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For LCLS-II, a fluorescence intensity monitor for the non-invasive, pulse-by-

pulse normalization of experiments has been developed. A prototype diagnostic

was constructed with a microchannel plate assembly and two photodiodes. The

diagnostic was then installed in the LCLS SXR instrument Kirkpatrick–Baez

mirror chamber with the detectors located above the vertically reflecting mirror.

The linearity, noise and position sensitivity of the detectors have been

characterized. The photodiode responsivity is suitable for high pulse energies.

The microchannel plate detector shows sufficient responsivity over a wide range

of pulse energies. The relative signal from the two photodiodes provides a

sensitive measure of the X-ray beam position. The fluorescence intensity

monitor provides intensity normalization while being compatible with high

incident power, a 0.93 MHz repetition rate and ultra-high vacuum.

1. Introduction

The LCLS-II project is constructing a 4 GeV superconducting

accelerator for the production of X-ray free-electron laser

radiation. LCLS-II will generate X-rays at repetition rates up

to 0.93 MHz and cover a photon energy range from 250 eV to

5000 eV. The average power is expected to exceed 200 W over

the majority of the energy range. LCLS-II commissioning is

scheduled to begin in 2020. Three X-ray instruments, 1.1, 1.2

and 2.2, are being designed for LCLS-II. Instrument 1.1

delivers high-flux soft X-rays to multiple endstations including

a dynamic-reaction microscope. Instrument 1.2 covers the

tender X-ray photon energy range up to 5000 eV and allows

X-ray beams from both the soft X-ray and hard X-ray undu-

lators to be combined at the sample. Instrument 2.2 delivers

moderate and high-resolution monochromatic X-rays for

techniques such as resonant inelastic X-ray scattering.

Providing SASE bandwidth at some locations and high reso-

lution at another, these instruments will deliver a variety of

pulse energies to experiments.

The fluorescence intensity monitor (FIM) is being devel-

oped as a non-invasive intensity monitor for the LCLS-II

X-ray instruments. The goal is to achieve a signal-to-noise

ratio of 100:1 for individual X-ray pulses. A large dynamic

range is required to meet the requirements of LCLS-II X-ray

instruments. The anticipated pulse energies range from 0.2 mJ

at Instrument 2.2, operating for high-resolution momentum

resolved resonant inelastic scattering experiments, to 12 mJ at

Instrument 1.1, operating for strong-field experiments. The

highest pulse energies are generated by the 120 Hz copper

LINAC electron beam being delivered into the soft X-ray

undulator. The diagnostic should provide pulse-by-pulse data

at the LCLS-II maximum repetition rate, 0.93 MHz. The FIM
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should also be compatible with the full LCLS-II photon

energy range, 250 eV to 5000 eV.

A number of intensity diagnostics have been developed for

X-ray FELs such as the gas monitor detector (GMD) and the

intensity position monitor (IPM). The GMD uses photo-

ionization from rare gas atoms (Tiedtke et al., 2008, 2014). It is

non-invasive because of the low gas density, and provides

absolute intensities from a calibration at the Radiometry

Laboratory of the PTB at BESSY. However, a considerable

length along the X-ray path is needed for the GMD and the

associated differential pumping. In addition, the GMD

requires complex controls. The IPM detects back-scattered

X-rays from thin, partially transmissive silicon nitride or

diamond foils (Feng et al., 2011; Tono et al., 2011). With a

target thickness chosen according to the photon energy and

photoabsorption cross-section, the transmission of the IPM

can be high, and their responsivity can be calibrated (Kato et

al., 2012). But at a high average power, the cooling of the thin

targets is challenging.

The concept of the FIM is to place detectors near an X-ray

mirror surface in order to collect X-ray fluorescence and, in

some cases, photoelectrons. This method provides a non-

invasive measurement because there is no foil in the beam

path. Furthermore, it does not occupy valuable space along

the X-ray transport. High incident powers are possible

because the X-rays are primarily reflected by the mirror,

which will be water-cooled. Since photodiodes and micro-

channel plate detectors can have a response time of a few

nanoseconds, the diagnostic is compatible with the maximum

LCLS-II repetition rate. Relative X-ray pulse energies will be

determined. It is planned for absolute X-ray intensities to be

measured by gas detectors in the front-end enclosure (Hau-

Riege et al., 2010) and by power meters in the X-ray instru-

ments (Heimann et al., 2018).

2. Fluorescence intensity monitor prototype

A prototype FIM was fabricated including a microchannel

plate detector and two photodiodes. The Hamamatsu model

F2223-21SH microchannel plate detector has a grid and two

channel plates and was available from a previous diagnostic.

The photodiodes, Optodiode model AXUV63HS-1, were

selected for their rise time of 2 ns. The photodiodes are

positioned behind 100 nm-thick Al filters to supress electrons.

Fig. 1(a) shows a photograph of the assembled FIM prototype

mounted on a 6 inch diameter flange. As seen in Fig. 1(b), the

FIM prototype was installed above the vertically reflecting

Kirkpatrick–Baez (KB) mirror (Heimann et al., 2011) in the

LCLS Soft X-ray Materials Science (SXR) Instrument

(Dakovski et al., 2015). To ensure that the X-ray beam would

pass the diagnostic, the closest distance from the diagnostic

assembly to the mirror surface was kept at 10 mm. In order to

preserve the cleanliness of the mirror surface, the diagnostic

should not negatively affect the mirror chamber vacuum.

Bakeouts as well as residual gas analysis (RGA) scans were

performed on the individual components of the FIM proto-

type. The RGA results met the LCLS vacuum specification for

beamline components, which requires that at room tempera-

ture the sum of the partial pressures of all the peaks above

44 AMU must be less than 1 � 10�11 Torr and the maximum

single partial pressure above 44 AMU must be less than 5 �
10�12 Torr. No bakeout of the mirror chamber was performed.

After 12 days, the SXR KB mirror chamber reached a pres-

sure of 2 � 10�8 Torr, and after two months the pressure was

3 � 10�9 Torr.

3. Characterization at the LCLS SXR instrument

Measurements were performed at the LCLS SXR instrument

to characterize the performance of the FIM prototype. The

photodiode and MCP detector signals were read pulse-by-

pulse into an Acqiris U1065A-DC282 digitizer using a 20 MHz

filter and then stored by the LCLS data acquisition system.

The photodiodes were given a reverse bias of 9 V while the

MCP detector voltages were adjusted for the desired gain. The

pulses have a 28 ns full width at half-maximum (FWHM) for

the photodiodes and 24 ns FWHM for the MCP detector

limited by the filter. These observed pulse widths are

compatible with the maximum LCLS-II repetition rate of

0.93 MHz.
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Figure 1
(a) Photograph of the assembled FIM prototype. (b) Photograph of the
FIM prototype installed above the LCLS SXR vertical KB mirror.
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The linearity of the detectors was tested by varying the

X-ray pulse energy using the gas attenuator (Ryutov et al.,

2009) in the LCLS front-end enclosure. Fig. 2 displays the

signals of photodiodes 1 and 2 versus the pulse energy derived

from the upstream gas detector (Hau-Riege et al., 2008) and

the calculated gas attenuation. Fig. 3 similarly shows the MCP

detector signal versus the pulse energy from the upstream gas

detector and the gas attenuation. Each point represents a

single X-ray pulse event. The photodiode and MCP detector

intensities were calculated by subtracting the background and

then integrating over the pulse. The SXR instrument was

operated in non-monochromatic mode. Results from the

commissioning of the SXR instrument (Tiedtke et al., 2014)

predict that under these conditions the X-ray pulse energy

downstream of the KB mirror chamber is 34% of the value in

the front-end enclosure. An empirical correction has been

made to the gas attenuation from the Beer–Lambert law. The

attenuation, I/I0 , is calculated from the nitrogen density, n, in

the attenuator,

I=I0 ¼ exp
�� �nl þ 0:01ð�nlÞ2
� ��

; ð1Þ

where � is the photoabsorption cross-section and l is the

attenuator length. Increased attenuation can be caused by

additional pressure along the X-ray beam path in the

attenuator differential pumping sections. This correction to

the gas attenuation is consistent with measurements where the

power meters and the SXR gas monitor detector were

correlated with the pulse energy from the gas attenuator and

gas detectors.

In Fig. 2, photodiode measurements were performed at a

photon energy of 1540 eV and with LCLS pulse energies

ranging from 20 mJ to 2.6 mJ. The photodiode 2 signal is higher

than that of photodiode 1 because the X-ray beam footprint is

almost centered below photodiode 2 and, as a consequence,

photodiode 1 is sampling a tail of the beam footprint. At this

photon energy, the X-ray beam FWHM projected upon the

mirror is less than the separation between the photodiodes.

The photodiode 1 signal is observed to be linear within the

noise, as seen by the fit y = cx shown by line in Fig. 2(a). For

photodiode 2, at pulse energies above 100 mJ, curvature is

observed in the response. At high pulse energies, photodiodes

offset from the center of the X-ray beam footprint should

be used for the intensity normalization. The photodiodes

demonstrate a dynamic range of about one order of magni-

tude.

In Fig. 3, the MCP detector is operated in two modes: with

negative and positive bias. In the case of negative bias, elec-

trons are suppressed by the negative potential on the grid,

which is placed 500 V more negative than the MCP input,
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Figure 2
The responsivity of photodiodes 1 and 2 compared with the X-ray pulse
energy calculated from the LCLS upstream gas detector and gas
attenuator at a photon energy of 1540 eV. The solid lines represent
linear fits: y = cx. The colors correspond to individual runs, during which
the gas attenuation is increased by a factor of ten.

Figure 3
The responsivity of the MCP detector compared with the X-ray pulse
energy calculated from the LCLS upstream gas detector and gas
attenuator. The solid lines represent linear fits: y = cx. (a) At a photon
energy of 1540 eV, a negative bias was applied with the MCP input
voltage varied from �800 V to �1500 V. (b) At a photon energy of
1480 eV, a positive bias was applied with the anode voltage varied from
1100 V to 1550 V.
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i.e. between �1300 V and �2000 V. Photoemission is not

completely suppressed in the case of a �1300 mesh voltage.

With positive bias, the grid and MCP input are given small

positive voltages, and both electrons and X-rays are detected.

By comparing the MCP detector signal with positive and

negative bias, it is estimated that the number of electrons

exceeds the number of X-rays by about a factor of 100. The

bias voltages, in particular the voltage difference across the

MCPs, allow the gain to be adjusted according to the pulse

energy. For negative bias, the MCP voltage difference is given

by the MCP input voltage plus 50 V. For positive bias, the

MCP voltage difference is equal to the anode voltage minus

295 V. With negative bias, measurements were performed at a

photon energy of 1540 eV and with LCLS pulse energies

ranging from 30 nJ to 230 mJ. Here, the MCP detector signal is

seen to be linear within the noise except for the case of

�800 V MCP input voltage, where the intensity increases

faster than the linear fit. With positive bias, measurements

were performed at a photon energy of 1480 eV and with LCLS

pulse energies ranging from 0.7 nJ to 2 mJ. Over this range of

pulse energies, the MCP detector signal is seen to be linear

within the noise variations. The MCP negative bias mode

covers the pulse energy range from 2 mJ to 100 mJ, where the

positive bias mode is no longer linear. The MCP positive bias

mode has superior performance below 2 mJ. The MCP

detector demonstrates a dynamic range of four orders of

magnitude. From the LCLS-II Instrument 2.2 requirements, a

sensitivity at 0.2 mJ pulse energy is needed, which is clearly

met by the MCP detector.

The photodiode and MCP detector noise was evaluated by

comparison with an Andor Newton CCD camera using

selectable filters to maintain single-photon detection. The

noise contribution of the CCD camera in the full-frame

readout mode may be derived from Poisson statistics for a

maximum N of 5 � 105 detected X-rays, i.e. N1/2/N = 1.4 �
10�3. The noise measurements were performed at 800 eV. The

standard deviation � is calculated from the residual of a linear

fit of the photodiode or MCP detector intensity versus the

CCD camera intensity integrated over the exposed area. The

noise results (� divided by the average intensity) are listed in

Table 1. At higher pulse energies, the photodiode noise is 4–

5% of the intensity, and it increases slowly with decreasing

pulse energy. Here the MCP detector was operated with

positive bias. The MCP detector noise is 2–3% and insensitive

to the pulse energy. The main noise contributions are elec-

tronic noise, the pulse-height distribution from microchannel

plates (Matsuura et al., 1985) and Poisson statistics. The weak

variation with pulse energy suggests that Poisson statistics is

not the dominant noise contributor.

To investigate the sensitivity of the FIM diagnostic to the

X-ray beam position, the vertical position of the KB mirror

chamber was scanned, equivalent to translating the X-ray

beam, while monitoring photodiode 1 and 2 and MCP detector

intensities. Fig. 4(a) displays such a scan at 800 eV photon

energy. Here, the detector intensities were calculated by

subtracting the background, integrating over the pulse and

then normalizing to the pulse energy from the upstream gas

detector. Each point represents the mean of a run, typically

�7000 X-ray pulse events. The intensities from all three

detectors vary with the vertical height of the chamber. A

discontinuity in the photodiode 2 curve at �0.5 mm correlates

with a change in the digitizer voltage range. The vertical width

of the photodiode 1 and 2 intensity curves is 0.8 mm, which is

consistent with the image observed on an yttrium–aluminium

garnet (YAG) screen at the SXR single-pulse shutter. The

0.8 mm vertical width corresponds to an X-ray beam footprint

along the mirror of 59 mm. The width of the MCP detector

intensity curve is broader than that of the photodiodes

because of the respective active diameters, 27 mm for the

MCP detector compared with 9 mm for the photodiodes. The

FIM detectors are sensitive to the X-ray beam position.

The sensitivity of the diagnostic to the X-ray beam position

was evaluated by considering the variation of the photodiode

signals with KB mirror chamber position as well as the noise �
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Table 1
Evaluation of the noise of the photodiodes and MCP detector.

Pulse energy
(J)

Photodiode 1
(�/I)

Photodiode 2
(�/I)

MCP
(�/I)

8.0 � 10�4 0.044 0.055
1.2 � 10�4 0.058
1.5 � 10�5 0.024
1.1 � 10�6 0.027
1.2 � 10�7 0.028

Figure 4
(a) At 800 eV photon energy, the intensities of photodiodes 1 and 2 and
the MCP detector as the KB chamber is translated vertically. (b) Derived
from the photodiode intensities in Fig. 4(a), f (y) from equation (2) is
shown. The error bars are calculated from the �/I values in Table 1 at
8.0 � 10�4 J pulse energy.
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when averaging over a number of X-ray pulse events. As in the

measurement of the detector noise listed in Table 1, the

photodiode intensities were compared with the CCD camera.

Here, the CCD camera was operated in full vertical bin mode,

which permitted 120 Hz data acquisition. To use the intensities

from the two photodiodes as a vertical position encoder, one

may calculate a function f(y),

f yð Þ ¼ IPD1 � IPD2

IPD1 þ IPD2

: ð2Þ

Using the photodiode intensities in Fig. 4(a), Fig. 4(b) displays

f(y) at KB chamber vertical positions where the center of the

X-ray beam footprint is located between photodiodes 1 and

2. The vertical error bars for f(y) are calculated from the

photodiode 1 and 2 �/I values appearing in Table 1 at 8.0 �
10�4 J pulse energy. The horizontal error bars represent a

conversion of the noise in f(y) into a single-shot uncertainty in

the X-ray beam position. The noise �/I improves with aver-

aging from 0.05 for single X-ray events to 0.008 when summing

100 X-ray pulse events. For averaging 100 X-ray pulse events,

an uncertainty of 2 mm in the vertical beam position is derived.

In conclusion, it is possible to use the FIM for measuring the

X-ray beam position and for feedback correction of thermal

drift. To obtain both horizontal and vertical positions, FIMs

would need to be implemented for both the horizontally and

vertically reflecting KB mirrors.

The present characterization of the FIM was constrained by

the photon energy range of the LCLS SXR instrument, 280 eV

to 2000 eV (Dakovski et al., 2015). An FIM could be imple-

mented in a similar manner for higher photon energy X-rays

with some differences in sensitivity. At higher photon energies,

the fluorescence yield will be increased in the case of higher Z

coatings. The microchannel plate efficiency varies with photon

energy, having a minimum at 4–5 keV (Yamaguchi et al., 1989).

4. Summary

The fluorescence intensity monitor has been developed as a

pulse-by-pulse relative intensity diagnostic for the LCLS-II

X-ray instruments. Pulse energy measurements at the

maximum LCLS-II repetition rate are feasible. The photo-

diodes show a suitable responsivity at high pulse energies. The

MCP detector demonstrates high responsivity for low pulse

energies even in the nJ range. Over appropriate pulse ranges,

linearity is observed for both the photodiodes and MCP after

an empirical correction to the gas attenuation. Noise levels of

4–5% for the photodiodes and 2–3% for the MCP detector

have been demonstrated. The intensity from multiple detec-

tors can be used to determine the X-ray beam position, which

may provide feedback correction of thermal drift. For the

LCLS-II X-ray instruments, there are plans to install FIMs in

the KB mirror chambers.
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