\Sigma = 7$	$\Sigma = 14$
0.2	1,00E-05	27	1	2		
0.5	1,00E-05	27	1	2		
1	1,00E-05	27	1	2		
2	1,00E-05	27	1	2		
3	1,00E-05	27	1	2		
5	1,00E-05	27	1	2		
20	1,00E-05	27	1	2		

σ_3 MPa	strain rate	T °C	quantity/lab pure salt-IGG	quantity/lab clay salt-TUC	$\Sigma = 7$	$\Sigma = 14$
0.2	1,00E-05	100	1	2		
0.5	1,00E-05	100	1	2		
1	1,00E-05	100	1	2		
2	1,00E-05	100	1	2		
3	1,00E-05	100	1	2		
5	1,00E-05	100	1	2		
20	1,00E-05	100	1	2		

σ_3 MPa	strain rate	T °C	quantity/lab pure salt-IGG	quantity/lab clay salt-TUC	$\Sigma = 7$	$\Sigma = 14$
0.2	1,00E-06	27	1	1		
0.5	1,00E-06	27	1	1		
1	1,00E-06	27	1	1		
2	1,00E-06	27	1	1		
3	1,00E-06	27	1	1		
5	1,00E-06	27	1	1		
20	1,00E-06	27	1	1		

σ_3 MPa	strain rate	T °C	quantity/lab pure salt-IGG	quantity/lab clay salt-TUC	$\Sigma = 7$	$\Sigma = 14$
0.2	1,00E-04	27	1	1		
0.5	1,00E-04	27	1	1		
1	1,00E-04	27	1	1		
2	1,00E-04	27	1	1		
5	1,00E-04	27	1	1		
20	1,00E-04	27	1	1		

σ_3 MPa	σ_u MPa	T °C	load level -	duration d	loading/ unloading	stress below dilation strength	quantity pure salt	quantity clay salt	$\Sigma = 17$	$\Sigma = 20$
20	>10	27	2	60/60	L/U	b/b	2	3		
20	>10	60	2	60/60	L/U	b/b	5	5		
20	>10	60	1	60/60	L/U	b/b	1	2		
20	<10	60	120	L	b	2	2			
20	27/60/80	3	60/60/60	L/L/L	b	1	2			
5	>35	27	1	L	a	1	0			
different	different	27	4	60/60/30/30	L/U/L/U	b/b/a/a	2	3		
2	7	?	?	?	?	?	3	3		

Perceptions--Future Work

- US and German proposals/ideas for future collaboration
- Reconsolidation of granular salt
 - Final porosity
 - Additives for construction and sealing properties
 - Numerical modeling verification
 - Further analogue experience
- Underground research lab in the context of salt R&D
 - Viability of salt formations for repository is established
 - Need a Framework for URL implementation
 - Justification required in context of all salt repository R&D
- The SALT Primer
 - Reference for college classroom
 - Basics, experimental techniques, isochoric deformation, damage and healing
 - Modeling
 - Applications, cavities, boreholes, repository