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Abstract—Accurate and high-resolution maps of vegetation
are critical for projects seeking to understand the terrestrial
ecosystem processes and land-atmosphere interactions in Arctic
ecosystems, such as U.S. Department of Energy’s Next Generation
Ecosystem Experiment (NGEE) Arctic. However, most existing
Arctic vegetation maps are at a coarse resolution and with a
varying degree of detail and accuracy. Remote sensing-based
approaches for mapping vegetation, while promising, are chal-
lenging in high latitude environments due to frequent cloud cover,
polar darkness, and limited availability of high-resolution remote
sensing datasets (e.g., ∼ 5 m). This study proposes a new remote
sensing based multi-sensor data fusion approach for developing
high-resolution maps of vegetation in the Seward Peninsula,
Alaska. We focus detailed analysis and validation study around
the Kougarok river, located in the central Seward Peninsula of
Alaska.

We seek to evaluate the integration of hyper-spectral, multi-
spectral, radar, and terrain datasets using unsupervised and
supervised classification techniques over a ∼343.72 km2 area for
generating vegetation classifications at a variety of resolutions
(5 m and 12.5 m). We fist applied a quantitative goodness-of-
fit method, called Mapcurves, that shows the degree of spatial
concordance between the public coarse resolution maps and k-
means clustering values and relabels the k values based on the
best overlap. We develop a convolutional neural network (CNN)
approach for developing high resolution vegetation maps for our
study region in Arctic. We compare two CNN approaches: (1)
breaking up the images into small patches (e.g., 6 x 6) and predict
the vegetation class for entire patch and (2) semantic segmen-
tation and predict the vegetation class for every pixel. We also
perform accuracy assessments of the developed data products and
evaluate varying CNN architectures. The fusion of hyperspectral
and optical datasets performed the best, with accuracy values
increased from 0.64 to 0.96-0.97 when using a training map
produced by unsupervised clustering and Mapcurves labeling for
both CNN models.

I. INTRODUCTION

The Arctic has emerged as an important focal point for the

study of climate change due to the greatest regional warming

on Earth in recent decades, which was twice the rate of the

global mean warming [1]. Increased warming in the Arctic

will have potential climate feedbacks [2]–[4] and consequently

influence ecosystems [5], [6]. Current climate models in the

Arctic project an ongoing temperature increase for the next

decades [3]. Many studies suggest that environmental changes

associated with a warmer climate could have considerable

consequences for terrestrial ecosystems, such as Arctic plant

communities [7]. Continued greening over the next century

will produce multiple climate feedbacks. Model experiments

in the Arctic demonstrate that the associated feedbacks with

vegetation are positive, and failing to account for them in

future climate studies may result in inaccurate projections [8].

Model evaluations for future climate studies also show a

poleward advance of the forest–tundra boundary, an expansion

of tall shrub tundra, and a dominance shift from deciduous

to evergreen boreal conifer forest [7], [9]. Therefore, an

accurate accounting of Arctic vegetation is important for

parameterization of models that reflect accurate feedbacks to

climate change. For example, [10] used WorldView-2 and

LiDAR datasets to create ∼0.25 m spatial resolution plant

functional type (PFT) datasets for driving land-surface models

in Barrow, AK. Kumar et. al, 2016 [11] utilizing similar

remote sensing datasets to characterize the microtopography

of polygonal tundra employed the open-source PFLOTRAN

(massively parallel subsurface flow and reactive transport)

code to simulate variability in subsurface thermal regimes of

ice-wedge polygons at the field-scale at Barrow, AK.

High-resolution vegetation datasets are needed for current

modeling projects in the Arctic, such as the Next-Generation

Ecosystem Experiments (NGEE Arctic). NGEE Arctic is a

Department of Energy (DOE) project that seeks to improve our

confidence in global climate projections through a coordinated

series of model-inspired investigations (http://ngee-arctic.ornl.

gov/). NGEE Arctic is working to couple 3-Dimensional

surface-subsurface hydrology model PFLOTRAN with Ac-

celerated Climate Model for Energy (ACME) Land Model

(ALM) for modeling Arctic climate change at a variety of

scales. High-resolution spatial datasets are needed to drive

these models (e.g., vegetation, topographic, and hydrologic

data). It’s important to evaluate remote sensing imagery that

can provide datasets to drive high-resolution models and

guide field sampling campaigns. NGEE Arctic currently is

conducting extensive field research at a series of sites across

the Seward Peninsula, Alaska. The selection of the Seward

Peninsula is based on an analysis indicating that western

Alaska is a proxy for the future ecological and climatic regime

of the North Slope of Alaska toward the end of the century

[12].

Approaches based on hyper-spectral imagery, also named
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imaging spectroscopy, have shown to be effective for iden-

tification a wide range of vegetation types [13], including

Arctic vegetation types [14], [15]. However, this has mostly

been shown through hand held or airborne hyper-spectral

sensors [15]. Multi-spectral datasets (e.g., IKONOS, SPOT,

WorldView) are also becoming more available in Arctic and

Boreal ecosystems. Synthetic aperture radar (SAR) is also a

promising remote sensing dataset for vegetation classifications,

enabling imaging in all weather conditions at any time of day

or night. These different remote sensing platforms vary in their

sensor characteristics, spatial and temporal resolution and have

their strengths and weaknesses. While traditionally due to their

characteristics these remote sensing data sets have been used

independently, while multi-sensor data fusion holds promise to

harvest their complementary strengths to characterize vegeta-

tion properties. Machine learning algorithms that are based on

multiple datasets (i.e., multi/hyper-spectral images) are needed

to develop and evaluate high-resolution vegetation maps using

data from multiple remote sensing platforms.

The resolution and accuracy of current publicly available

vegetation maps are often low and are too inaccurate to be

used for field-scale studies. New methods and approaches

are needed to increase the accuracies at a higher resolution.

Objective of this paper is to 1) explore the predictability

of multi-sensor data fusion, 2) develop Covolutional Neural

Networks (CNN) for predicting vegetation type on the land-

scape using two approaches, (2A) by breaking up the images

into small patches (e.g., 6 x 6) and predicting the vegetation

class for entire patch; and (2B) evaluate localization using

semantic segmentation. These approaches help identify the

optimal CNN network and multi-sensor data fusion for Arctic

vegetation mapping.

II. MATERIALS

A. Study Area

The study area selected for this research is located on the

Seward Peninsula on the western coast of Alaska. We focused

our analysis near a watershed in the Seward Peninsula (Fig-

ure 1), due to the data collected for the NGEE Arctic project.

The Seward Peninsula experiences a semi-maritime climate

that is controlled by the Bering Sea and sea surface conditions

(especially sea–ice extent) [16]. The Seward Peninsula lies at

the important zone of vegetation transitions from boreal forest

to tundra [17], making this part of Alaska an important region

for studying vegetation characteristics. Most of the Seward

Peninsula is treeless, with some smaller isolated mountain

ranges and varied geologic substrates, including limestone,

deep unglaciated loess, and lava flows of various ages [18].

The bounding region of our study area was determined

by the overlapping raster boundaries from the SPOT-5 and

EO-1 Hyperion imagery. The study area is located near the

Kougarok River, located in the center of Seward Peninsula,

Alaska, and consists of low Arctic tundra dominated by open

low mixed shrub-sedge tussock tundra communities [19]. The

mean annual temperature for this area is -2.4◦C and with the

mean annual temperature in July is 11.0◦C; and the mean

annual precipitation is 102.1 mm [20] . This region is a zone

of nearly continuous permafrost with an active layer that has

a mean thickness of 56 cm [21].
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Fig. 1. Study area based on the EO-1 Hyperion footprint, showing (a) SPOT-5
false color image, (b) digital elevation model, and (c) vegetation classes.

B. Remote Sensing Datasets

All datasets were processed in Alaska Albers Equal Area

Conic (EPSG:3338), NAD83 horizontal datum and NAVD88

vertical datum. Table I lists the remote sensing products in

this study. One ALOS PALSAR L-band SAR image with dual

polarization (FBD) of HH (horizontal transmitting, horizontal

receiving) and HV (horizontal transmitting, vertical receiving)

that was radiometric and terrain corrected was collected,

more information can be found at https://www.asf.alaska.

edu/sar-data/palsar/. The EO-1 Hyperion and Landsat 8 OLI

images were collected from USGS https://earthexplorer.usgs.

gov/, with EO-1 Hyperion consisting of 198 calibrated bands

(0.4 - 2.5 μm) and Landsat 8 OLI consisting of 11 bands, with

9 bands (0.4 - 2.29 μm) used in this study. The terrain cor-

rected versions for EO-1 Hyperion (L1T) and Landsat 8 OLI

(Level-1) were processed. The Digital Surface Model (DSM)

IfSAR and SPOT-5 data were collected from the Geographic

Information Network of Alaska (http://gina.alaska.edu/). The

SPOT-5 satellite images used in this study were gathered

by the “Alaska Statewide Digital Mapping Initiative”, which

produced a new statewide orthomosaic that provides complete

multispectral coverage of the state at 2.5 m spatial resolution.

We used the CIR SPOT-5 orthoimage over our study area,

which consists of the green (0.50 - 0.59 μm), red (0.61 - 0.68

μm), and near infrared (0.78 - 0.89 μm) bands.

C. Vegetation Data

We gathered the 30 m Alaska Existing Vegetation Type

(AKEVT) (http://akevt.gina.alaska.edu/) vegetation map for

our study region for training and validating our models. Some

vegetation classes were very small and merged into other

classes of similar strata. This was also done based on the



TABLE I
LIST OF REMOTE SENSING DATASETS USED IN THIS STUDY

Dataset Resolution Acquisition Date

EO-1 Hyperion 30 m 24 June 2015

Landsat 8 OLI 30 m 17 August 2016

ALOS-1 PALSAR 12.5 m 29 August 2007

IfSAR DSM 5 m Summer 2012

SPOT-5 2.5 m Summer 2009 – 2012

TABLE II
AREA OF THE AKEVT VEGETATION CLASSES FOR THE STUDY REGION

(343.72 KM2).

Class Area (km2) Percentage
Mixed Shrub-Sedge Tussock Tundra-Bog 120.75 35.13%
Alder-Willow Shrub 74.33 21.63%
Dryas/Lichen Dwarf Shrub Tundra 20.52 5.97%
Sedge-Willow-Dryas Tundra 116.41 33.87%
Water 6.13 1.78%
Non-Vegetation 5.58 1.62%

Alaska vegetation classification system [19]. For example, the

willow shrubs covered only 0.38 % of the study region and

was merged into the alder-willow shrub class. We cropped

the AKEVT map to our study region and condensed the

classes down to six vegetation types that exist in study region:

mixed shrub-sedge tussock tundra-bog, alder-willow shrub,

dryas/lichen dwarf shrub tundra, sedge-willow-dryas tundra,

water, and non-vegetation. Table II shows the area of the six

chosen vegetation classes across the study region.

III. METHODOLOGY

Figure 2 shows a flowchart of methodology developed in

this study and we describe the steps in detail in the following

subsections.

A. Data Processing

The terrain corrected versions for EO-1 Hyperion (L1T)

and Landsat 8 OLI (Level-1) were processed. The EO-1

Hyperion and Landsat 8 OLI datasets were converted to Top

Of Atmosphere (TOA) reflectance according to the USGS

documentation. The SPOT-5 satellite images used in this study

were gathered by the “Alaska Statewide Digital Mapping

Initiative”, which have three statewide mosaics available at

2.5 m spatial resolution: color infrared (CIR), psuedo-natural

color, and panchromatic (grayscale). We used the CIR SPOT-5

orthoimage over our study area, which consists of the green

(0.50 - 0.59 μm), red (0.61 - 0.68 μm), and near infrared (0.78

- 0.89 μm) bands. Quantum Spatial and Fugro Geospatial,

Inc. performed the image processing, orthorectification, and

mosaicing of the datasets. The SPOT-5 orthoimage was radio-

metrically corrected for tone, balance, and geometry quality

control along tile edges for terrain and linear features. The

SPOT-5, PALSAR, and IfSAR datasets were normalized to

between 0 and 1 for consistency among the TOA datasets. The

Lee filtering algorithm (7×7 window) was applied to ALOS-1

TABLE III
MULTI-SENSOR VEGETATION CLASSIFICATION CASES

Case Fusion Combinations of Remote Sensing Datasets
D1 EO-1, IfSAR
D2 EO-1, Landsat 8 OLI, IfSAR
D3 EO-1, ALOS-1 PALSAR, IfSAR
D4 EO-1, SPOT-5, IfSAR
D5 EO-1, ALOS-1 PALSAR, SPOT-5, IfSAR
D6 EO-1, ALOS-1 PALSAR, Landsat 8 OLI, IfSAR
D7 EO-1, SPOT-5, Landsat 8 OLI, IfSAR
D8 Landsat 8 OLI, IfSAR
D9 Landsat 8 OLI, ALOS-1 PALSAR, IfSAR
D10 Landsat 8 OLI, SPOT-5, IfSAR
D11 ALOS-1 PALSAR, IfSAR
D12 ALOS-1 PALSAR, SPOT-5, IfSAR
D13 SPOT-5, IfSAR
D14 EO-1, Landsat 8 OLI, ALOS-1 PALSAR, SPOT-5, IfSAR

PALSAR image to reduce the speckle [22]. All of the remote

sensing datasets were re-sampled by pixel aggregation to 5 m

and 12.5 m using the nearest-neighbor re-sampling.

To explore the predictability of various remote sensing

data sets in multi-sensor data fusion approach, we designed

fourteen sets of data to conduct our case studies, which are

describe in Table III. We will refer to each specific dataset

as D by number (e.g., D14 refers to merging all the datasets

together).

B. Training Dataset

High quality training dataset is critical for building robust

and accurate CNN models. We employed two different data

sets to train our CNN models.

1) Alaska Existing Vegetation Map: AKEVT is a landcover

type map produced at 30m for a portion of Western Alaska

Landscape Conservation Cooperative (WALCC) region by US

Fish and Wildlife Services. Map was produced using field

plot data, LANDSAT 7 ETM+ spectral data and environmental

variables. AKEVT is one of the best publicly available vege-

tation map for the data poor region of the Seward Peninsula

of Alaska, however, resolution is coarser than the target

resolution of our current study.

2) Unsupervised Classification-Based Vegetation Map
(UCVM): Unsupervised multi-variate clustering techniques

have been widely used in Earth science for delineation

of ecoregions based on gridded datasets [23], [24]. We

applied unsupervised classification on remote sensing data

set (Table I) to develop a high resolution map and improve

the accuracy of AKEVT map for use as training data set. We

performed a principal component analysis (PCA) analysis

of the remote sensing datasets (Table I) and selected the

top three components that explain 99% variance. We used

a k-means algorithm to cluster the datasets into groups

containing similar spectral characteristics [25].

While our unsupervised classification technique identifies

groups of similar characteristics, the output classes are defined

by their spectral properties and lack translation to an under-

standable vegetation type. The Mapcurves method developed

by [26] provides a map algebraic approach to compare two



Fig. 2. Flowchart of our study for fusion of remote sensing datasets and to generate high-resolution vegetation maps.

maps. The Mapcurves method [26] calculates a goodness-of-

fit (GOF) score that indicates the degree of spatial correspon-

dence between polygons in two different maps, in our case

the AKEVT map and the remote sensing datasets. GOF is a

unitless measure of spatial overlap between map categories:

GOF =
∑

polygons

C

B + C
x

C

A+ C

where A is the map that is being compared, B is the

reference map, and C is the proportion of the reference

category (B) that shares with the tested category (A). The

GOF weighs the presence of the intersecting categories, each

of which might share a small or large spatial intersection with

the category being tested. The GOF score is a unitless metric.

In our case, a high GOF score would represent high spatial

overlap with the clusters (k) from the unsupervised clustering

classifications and the AKEVT map.

We used Mapcurves to identify the best “translation table”

between dataset clusters and vegetation types defined by the

AKEVT map. We take the clusters with the highest GOF score

and relabel the map accordingly. The Mapcurves reclassifies

the remote sensing based unsupervised classification maps

(UCVM) into AKEVT vegetation classes.

When used for training, the key purpose for using unsu-

pervised clustering and Mapcurves method was to evaluate

if updating the AKEVT vegetation classes using this simple

method could increase the accuracies of the CNN models. We

finally evaluate the accuracy scores based on the UCVM map

and the AKEVT map to determine which dataset is appropriate

to train our CNN models.

C. Convolutional Neural Network

Deep learning neural networks, which learn the representa-

tive and discriminative features in a hierarchical manner from

the data, are becoming more efficient at image classification

in the remote sensing community [27]. Convolutional Neural

Networks (CNN) has shown excellent performance in many

computer vision and machine learning problems [28]. CNN

take advantage of the fact that the input consists of images

and they constrain the architecture in a more sensible way. In

particular, unlike a regular Neural Network, the layers of a

CNN have neurons arranged in 3 dimensions: width, height,

depth (i.e., number of channels). CNN has one or more convo-

lutional layers, often followed by one or more fully connected

layers [29]. Conventionally, a full CNN architecture consists

of Convolutional Layer, Pooling Layer, and Fully-Connected

Layer [29]. CNNs have become a popular algorithm in the

satellite remote sensing community [27]. Chen et al., 2014 [30]

applied autoencoders to learn representations (i.e. features) of

hyper-spectral image data in an unsupervised manner. Wu et

al., 2017 [31] used a convolutional recurrent neural network

(CRNN) to learn more discriminative features for hyper-

spectral data classification. Zhang et al., 2017 [32] built a deep

CNN with limited satellite image samples, using a transfer

learning approach by sharing the common image features of

the natural images. However, most of these approaches are

built upon coarse and small datasets, such as Indian Pines

and Kennedy Space Center. Additionally, these methods are

solely built upon a particular dataset and don’t seek multi-

sensor fusion.

We use supervised CNN models throughout the paper,

which maps the input image (xi) over a series of layers

to a probability vector (ŷi) over the different classes. The

typical use of CNN is on classification tasks, where the output

to an image is a single class label, such as the ImageNet

competition [33]. However we would also like to evaluate

pixel-wise labeling using CNNs. We implemented two CNN

approaches using the TensorFlow [34] and Keras framework

[35] in Python: 1) our first approach uses patches of images

as inputs into a CNN architecture, where the entire patch

is predicted as a single vegetation class; and 2) the use of

semantic segmentation, where a class label is assigned to each

pixel. We refer to the first and second approach as the patch-

level and pixel-level approach, respectively.

Both CNNs training processes start with the weights

of all networks randomly initialized, and the initial learn-

ing rate is set to 10−4. We used a batch size of 150

in all experiments, which defines the number of samples



that is going to be propagated through the network. The

sparse_categorical_accuracy metric was used in

Keras using 10% of the data for validation while rest for train-

ing. sparse_categorical_accuracy metric calculates

the mean accuracy rate across all predictions for our multi-

class classification problem. Categorical accuracy metric was

selected in Keras because of the sparse and categorical nature

of the objective function. The accuracy score was computed by

taking the number of correctly predicted samples and dividing

by the total number of samples.

1) Patch-Level CNN Architecture: We decided to test three

different patch sizes of 3×3, 6×6, and 12×12, where each

patch contains 9, 36, and 144 pixels, respectively. Each layer

of the CNN consists of the convolution of the previous layer

output with a set of learned filters, the passing the responses

through a rectified linear function (relu(x) = max(x,0)),

pooling over local neighborhoods, and local contrast operation

that normalizes the responses across feature maps [29], [33].

The top few layers of the network are conventional fully-

connected networks and the final layer is a softmax classifier

[29]. Figure 3 shows our first CNN architecture used in this

study.

2) Pixel-Level CNN Architecture: Semantic segmentation

for images can be defined as the process of partitioning and

classifying the image into meaningful parts, and classify each

part at the pixel level into one of the pre-defined classes.

Previous studies on segmentation break up the images into

patches in order to increase the number of training images

[36]. Larger patches require more max-pooling layers that

reduce the localization accuracy, while small patches allow

the network to see only little context [36]. More recent

approaches [37] proposed a classifier output that takes into

account the features from multiple layers.

Our semantic segmentation CNN model was inspired by

the family of u-net architectures, where low-level feature

maps are combined with higher-level ones, which enables

precise localization [36]. This type of network architecture was

especially designed to effectively solve image segmentation

problems. This architecture allowed for more detail in the

segmentation by using shortcut connections from each layer

[36]. The contracting path consists of the repeated application

of two 3×3 convolutions, each followed by a Rectified Linear

Unit (ReLU) and a 2×2 max pooling operation with stride

2 for downsampling [36]. Every step in the expansive path

consists of an upsampling of the feature map followed by

a 2×2 convolution (up-convolution), a concatenation with

the correspondingly feature map from the contracting path,

and two 3×3 convolutions, each followed by a ReLU [36].

The number of feature channels during the downsampling

and upsampling stayed the same at 64. At the final layer a

1×1 convolution is used to map each 64-component feature

vector to the vegetation classes using the softmax function.

Figure 4 shows the network architecture for the pixel-level

CNN approach.

IV. RESULTS AND DISCUSSION

1) Unsupervised Classification based Vegetation Map
(UCVM): Unsupervised k-means clustering algorithm was

used to identify patterns of vegetation using remote sensing

data set. Top three dominant principal components from re-

mote sensing data set (Table I) were classified at varying

levels of division (k = 10, 25, 50). While classifying data

among fewer number of clusters (k) tends to lump vegetation

classes together, using larger number of cluster may define

clusters with small differences in remote sensing signatures

across vegetation types. For that reason, we conducted our

unsupervised classification at varying levels of division from

small to large. Mapcurves however is capable of identifying

small difference between categories and eliminating them by

reclassifying the similar categories as one.

We applied Mapcurves to add labels to the unsuper-

vised classifications, identify unique vegetation classes while

collapsing similar ones. While the Mapcurves classification

method was able to identify unique vegetation types, it also

identified where outliers or noisy data could exist within

the AKEVT map. Figure 5 shows an example of using the

Mapcurves method to generate vegetation map using unsu-

pervised k-means clustering. Figure 5(c) shows the re-labeled

vegetation map (UCVM) generated from k=25 clustering map

(Figure 5(a) )using data set D14 (EO-1, Landsat 8 OLI, ALOS-

1 PALSAR, SPOT-5, IfSAR), showing large differences from

the original AKEVT map (i.e., accuracy of 0.51) (Figure 5(b)).

Table IV shows the accuracy of unsupervised clustering based

vegetation map using Mapcurves.

We performed the analysis at both 5 m and 12.5 m reso-

lutions. Increasing the spatial resolution from 5 m to 12.5 m

did not increase the accuracy substantially. This could be due

to the fact that the AKEVT map was only available at 30 m

resolution. Cases using the hyper-spectral datasets displayed

the best accuracies (D1–D7 and D14), with unsupervised clas-

sification at k = 25 and k = 50 levels of division performing

the best. After assessing the accuracy scores, we used the D4

and D14 for 5 m and 12.5 m datasets, respectively. These

datasets were used in addition to AKEVT maps to train our

CNN models.

A. Patch-Level CNN Approach

We developed patch-level CNN models for patch sizes of

6×6, 12×12, and 16×16. Models were trained using AKEVT

and UCVM data sets. Table V shows the accuracy values

for our patch-level CNN models corresponding to the image

patch (width and height), resolution, and training data set

used (i.e., AKEVT and UCVM). The CNN models trained

using AKEVT had accuracies ranging from 52% to 68%. The

hyper-spectral datasets performed the best with the AKEVT

labels, ranging from 59% to 68% accurate, with patch size of

6×6 and 12×12 achieving the highest scores. Increasing the

accuracy from 12.5 m to 5 m seems to increase the accuracy

for certain datasets and patch size. For example, for D14 we

saw an increase of 10% when increasing the spatial resolution

to 5 m. D11 (ALOS-1 PALSAR, IfSAR) performed poorly
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Fig. 3. Example architecture of a seven layer patch-based CNN model. A 12 by 12 crop of an image (with 200 bands) is presented as the input. This is
convolved with 64 different 1st layer filters, with a kernel size of 5×5, using pooling with stride 2. Similar operations are repeated in the following layers.
The last two layers are fully connected, taking features from the top convolutional layer as inputs. The final layer is a softmax function, corresponding to the
number of classes.
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Fig. 4. An example of the u-net pixel-based architecture from taking a 32×32
pixel patch with 200 bands. The architecture has a series of convolutional
and max pooling layers when downsampling. We then perform upsampling
and feature concatenating, which means this process uses information from
the previous layers. There is a constant number of 64 filters throughout the
network. The final output feature maps are fed to a softmax classifier for
pixel-wise classification.

TABLE IV
ACCURACY VALUES FOR THE VEGETATION MAPS (UCVM) PRODUCED BY

THE Mapcurves METHOD USING UNSUPERVISED CLASSIFICATION AT

DIFFERENT LEVELS (k) AT 5 M AND 12.5 M RESOLUTION, WITH CASES

WITH BEST SCORES INDICATED BY BOLD FONT.

Case
k=10 k=25 k=50

5 m 12.5 m 5 m 12.5 m 5 m 12.5 m
D1 0.47 0.46 0.50 0.51 0.54 0.53
D2 0.47 0.46 0.50 0.51 0.54 0.54
D3 0.47 0.46 0.50 0.51 0.54 0.53
D4 0.47 0.46 0.52 0.52 0.55 0.54
D5 0.46 0.46 0.50 0.51 0.54 0.54
D6 0.47 0.45 0.49 0.52 0.53 0.54
D7 0.47 0.46 0.51 0.51 0.54 0.54
D8 0.44 0.45 0.47 0.47 0.48 0.48
D9 0.44 0.44 0.46 0.46 0.47 0.46
D10 0.45 0.45 0.47 0.47 0.48 0.50
D11 0.44 0.44 0.44 0.44 0.45 0.45
D12 0.45 0.44 0.48 0.46 0.50 0.47
D13 0.44 0.44 0.48 0.48 0.49 0.50
D14 0.47 0.46 0.50 0.51 0.54 0.55

the when using AKEVT for training, with accuracy values

around 52%. This could be due to SAR datasets generally

have high variations due to speckle or to different types of

scattering mechanisms [38]. However, several multi-sensor

sets that included SAR didn’t see drop in performance. For

TABLE V
ACCURACY OF THE PATCH-LEVEL CNNS USING VARYING PATCH SIZES

(I.E., 6×6, 12×12, AND 16×16) AT 5 M AND 12.5 M RESOLUTION USING

AKEVT AND UCVM MAPS FOR TRAINING.

AKEVT UCVM
6×6 12×12 16×16 6×6 12×12 16×16

D
1 5 m 0.64 0.65 0.63 0.94 0.93 0.91

12.5 m 0.63 0.63 0.59 0.95 0.93 0.87

D
2 5 m 0.66 0.66 0.66 0.94 0.92 0.91

12.5 m 0.65 0.64 0.59 0.95 0.92 0.85
D

3 5 m 0.64 0.64 0.64 0.94 0.93 0.90
12.5 m 0.64 0.62 0.61 0.96 0.92 0.88

D
4 5 m 0.66 0.67 0.66 0.95 0.93 0.91

12.5 m 0.66 0.64 0.61 0.95 0.92 0.87

D
5 5 m 0.67 0.67 0.66 0.95 0.93 0.91

12.5 m 0.67 0.64 0.63 0.95 0.92 0.88

D
6 5 m 0.66 0.67 0.66 0.94 0.92 0.90

12.5 m 0.66 0.64 0.61 0.95 0.92 0.87

D
7 5 m 0.67 0.68 0.67 0.95 0.93 0.91

12.5 m 0.67 0.66 0.59 0.95 0.93 0.86

D
8 5 m 0.63 0.64 0.65 0.78 0.77 0.78

12.5 m 0.64 0.62 0.59 0.82 0.80 0.80

D
9 5 m 0.63 0.64 0.63 0.78 0.77 0.77

12.5 m 0.65 0.63 0.59 0.83 0.82 0.80

D
1
0 5 m 0.66 0.67 0.67 0.80 0.79 0.78
12.5 m 0.67 0.67 0.62 0.83 0.81 0.81

D
1
1 5 m 0.52 0.53 0.53 0.67 0.66 0.67

12.5 m 0.53 0.52 0.52 0.72 0.74 0.73

D
1
2 5 m 0.62 0.63 0.63 0.76 0.76 0.76

12.5 m 0.64 0.64 0.56 0.81 0.80 0.78

D
1
3 5 m 0.62 0.63 0.64 0.76 0.75 0.76

12.5 m 0.64 0.64 0.56 0.81 0.80 0.78

D
1
4 5 m 0.67 0.68 0.67 0.96 0.93 0.91

12.5 m 0.67 0.65 0.57 0.95 0.93 0.86

example, D12 (ALOS-1 PALSAR, SPOT-5, IfSAR) and D13

(SPOT-5, IfSAR) performed the same using the AKEVT or

UCVM data sets for training.

The UCVM vegetation map increased the accuracy for

all datasets by a large margin (Table V) when used for

training. The highest scores were achieved for the hyper-

spectral datasets, having 96% accuracy for D3 (EO-1, ALOS-1

PALSAR, IfSAR) for the 12.5 m dataset. The highest score

from the 5 m datasets was achieved using D14 dataset with a

96% accuracy. The Landsat 8, SPOT-5, and SAR datasets (D8,

D9, D10, D11, D12, and D13) perform better when trained

using the AKEVT map with an accuracy range of 66% to
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Fig. 5. (a) Unsupervised classification map (k=25) from using D14 (EO-1, Landsat 8 OLI, ALOS-1 PALSAR, SPOT-5, IfSAR); (b) The original AKEVT
vegetation maps; (c) UCVM vegetation map generated using Mapcurves method; (d) and EO-1 Hyperion false color image.

83%, however this is 10% lower than models developed using

the hyper-spectral datasets.

Figure 6 shows the accuracy scores for D14 at 5 m reso-

lution when increasing the epoch to 100 when using AKEVT

and UCVM vegetation maps for training. When trained using

AKEVT, each case showed overfitting after certain epochs.

Figure 6(a) shows the model overfitting after epoch 45, indi-

cating that the training dataset was getting substantially higher

accuracies than the test dataset. However, when trained using

UCVM (Figure 6(b)) the accuracy of the test dataset (i.e.,

10% of the data) was always higher than the training dataset,

meaning that model overfitting was not happening and the

CNN architecture was performing well.

Patch size 6×6 performed the best for the UCVM training

data set, however the drop in performance was lower when

increasing the resolution to 5 m. We believe that small patch

sizes work better since a 6×6 patch may contain many

vegetation classes, but the number of samples used in the

model training is higher. However, in the patch-level CNN ap-

proach, each image patch is input to the model independently,

which means that only the “intra-patch” context information

is considered [39]. The correlations between patches are not

taken into account, which might lead to gaps between patches

[39]. However, this may only apply to objects with strong

continuity, such as urban features, which is not present in

our imagery. Additionally, other patch-level CNN architectures

may perform better with large patch sizes (i.e., 32×32) [40].

B. Pixel-Level CNN Approach

Table VI shows the accuracy values for our pixel-level CNN

models corresponding to the image patch width and height,

resolution, and training vegetation map used (i.e., AKEVT

and UCVM) . The CNN models developed using the AKEVT

labels had accuracies ranging from 54% to 68%. D11 (ALOS-

1 PALSAR, IfSAR) performed the worst with the AKEVT

labels, similar to the patch-level CNN architecture. D7 (EO-1,

SPOT-5, Landsat 8 OLI, IfSAR), D10 (Landsat 8 OLI, SPOT-

5, IfSAR), and D14 (EO-1, Landsat 8 OLI, ALOS-1 PALSAR,

(a) The model accuracy for D14 by varying the epoch to 100 using the
AKEVT for training and patch size of 6×6.

(b) The model accuracy for D14 using the UCVM for training and
varying the epoch to 100.

Fig. 6. CNN Model accuracies for D14. The green line represents the
validation set (10% of data) and the blue line represents the training dataset
(90% of data).



TABLE VI
ACCURACY VALUES FOR THE AKEVT AND MAPCURVES VEGETATION

MAPS PRODUCED BY U-NET VARYING BY PATCH SIZE (I.E., 16, 32, 64) AT

5 M AND 12.5 M RESOLUTION.

AKEVT Mapcurves
16 32 64 16 32 64

D
1 5 m 0.64 0.62 0.61 0.95 0.92 0.89

12.5 m 0.61 0.59 0.61 0.94 0.90 0.86

D
2 5 m 0.66 0.64 0.61 0.94 0.92 0.91

12.5 m 0.62 0.60 0.61 0.94 0.92 0.87

D
3 5 m 0.64 0.63 0.62 0.94 0.93 0.89

12.5 m 0.62 0.60 0.60 0.94 0.90 0.86

D
4 5 m 0.67 0.65 0.63 0.97 0.93 0.89

12.5 m 0.64 0.60 0.62 0.94 0.89 0.86

D
5 5 m 0.67 0.65 0.62 0.97 0.94 0.89

12.5 m 0.64 0.62 0.62 0.95 0.90 0.86

D
6 5 m 0.66 0.65 0.63 0.94 0.92 0.90

12.5 m 0.64 0.60 0.63 0.94 0.91 0.87

D
7 5 m 0.68 0.65 0.62 0.95 0.93 0.91

12.5 m 0.64 0.62 0.62 0.94 0.91 0.86

D
8 5 m 0.64 0.62 0.61 0.76 0.74 0.74

12.5 m 0.61 0.60 0.56 0.80 0.79 0.80

D
9 5 m 0.65 0.65 0.65 0.76 0.75 0.75

12.5 m 0.65 0.62 0.63 0.82 0.79 0.80

D
1
0 5 m 0.68 0.66 0.66 0.78 0.76 0.76

12.5 m 0.65 0.64 0.65 0.83 0.80 0.82

D
1
1 5 m 0.55 0.55 0.56 0.67 0.66 0.68

12.5 m 0.55 0.54 0.55 0.74 0.71 0.74

D
1
2 5 m 0.66 0.65 0.63 0.76 0.75 0.74

12.5 m 0.64 0.63 0.63 0.81 0.79 0.81

D
1
3 5 m 0.65 0.65 0.64 0.76 0.73 0.75

12.5 m 0.65 0.62 0.63 0.81 0.78 0.81

D
1
4 5 m 0.68 0.66 0.64 0.96 0.93 0.91

12.5 m 0.64 0.62 0.63 0.94 0.90 0.87

SPOT-5, IfSAR) performed the best with the AKEVT at 5 m

and 16×16 patch size. Increasing the resolution and having

a patch size of 16×16 worked best for our segmentation

architecture. The smaller patch size worked best, due to the

increase number of samples used for training the network.

However, larger patch sizes may work best for features with

strong continuity [39].

The UCVM vegetation map increased the accuracy for all

datasets by a large margin (Table VI), similar to the patch-

level CNN model. The highest scores were achieved from the

hyper-spectral datasets, having 97% accuracy for D4 (EO-1,

SPOT-5, IfSAR) and D5 (EO-1, ALOS-1 PALSAR, SPOT-5,

IfSAR) for the 5 m dataset. The highest score from the 12.5 m

datasets were the hyper-spectral datasets (D1 – D7 and D14)

with a 94%-95% accuracy. The SAR dataset (D11) performed

the worst with 66%-67% accuracy. The Landsat, SAR, and

SPOT datasets (D8, D9, D10, D12, and D13) had accuracies

from 0.77% to 0.83%.

C. CNN Architectures

Increasing the accuracy from 12.5 m to 5 m didn’t have a

significant impact on the accuracies. This is probably due to

the nearest-neighbor re-sampling method used in this study.

Sophisticated re-sampling methods could be performed for a

more rigorous analysis. For example, deep learning methods

can perform image super-resolution [41]. Additionally, other

(a) The model accuracy for D5 by varying the epoch to 100 using the
AKEVT for training and patch size of 16×16.

(b) The model accuracy for D5 using the Mapcurves for training and
varying the epoch to 100.

Fig. 7. Model accuracies for D5. The green line represents the validation set
(10% of data) and the blue line represents the training dataset (90% of data).

image enhancement methods could be performed that is spe-

cific to hyper-spectral imagery [42].

The pixel-level segmentation architecture consists of a con-

tracting path and a symmetric expanding path that capture con-

text and localization. This architecture performs well with very

little training data available, by applying elastic deformations

to the available training images [36]. This allows the network

to learn invariance to such deformations, without the need

to see these transformations in the annotated image corpus

[36]. However, other segmentation algorithms could be looked

into for comparisons. For example, a segmentation framework

specifically tailored to remote sensing images could be applied

[43]. Looking into other activation functions, such as the

exponential linear units (ELUs), could provide performance

increase [43]. Additionally, looking more closely into the

hyperparameters, (e.g., learning rate, loss function, weight

initialization) could help optimize our CNN approaches.

Smaller patch sizes helped for both CNN models, most

likely due to the structure and shape of the vegetation classes.



We believe that the number of training examples didn’t sig-

nificantly impact our model accuracies, since we didn’t see

a high performance gain when increasing the resolution to

5 m. Better image enhancement methods may be necessary

(e.g., super-resolution) in order to verify that small patch sizes

work better for satellite remote sensing, especially in the case

of Arctic vegetation mapping. Patch aggregation approaches

could also be looked into that better utilize the interactions of

patch features, such as constructing multiple, shared columns

in the neural network and feeding multiple patches to each of

the columns [44].

V. CONCLUSION

We implemented an CNN approach to develop Arctic veg-

etation map using remote sensing data sets for a range of

sensors and platforms. We evaluated two CNN architectures, in

one approach we break up the images into small patches (e.g.,

6×6) and estimate the vegetation class for entire patch and

the other approach uses semantic segmentation and pixel-wise

labeling. Both model approaches had similar accuracy metrics

for all cases. Unsupervised clustering and the Mapcurves
method based vegetation map (UCVM) helped improve the

accuracy scores compared to using the AKEVT map alone. We

believe the unsupervised clustering and the Mapcurves method

help initially reduce the noise associated with the AKEVT

map, since all the Mapcurves scores were generally low (45-

50%).

We explored and demonstrated the potential of multi-sensor

remote sensing fusion for mapping vegetation in data sparse

region of Arctic. Among data sets considered in the study,

hyper-spectral remote sensing datasets provided highest data

content to our CNN models, indicating that the spectral

signatures of vegetation with high bandwidths are important

for predictability of vegetation. SAR datasets performed the

worst, however further evaluation of SAR datasets is needed.

The Landsat and SPOT-5 datasets demonstrated improved

predictability when using the UCVM for training and were

important data set for our analysis. We believe the CNN

architectures performed in this study provides an accurate

method for Arctic vegetation mapping. However, we identified

several different approaches that could improve our vegetation

maps. Methods developed in this study helps enhance and

reduce noise in publicly available vegetation maps, utilizing

high-resolution datasets and open-source toolkits (e.g., Keras

and Tensorflow). Approaches like these are needed for to pro-

vide accurate and high-resolution datasets needed for current

modeling projects in the Arctic.
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