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1 Abstract

2 In numerical modeling of geological carbon sequestration (GCS), uncertainty 

3 quantification (UQ) is usually needed to evaluate the impact of uncertain model 

4 parameters on model predictions caused by limited measurements and incomplete 

5 knowledge of the parameters. However, UQ for GCS is computationally expensive 

6 due to the large ensemble of complex and lengthy model simulations. In this study, 

7 we propose an adaptive Kriging method to build a fast-to-evaluate surrogate of the 

8 GCS model to alleviate the heavy computational burden. The surrogate model is 

9 efficiently generated using a Taylor expansion-based adaptive experimental design 

10 algorithm that combines a distance-based exploration criterion and an exploitation 

11 criterion to adaptively search for informative training samples. In addition, we 

12 analyze the uncertainty brought by substituting the surrogate for the actual simulation 

13 model and explore its influence on UQ results. Our method is demonstrated in a 

14 synthetic GCS model and its performance is evaluated in comparison with the 

15 conventional Monte Carlo sampling. Results indicate that our method can greatly 

16 improve the computational efficiency in UQ and provide an effective and reliable UQ 

17 solution with the consideration of surrogate uncertainty. 

18 Key words: geological carbon sequestration, surrogate modeling, adaptive 

19 experimental design, Kriging, uncertainty quantification.
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20 1. Introduction 

21 Geological carbon sequestration (GCS) has been proposed as one of the most 

22 effective means to rapidly and greatly reduce the greenhouse gas emissions into the 

23 atmosphere (IPCC, 2005). In GCS, CO2 is injected under supercritical conditions into 

24 the deep subsurface formations including depleted gas or oil reservoirs, unmineable 

25 coal beds, and saline aquifers (Holloway, 1997; IPCC, 2005). Substantial efforts have 

26 been spent to understand the subsurface processes involved in CO2 sequestration 

27 (Schnaar and Digiulio, 2009; Harvey et al., 2012; Bandilla et al., 2015; De Silva et al., 

28 2015; Jones et al., 2015; Wang et al., 2015). Among these efforts, numerical modeling 

29 is usually used for predication of CO2 migration and evolution, evaluation of potential 

30 storage capacity, and design of injection strategies (Audigane et al., 2007; Schnaar 

31 and Digiulio, 2009). Model predictions are always associated with uncertainty due to 

32 limited measurements and incomplete knowledge of model parameters (Tartakovsky, 

33 2013; Zhang et al., 2013; Zhang and Sahinidis, 2013; Shi et al., 2014; Kitanidis, 2015; 

34 Lu et al., 2016). Thus, uncertainty quantification (UQ) is required for facilitating 

35 science-informed decision making. Monte Carlo (MC) methods are widely used for 

36 UQ because they have no restriction in application to nonlinear models and their 

37 convergence is barely dependent on the problems’ stochastic dimensionality (Ballio 

38 and Guadagnini, 2004, Lu et. al., 2018). However, the MC approaches involve 

39 repeated sampling, and a large ensemble of model simulations is usually required to 

40 ensure approximation accuracy, which makes the MC techniques computationally 

41 unaffordable or even infeasible for large-scale multi-phase flow models of CO2 

42 sequestration. 

43 One solution for overcoming the computational burden is to build a statistical 

44 surrogate model for the simulation model. In this method, an approximation that maps 

45 the input-output relationship of the actual simulation model is constructed using a 

46 surrogate modeling technique based on a limited number of model evaluations, also 

47 called training samples. The surrogate model, which is usually computationally cheap, 
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48 is then used as a full replacement of the actual model in the uncertainty analysis. A 

49 variety of surrogate modeling techniques have been developed, including Kriging 

50 (Sacks et al., 1989), which is also known as Gaussian process (Rasmussen and 

51 Williams, 2006), neural networks (Demuth et al., 2014), polynomial chaos expansion 

52 (Sudret, 2008), and radial basis function (Buhmann, 2000). The surrogate methods 

53 have been widely used in hydrology (e.g., Crevillén-García et al., 2017; Espinet et al., 

54 2013; Espinet and Shoemaker, 2013; Ju et al., 2018; Sun et al., 2018; Tian et al., 

55 2017; Xu et al., 2017; Zeng et al., 2015, 2018; Zhang et al., 2013). More details on 

56 surrogate modeling can refer to review papers by Asher et al. (2015) and Razavi et al. 

57 (2012).

58 Depending on the purpose of surrogate modeling, the surrogates can be generally 

59 categorized as local surrogate models and global surrogate models (Eason and 

60 Cremaschi, 2014; Mo et al., 2017). The local surrogate models pursue to accurately 

61 approximate the actual model in certain interesting regions solely, e.g., the regions 

62 with the smallest objective functions (Espinet et al., 2013; Espinet and Shoemaker, 

63 2013; Jones et al., 1998; Ju et al., 2018; Zhang et al. 2016) or where the parameters 

64 have high probability (Bliznyuk et al., 2008; Ju et al., 2018; Zhang et al., 2016). 

65 Whereas, a global surrogate model is devoted to provide an accurate approximation of 

66 the actual model over the entire parameter space. In comprehensive UQ where low 

67 probability regions matter (Crevillén-García et al., 2017; Mo et al., 2017; Pau et al., 

68 2013; Tian et al., 2017; Zhang & Sahinidis, 2013), a global surrogate model which 

69 provides a globally accurate approximation is usually used. 

70 Two requirements are needed to build an efficient and effective global surrogate 

71 model in UQ. The first requirement is to use the least amount of training data to build 

72 the most accurate surrogates. Construction of an accurate surrogate model requires 

73 evaluating the simulation model on the parameter samples drawn from the parameter 

74 space. Each sample collection involves one model evaluation, thus an efficient 

75 experimental design strategy is desired to locate the most informative samples so as to 
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76 reduce the computational costs in the surrogate construction. In this sense, an efficient 

77 experimental design should satisfy two criteria (Liu et al., 2018; Mo et al., 2017): (1) 

78 the exploration criterion, i.e., the samples should have a good coverage of the entire 

79 parameter space in order to reveal the main profile of the response surface of the 

80 actual model; and (2) the exploitation criterion, i.e., more samples should be 

81 distributed in the difficult-to-approximate nonlinear regions to reduce the 

82 approximation errors. Satisfying the exploration and exploitation criteria is vitally 

83 important in surrogate modeling for hydrological models, because the response 

84 surface of hydrological models are generally irregular that display a complex 

85 combination of flat regions and nonlinear regions (Shahsavani and Grimvall, 2011; 

86 Pau et al., 2013; Zhan et al., 2013; Zhang and Sahinidis, 2013; Jordan et al., 2015). 

87 The conventional one-shot space-filling design strategies (such as Latin hypercube 

88 sampling (LHS), McKay et al., 1979) that generate samples in a single stage satisfy 

89 the exploration criterion solely. Such approaches could cause oversampling in smooth 

90 regions and undersampling in nonlinear areas. An adaptive experimental design 

91 scheme that can adaptively place more samples in the nonlinear regions is desired to 

92 improve the computational efficiency in building accurate surrogate models 

93 (Shahsavani and Grimvall, 2011; Eason and Cremaschi, 2014; van der Herten, 2015; 

94 Mo et al., 2017; Liu et al., 2018). 

95 The second requirement is to analyze the uncertainty in the UQ results brought 

96 by the surrogate. Surrogate models are approximation to the actual simulation models 

97 with errors. The approximation errors result in surrogate uncertainty in the UQ 

98 analysis and sometimes due to lack of training data, the surrogate uncertainty can be 

99 large and significantly affect the effectiveness of UQ analysis. Thus, it is important to 

100 analyze the surrogate uncertainty and explore its influence on and contribution to the 

101 UQ results, so as to improve the results explainability and reliability (Bilionis and 

102 Zabaras, 2016; Crevillén-García et al., 2017; Tian et al., 2017; Zhu and Zabaras, 

103 2018). 
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104 In this study, we propose an efficient adaptive Kriging surrogate method for UQ. 

105 In this method, we use a Taylor expansion-based adaptive design (TEAD) strategy to 

106 locate informative samples so as to improve surrogate efficiency and use Kriging 

107 method to explicitly quantify the surrogate uncertainty so as to enhance the surrogate 

108 reliability. The TEAD strategy proposed in Mo et al. (2017)  adaptively generates 

109 training samples by balancing exploration and exploitation. TEAD uses a hybrid 

110 score function to search for informative training samples. The hybrid function 

111 combines a distance-based exploration criterion for space exploration and a Taylor 

112 expansion-based exploitation criterion for sample densification. The exploration 

113 criterion promotes to add new samples to fill the sample-sparse areas, while the 

114 exploitation criterion promotes to densify the nonlinear regions with more samples. 

115 The two criteria are balanced by a dynamical weighting scheme to avoid 

116 oversampling and undersampling. TEAD has been demonstrated to be an efficient 

117 experiment design method for surrogate modeling in comparison with the 

118 space-filling and some widely used adaptive design methods (Mo et al., 2017). On 

119 the other hand, Kriging methods (Sacks et al., 1989) have been widely used in 

120 subsurface flow problems to build surrogate models (e.g., Crevillén-García et al., 

121 2017; Ju et al., 2018; Sun et al., 2018; Tian et al., 2017; Xu et al., 2017; Zhang et al. 

122 2016). They have been shown that can not only build an accurate surrogate but also 

123 quantify the surrogate uncertainty through calculating the prediction variance at 

124 unsampled points. 

125 Surrogate methods have been applied to solve the UQ problem in GCS modeling 

126 (e.g., Ashraf et al., 2013; Crevillén-García et al., 2017; Hou et al., 2014; Jia et al., 

127 2016; Jordan et al., 2015; Oladyshkin et al., 2011; Pan et al., 2016; Pau et al., 2014; 

128 Sun et al., 2013; 2018; Tian et al., 2017; Zhang and Sahinidis, 2013). However, 

129 previous studies either used inefficient surrogate methods with space-filling 

130 experimental designs for training sample search or did not consider surrogate 

131 uncertainty. For example, Crevillén-García et al. (2017) and Tian et al. (2017) used 
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132 inefficient space-filling designs to generate training samples, although they used 

133 Kriging method to quantify the surrogate uncertainty. Hou et al. (2014) and Pau et al. 

134 (2014) did not consider surrogate uncertainty although they employed the adaptive 

135 design strategy for surrogate construction. In realization of the gaps in the previous 

136 studies, we, for the first time, apply the adaptive design strategy for globally accurate 

137 surrogate construction and analyze the surrogate uncertainty, so as to improve both 

138 the surrogate efficiency and reliability for UQ of GCS modeling. The proposed 

139 method is tested and demonstrated using a synthetic GCS model. The computational 

140 efficiency and approximation accuracy of our method is evaluated in comparison with 

141 the conventional MC sampling without using surrogates. 

142 The paper is organized as follows. In Section 2, we describe the Kriging 

143 surrogate method and introduce the TEAD algorithm; besides, we analyze how the 

144 surrogate uncertainty is accounted and affects the UQ results. In Section 3, we apply 

145 the adaptive TEAD-based surrogate method to the GCS simulation and discuss the 

146 results. The major conclusions are presented in Section 4. 

147 2. Methodology 

148 The TEAD experimental design algorithm is independent of the surrogate 

149 techniques; here we combine TEAD with Kriging method to build the surrogate 

150 model because the Kriging method can provide an estimation of prediction variance, 

151 enabling our adaptive TEAD-based surrogate method to quantify the surrogate 

152 uncertainty. In this section, we first introduce the Kriging surrogate method and the 

153 TEAD experimental design. We then describe how the surrogate uncertainty is 

154 quantified. More details on TEAD can refer to Mo et al. (2017). 

155 2.1 Kriging surrogate method

156 A Kriging model predicts the response value at an un-sampled point  as the x

157 sum of a regression model and a Gaussian process as follows (Sacks et al., 1989) 

158
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159  (2)T( ) ( ) ( ),s Z x g x β x

160 where  is a set of regression basis functions and  T

1( ) ( ), , ( )pg gg x x xK

161  are the corresponding regression coefficients. In general,   T

1, , p β K T( )g x β

162 is taken as either a constant or low-order polynomials. The random process  is ( )Z 

163 assumed be a Gaussian process with zero mean and covariance 

164  (3)2cov[ ( ), ( ')] ( , '),Z Z Rx x x x

165 that denotes the covariance between  and , where  is the process ( )Z x ( ')Z x 2

166 variance and  is the correlation function. ( , ')R x x

167 Given a set of N design points , i.e. the input samples  and 𝒟  1, , NS x xK

168 their corresponding responses obtained from forward model  1( ), , ( )Nf ff x xK

169 executions, the Kriging predictor can be written as 

170  (4)T * T 1 *( ) ( ) ( ) ( ),s   x g x β r x f βR G

171 where  denotes the correlation vector,  is the  1( ) ( , ), , ( , ) T
NR Rr θ x x x xK *β

172 generalized least estimation of  and is given byβ

173  (5)* T 1 1 T 1( ) ,   G R G G Rβ f

174 where G is a  matrix with , R is a  correlation matrix with N p ( )ij j iG g x N N

175 . The prediction variance at a point  is given by( , )ij i jR R x x x

176

177   12 2 1 1 1 1( ) 1 ( ) ( ) ( ) ( ) ( ) ( ) ,
TT T T T 

             x r x r x r x g x r x g xR G R G R G G R

178  (6)

179 where .    2 * 1 *1 T

N
   f β f βG R G
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180 Various software packages for the Kriging model are available as introduced in 

181 Erickson et al. (2018). In this paper, the DACE toolbox developed by Lophaven et al. 

182 (2002) is used for construction of the Kriging surrogate models, and the first-order 

183 polynomial regression model and the frequently used Gaussian correlation function 

184 are chosen.

185 2.2 TEAD algorithm for adaptive experimental design

186 To construct an accurate surrogate model using the least amount of actual model 

187 runs, we employ an adaptive experimental design method TEAD to generate the 

188 training data  for surrogate construction. The TEAD experimental design algorithm 𝒟

189 (Mo et al., 2017) uses a score function to guide the collection of informative samples 

190 for surrogate construction. The score function is formulated as a combination of a 

191 distance measure to identify the sample-sparse regions (i.e., exploration) and a 

192 nonlinearity measure to find the nonlinear areas (i.e., exploitation). More specifically, 

193 the distance measure

194  (7)
t

min t 2
( ) min ,D


 

x S
x x x

195 quantifies the smallest Euclidean distance of a candidate point  from the 𝒙 ∈ 𝚪 

196 sample  in the existing training sample set . tx S

197 The nonlinearity measure is defined based on the high-order remainders of the 

198 Taylor expansion, as represented by

199  (8)( ) ( ) ( ; ) ,R s t x x x a

200 where  is the Kriging surrogate prediction at  as defined in Eq. (3) and ( )s x x

201  is the first-order Taylor expansion of  expanded at , which can ( ; )t x a ( )s x a S

202 be represented by 

203  (9)T( ; ) ( ) ( ) ( ),t s s   x a a a x a

204 where  is the sample point having the smallest distance to , and  is a S x ( )s a

205 the gradient of s(x) at . The intuition behind using the high-order remainders of a
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206 Taylor expansion to quantify the function nonlinearity is that the approximation 

207 accuracy of the first-order Taylor expansion decreases as the nonlinearity increases 

208 (Mo et al., 2017). 

209 Note that  is the Taylor remainders of  that is only an ( )R x ( )s x

210 approximation to the exact Taylor remainders of , so its performance in ( )f x

211 identifying nonlinear regions will be affected by the approximation accuracy of  ( )s x

212 for . In TEAD, this issues is addressed by assigning a weight that is dependent ( )f x

213 on  to  in the final hybrid score function. More specifically, the score min ( )D x ( )R x

214 function is a combination of the normalized exploration and exploitation criteria 

215 defined above together with a dynamical weight , i.e.,

216  (10)min

min

( ) ( )( ) ( ) .
max ( ) max ( )

D RJ
D R


 

 
x x

x xx x
x xΓ Γ

217 The  is defined by( ) x

218  (11)min

max

( )( ) 1 [0,  1],D
L

   
xx

219 where  denotes the maximum distance of any two points in the parameter space. maxL

220 The intuition behind this weighting scheme is that the accuracy of  decreases as ( )R x

221 the distance to the expansion point (i.e., the  in Eq. (6)) increases, in this min ( )D x

222 case less weight should be assigned to the nonlinearity measure. This adaptive 

223 weighting strategy turns out to be an effective solution for the aforementioned issue 

224 and makes a good compromise between exploration and exploitation (Mo et al., 

225 2017). In the search of new points, the candidates with large exploration and 

226 exploitation score values are treated as the potential points that sit in sample-sparse 

227 and nonlinear regions, thus are more likely chosen as new samples. 

228 Apart from the score function for informative training sample search, TEAD also 

229 provides a stopping criterion for automatic termination of the search process when 

230 desired approximation accuracy is achieved. The stopping criterion uses an error 
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231 indicator based on the root mean squared error (RMSE) evaluated on the newly 

232 selected points at one iteration to terminate the design process. The error indicator is 

233 written as

234  (12)
new 2( ) ( )

new new new
1new

1RMSE ( ) ( ) ,
N

i i

i
f s

N 

    x x

235 where  are the newly selected points, f and s denote the actual ( )
new new,  1,  ,  ,i i Nx K

236 and surrogate model, respectively. The  is calculated at each iteration newRMSE

237 before updating the surrogate model. As the potential new points suggested by the 

238 score function generally locate in un-sampled and/or highly nonlinear regions, where 

239 the approximation errors are generally larger than other points in the parameter space, 

240 using  as the error indicator can ensure satisfaction of the desired RMSE newRMSE

241 accuracy as shown in Mo et al. (2017). 

242 Putting the ingredients introduced above together, the procedure of TEAD-based 

243 adaptive surrogate modeling is illustrated in Fig. 1. Briefly speaking, it includes the 

244 following five steps. First, the algorithm starts with generating a set of initial samples 

245 and evaluating the forward model at these samples in Step (1). In Step (2) the 

246 surrogate model is constructed based on the samples in the current training data set. 

247 Then in Step (3) we select new samples from a set of candidate points according to 

248 their score values defined in Eq. (9). Next in Step (4) we evaluate the newly selected 

249 samples in the forward model. If the stopping criterion is not met in Step (5), we 

250 repeat above Steps (2-5) to add new samples and update the surrogate model till the 

251 stopping criterion is met. 
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252
253 Fig. 1 Procedure of the TEAD-based adaptive global surrogate modeling. 

254 Here we consider a simple two-dimensional analytical function:

255  (13)2 2 2
1 1 2( ) exp( ),  [ 2,  4] .f x x x    x x

256 to illustrate TEAD’s performance in collecting informative training samples. This 

257 function is nonlinear in the lower left quarter of the domain but rather smooth in the 

258 remaining regions as shown in labeled black isolines in Fig. 2. We build two surrogate 

259 models for this function: one is built using 5×5 uniformly distributed training 

260 samples; the other is built using 77 training samples generated by TEAD. The former 

261 is used to illustrate that the large approximation errors are easy to occur in highly 

262 nonlinear regions as shown Fig. 2(a); thus more samples should be placed in these 

263 regions to greatly improve the approximation accuracy. The latter is used to illustrate 

264 that TEAD is able to successfully identify and densify those poorly approximated 

265 regions. Starting with five initial samples (four samples at the corners and one in the 

266 center), Fig. 2(b) shows that TEAD successfully identifies the nonlinear regions and 

267 densifies them with more samples, greatly reducing the approximation errors. 
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268
269 Fig. 2 Approximation errors of surrogate models for an analytical function (depicted 
270 with labeled isolines) based on (a) uniformly distributed 5×5 and (b) 77 training 
271 samples (white dots) collected by TEAD, respectively.

272 2.3 Quantification of uncertainty in surrogate-based UQ results 

273 In surrogate-based UQ, the surrogate model  is used as a full replacement ( )s x

274 of the actual model . The cumulative distribution function (CDF) of quantity of ( )f x

275 interest (QoI)  is approximated based on  as follows:Q ( )s x

276  (14)( ) ( ) I[ ( ) | ] ( ),
d

F q P Q q s q dp    x x
R

D

277 where  is the training sample set of the surrogate model generated by 𝒟 = [𝑺T,𝒇T]

278 TEAD,  is the probability density function of the random input vector , ( )p  𝒙 ∈ ℝ𝑑

279 and  denotes the indicator function. The MC methods are commonly used to I[·]

280 obtain the numerical approximation of .𝐹( ⋅ )

281 In surrogate modeling, the substitution of surrogate model for the actual model 

282 causes the surrogate uncertainty mainly caused by insufficient training data. This 

283 uncertainty will then propagate to the surrogate-based UQ results. Thus quantifying 

284 the uncertainty of  with respect to the surrogate uncertainty is necessary to 𝐹( ⋅ )

285 assess the reliability of the estimated CDF. To this end, we need to draw multiple 

286 realizations of  from its posterior prediction space being consistent with the ( )s x

287 given training data . We refer to the approach proposed in Oakley and O'hagan 𝒟
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288 (2002) to generate  posterior realizations of Kriging surrogates by leveraging M

289 Kriging’s capability in providing an estimation of the prediction uncertainty. This 

290 involves drawing posterior sample functions  from the Kriging model that  ( ) 1

M

m m
s



291 are consistent with training data  by adding in fake training samples 𝒟

292  which are evaluated using the Kriging surrogate instead of the actual { }
1

, ( )
N

j j j
f

=
x x

%%% %

293 model. 

294 The procedure of generating one posterior realization of Kriging surrogate 

295  is summarized in Algorithm 1. One can then repeat Algorithm 1 for  ( ) ( )ms  M

296 times to obtain  posterior realizations of the Kriging surrogate. Briefly speaking, M

297 we first randomly generate  input samples  from the input N% { }1, , N=S x x %
% % %K

298 space. In each iteration, the input in  maximizing the prediction variance, i.e., S%

299 ,  is selected as a new fake sample. The fake response value is 2
( )arg max ( )m




x S
x x

%
%

300 the surrogate prediction at  perturbed with a Gaussian white noise having a x%

301 variance that equals to the Kriging prediction variance , i.e.,x%

302  (15)( )( ) ( ) ( ),mf s e= +x x x%% % %

303 where  and  is the Kriging prediction variance at , ( )2
( )( ) ~ 0, ( )me N x x% % 2

( ) ( )m x% x%

304 and  is the Kriging prediction mean as defined in Eq. (3). The selected fake ( ) ( )ms x%

305 training sample is then added to the real training data set  to update the surrogate 𝒟

306 model . By repeating these steps one can eventually obtain a training data set ( ) ( )ms x%

307  consisting of  real samples and  fake samples, based on which one 𝒟𝑚 N N%

308 posterior realization of Kriging model  is constructed. Note that the above ( ) ( )ms 

309 procedure is computationally cheap as it does not involve any actual model 

310 evaluations. 

311 The sequential selection of the fake training samples and update of the surrogate 

312 guarantees the fake response values at adjacent points are close to each other and thus 
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313 ensures the achievement of smooth posterior surrogate realizations. For example, 

314 assume  is the point maximizing the prediction variance,  is a point close to 1x% 2x%

315  (i.e., ), the prediction variance at , , is thus also 1x% ( ) 1( )ms x% ≈ ( ) 2( )ms x% 2x% 2
( ) 2( )m x%

316 large. If we evaluate the fake response values at  and  simultaneously in one 1x% 2x%

317 single step, their fake response values (i.e.,  and ) obtained by Eq. (14) 1( )f x%% 2( )f x%%

318 may be substantially different since the variance of the Gaussian error  is large ( )e x%

319 at the two points,. As a result, the posterior surrogate realization based on the actual 

320 training samples  and the two fake training samples 𝒟 = { } 1
, ( ) N

i i i
f

=
x x

321  will be oscillatory around  and . Fig. 3(a) illustrates the { }2

1
, ( )i i i

f
=

x x%% % 1x% 2x%

322 oscillatory results for an one-dimensional function, , conditioning cos( ) 5y x x  

323 on 5 training samples. On the contrary, if we evaluate the fake response value at  1x%

324 first and then update the surrogate using the actual training samples 𝒟 =

325  and the fake training sample , the prediction variance of { } 1
, ( ) N

i i i
f

=
x x ( )1 1, ( )fx x%% %

326 the updated surrogate at  will be small as  is close to the evaluated point . 2x% 2x% 1x%

327 As a result, the fake response value  obtained by Eq. (14) is close to  2( )f x%% 1( )f x%%

328 as  is small, resulting in a smooth posterior surrogate realization as shown in 2( )e x%

329 Fig. 3 (b). 

330
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331
332 Fig. 3 Illustration of posterior Kriging surrogate realizations for a function 
333 conditioning on five training samples. (a) The fake training samples are generated in 
334 one single step. The red solid line represents the Kriging prediction mean. CI: 
335 confidence interval. (b) The fake training samples are generated through a sequential 
336 manner summarized in Algorithm 1. 

Algorithm 1: Procedure of generating one posterior Kriging surrogate realization 

 given the training data set . ( ) ( )ms  𝒟

Require: Available training data set , probability density function of the input 𝒟

vector , number of fake training samples ( )p x N%

1.                                                ⊳ Initialization𝒟𝑚←𝒟

2. Draw  random sample of inputs  from N% { }1, , NS x x %
% % %K= ( )p x

3. for  do1, ,j N= %K

4.    Construct the Kriging surrogate based on , i.e., 𝒟𝑚 𝑠(𝑚)(𝒙)|𝒟𝑚

5.                  ⊳ Select the input for a new fake sample 2
( )arg max m




x S
x x

%
%

6.                  ⊳ Fake response value( )2
( ) ( )( ) ( ) ,   ~ 0, ( )m mf s e e N = +x x x%% % %

7.     𝒟𝑚← 𝒟𝑚 ∪ [𝒙,𝑓(𝒙)]
8. end for

9. Construct the Kriging surrogate based on  , i.e., 𝒟𝑚 𝑠(𝑚)(𝒙)|𝒟𝑚

10. return                     ⊳ The mth realization of Kriging surrogate( ) ( )ms 

337 Base on each posterior surrogate realization in , we can obtain a CDF  ( ) 1

M

m m
s


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338 estimate of the QoI using the MC in the usual manner, resulting in  distributions M

339 . From the  distributions we can obtain the required statistics, for {𝐹(𝑚)( ⋅ )}𝑀
𝑚 = 1 M

340 instance the sample mean:

341  (16)(m)1

1( ) ( ),M

m
F q F q

M 
 

342 and can quantify uncertainty about the CDF estimate using the ensemble of 

343 distributions. 

344 3. Application to geological CO2 sequestration simulation

345 In this section, we apply the TEAD-based Kriging surrogate method to perform 

346 an uncertainty analysis of the evolution and leakage of CO2 in a synthetic GCS model. 

347 The accuracy and computational efficiency of our method is evaluated by comparing 

348 with the conventional MC simulation without surrogate modeling. 

349 3.1 Problem statement

350 We consider a zonal homogenized system, i.e., the spatial heterogeneity is zoned 

351 according to different geological media, for illustrative purpose. However, the method 

352 can be easily extended to heterogeneous cases where the spatial correlated 

353 heterogeneity of parameter fields can be parameterized using Karhunen-Loève 

354 expansion (Zhang and Lu, 2004) to reduce the number of parameters. Fig. 4 illustrates 

355 the conceptual model. In a 2D vertical section, the geological formations are 

356 composed of two aquifers separated by an aquitard. The top of the upper aquifer is not 

357 the ground surface but assumed to be an impermeable layer. CO2 is injected into the 

358 deep aquifer through a vertical well at a constant rate of 1.5 kg/s for a period of 150 

359 days. The goal of the simulation is to quantify the uncertainty of the total mass of 

360 injected CO2 leaked to the overlying aquifer through a leaky well 45 m away from the 

361 injection well. Thus the mass fraction of CO2 in the upper aquifer after 150 days is 

362 chosen as the QoI. The migration of injected CO2 in the aquifers is simulated using 

363 the TOUGH2/ECO2N simulator (Pruess et al., 1999; Pruess, 2005). 
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364
365 Fig. 4 Conceptual model for CO2 leakage through an abandoned well.

366 Due to the high computational demand of MC simulation, a relatively simple 

367 GCS model is considered here for the illustration purpose. In the numerical model, we 

368 consider a domain with a radius of 300 m. It is discretized into 31 grid blocks with a 

369 local refinement near the injection well using a logarithmically increasing radial 

370 distance to accurately characterize the near well processes. In the vertical direction, 

371 the domain is discretized into 20 layers with the aquitard densified to capture the large 

372 pressure gradient between the aquifers and aquitard. The average of initial pressure is 

373 assumed to be 15 MPa (corresponds to a depth of 1500 m) with a constant 

374 temperature of 60 ℃ . The van Genuchten-Mualem (VGM) model (Mualem, 1976; 

375 Van Genuchten, 1980) and van Genuchten (VG) function (Van Genuchten, 1980) are 

376 chosen as the relative permeability and capillary pressure functions, respectively. The 

377 lateral boundary conditions are assumed to be constant and equals to the initial 

378 conditions. The top and bottom boundaries are assumed to be no-flow boundaries. 

379 More information about the model parameters is listed in Table 1.

380

381

382

383
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384 Table 1 Hydrogeologic parameters for the GCS model.
Parameter Aquifer Aquitard Leaky well
Temperature (℃) 60
Average pressure (MPa) 15
Brine 0.03
Compressibility (Pa-1) 4.5e-10
Porosity 0.25 0.05 0.3
Permeability (m2) uncertain† 1e-18 1e-12
Irreducible gas saturation 0.05
Air entry pressure (kPa) 19.61 19.61 uncertain
Irreducible water saturation
VGM model
VG function

0.2
0.0

0.3
0.0

0.15
0.0

Pore size distribution index
VGM model 0.457

 VG function 0.457 0.457 uncertain
385 †The anisotropy ratio between the vertical and horizontal permeability is also 
386 considered uncertain.

387 To illustrate the performance of the TEAD-based surrogate method, we consider 

388 four uncertain parameters that may greatly influence the QoI, including the aquifer 

389 permeability ( ) and its anisotropy ratio ( ) between the vertical and horizontal k ar

390 directions, and two parameters in the VG function for the leaky well, i.e., the pore size 

391 distribution index ( ) and the air entry pressure ( ). The leaky well is modeled as  0P

392 porous media with a high permeability and the aquitard is thought to be difficult to 

393 permeate thus its permeability is assumed to be known. The ranges of the four 

394 uncertain parameters are listed in Table 2. We assume that the parameters are 

395 uniformly distributed within ranges listed in Table 2.

396 Table 2 Ranges, means, and standard deviations for the three uncertain parameters.

Parameter log10( )k ar  log10(1/ )0P

Range [-13, -12] [0.1, 1.0] [0.2, 0.6] [-5, -3]

397 Note:  denotes the reservoir permeability;  is the anisotropy ratio of the vertical k ar

398 and horizontal permeability;  and P0 represent the pore size distribution index and 
399 air entry pressure in the VG function for the leaky well, respectively.
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400 To demonstrate TEAD’s performance in efficiently generating accurate surrogate 

401 models, we also use the space-filling design LHS to generate the training samples for 

402 the surrogate model. We randomly generate 2000 MC realizations by direct GCS 

403 model runs to compute the reference statistics. We also use these 2000 samples to 

404 compute the RMSE accuracy of the surrogate model, although the TEAD algorithm 

405 does not require validation points for termination. 

406 3.2 Results and discussions

407 The TEAD algorithm starts from an initial sample set consisting of 17 sample 

408 points at the corners and center of the domain. In each iteration, additional 16 new 

409 samples are selected based on the score function defined in Eq. (9). The sampling 

410 process is terminated when the error indicator  is less than 0.02 in two newRMSE

411 successive iterations. Fig. 5 shows the RMSE decay evaluated on the 2000 samples as 

412 the sample size increases; the design process terminates after 10 iterations as the 

413 stopping criterion is met and a total of 177 samples are collected. 

414
415 Fig. 5 RMSE decay as the sample size increases for the TEAD algorithm. The lateral 
416 dash line represents the RMSE accuracy of the surrogate model based on 177 samples 
417 generated by the LHS design. At each iteration of TEAD, 16 new samples are 
418 selected. 
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419 In addition, we calculate the RMSE of the surrogate model based on 177 samples 

420 generated by the LHS method. The result is also shown in Fig. 5 in a dashed line. 

421 Note that the LHS method is a one-shot space-filling design so it generates samples at 

422 once not iteratively. For a fair comparison, we compare the final RMSE achieved by 

423 both the TEAD and the LHS designs using 177 samples. It is observed that LHS 

424 achieves a RMSE of only 0.025, much higher than that of TEAD (0.010). To reach 

425 the RMSE of 0.025, the TEAD only needs about 90 samples, resulting in almost 50% 

426 reduction in the number of GCS model evaluations. This indicates that, by adaptively 

427 selecting samples according to the nonlinear features of the response surface rather 

428 than uniformly sampling, TEAD can greatly reduce the number of GCS model 

429 evaluations required to construct accurate surrogate models. In practice, the 

430 large-scale multi-phase flow models of CO2 sequestration are computationally 

431 intensive models, whose simulations can take up to hours or even days. Therefore, the 

432 reduction in the number of model evaluations can lead to significant computational 

433 savings. 

434 We then test the TEAD-based surrogate method’s performance in UQ of the 

435 GCS model. The CDF is used to quantify the uncertainty of the leakage of CO2 based 

436 on the MC sampling. In the MC simulation, we execute the constructed Kriging 

437 surrogate model instead of the actual GCS model, which means that the surrogate 

438 model is used as a full replacement of the GCS model and thus no extra model 

439 evaluations are required. Thus the computational cost of the surrogate method is 

440 mainly from the evaluation of the 177 training samples for surrogate construction. 

441 The accuracy of the estimated CDF from the surrogate method is evaluated by 

442 comparing with the reference CDF from the conventional MC simulation with direct 

443 2000 GCS model runs. The surrogate uncertainty in the estimated CDF from the 

444 surrogate model is quantified using the method presented in Section 2.3. Fig. 6 shows 

445 the changes of mean ( ) and standard deviation ( ) of the QoI along the number QoI QoI

446 of MC samples. It is observed that the  and  approach a steady value after QoI QoI
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447 1000 model runs and are stabilized with the sample size of 2000. Thus CDF from MC 

448 simulation with 2000 GCS model runs are used as the reference solution. 

449

450 Fig. 6 Changes of mean ( ) and standard deviation ( ) of the fraction of the QoI QoI

451 mass CO2 in the upper aquifer after 150 days along the number of MC samples, where 
452 the dash lines represent the 95% confidence interval of the estimations.

453 We assess the accuracy of our TEAD-based method from two aspects. First we 

454 compare the QoI values from the surrogate model and the GCS model simulated at the 

455 2000 MC samples; and then we compare the CDFs approximated from the 

456 surrogate-based MC simulation and the conventional MC simulation basing on the 

457 same 2000 samples to rule out the randomness inherent in the sampling process. As a 

458 comparison, we also summarize the results of LHS-based surrogate. Fig. 7 

459 summarizes the results of the point-to-point comparison. Fig. 7(a) shows the pairwise 

460 comparison of the QoI values from the LHS-based surrogate model and the GCS 

461 model. It is observed that although the QoI values have a relatively strong correlation 

462 with a correlation coefficient (R2) of 0.9887, as a whole, the QoI values from the 

463 LHS-based surrogate are larger than the actual values in the range [0, 0.3], resulting in 

464 an inaccurate surrogate model. On the contrary, it can be seen in Fig. 7(b) that the QoI 

465 values from the TEAD-based surrogate model and the GCS model have a stronger 
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466 correlation with a R2 value of 0.9972. Moreover, the data points in Fig. 7(b) are very 

467 closely distributed around the 1:1 agreement line, suggesting the high accuracy 

468 of the TEAD-based surrogate model in approximation of the GCS model. 

469
470 Fig. 7 Pairwise comparison of the CO2 leakage based on the GCS and the surrogate 
471 model evaluated at the 2000 parameter samples. (a) LHS-based surrogate and (b) 
472 TEAD-based surrogate with 177 training samples. 

473 Fig. 8 shows the approximated CDFs obtained from the surrogate-based MC 

474 simulation and the GCS model-based MC simulation. The surrogate-based curves (red 

475 solid lines) are the mean CDF calculated from 400 posterior Kriging surrogate 

476 realizations. The corresponding 95% confidence interval calculated from the 400 CDF 

477 estimates from the surrogate realizations is depicted with red dashed lines. It is 

478 observed that the CDF estimated from the LHS-based surrogate model is far from 

479 accurate when the QoI in the range [0.15, 0.3] due to inaccurate surrogate 

480 approximation in this range. The LHS-based surrogate model tends to overestimate 

481 the QoI in this range (Fig. 7a), thus the reference line is above the 97.5th percentile of 

482 the surrogate estimated line (the zoom-in plot of Fig. 8a). On the contrary, the mean 

483 CDF estimated from the TEAD-based surrogate model is almost identical to the 

484 reference line, which is enveloped within the small 95% confidence interval of the 

485 surrogate prediction. Besides, the narrow confidence interval suggests a high 
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486 reliability for this estimate. It is noted that to achieve the nearly identical results based 

487 on the 2000 GCS model simulations, our adaptive surrogate-based UQ method only 

488 uses 177 GCS model runs in the surrogate construction, resulting in a substantial 

489 computational gain. On the other hand, with the same 177 GCS model runs, the 

490 conventional MC simulation produces a very poor CDF approximation as shown by 

491 blue lines in Fig. 8. This once again suggests the advantage of using the adaptive 

492 surrogate method in the UQ. 

493
494 Fig. 8 Comparison of estimated CDFs of the fraction of the mass CO2 in the upper 
495 aquifer after 150 days from (a) LHS-based and (b) TEAD-based surrogate methods 
496 with the conventional MC simulation. The surrogate models are constructed using 177 
497 samples. The red dashed lines represent the 2.5th and 97.5th percentiles of CDF 
498 estimations from 400 posterior Kriging surrogate realizations. 

499 The results indicate that the combination of the TEAD experimental design with 

500 the Kriging surrogate method provides an effective and efficient way to perform an 

501 uncertainty analysis in GCS modeling. First, the employment of adaptive design 

502 TEAD reduces the computational cost in actual model evaluations for surrogate 

503 construction. Second, in the MC sampling process, the generated surrogate model is 

504 used as a full replacement of the actual model, which means no more actual model 

505 simulation is needed in this process and it can be performed rather fast. As a result, 
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506 the computational cost of UQ is significantly reduced. In addition, basing on the 

507 prediction variance of the Kriging surrogate, we are able to efficiently quantify the 

508 surrogate uncertainty in the UQ results and provide a reliability estimation of the 

509 solution. 

510 4. Conclusions 

511 In this work, we propose an adaptive Kriging surrogate method to efficiently 

512 solve the uncertainty quantification (UQ) problems in multi-phase flow models of 

513 geological carbon sequestration (GCS). The Kriging surrogate model is efficiently 

514 constructed using a Taylor expansion-based adaptive design (TEAD) algorithm that 

515 combines a distance-based exploration criterion and a Taylor expansion-based 

516 exploitation criterion to search for informative training samples. The TEAD algorithm 

517 can adaptively place more samples in poorly approximated highly nonlinear areas and 

518 in sample-sparse regions, thus greatly reducing the number of actual model 

519 evaluations required for surrogate construction compared to conventional space-filling 

520 design methods. In addition, our Kriging surrogate method can effectively quantify 

521 the surrogate uncertainty. Presenting the surrogate-based UQ analysis with surrogate 

522 uncertainty improves the UQ results explanablility and reliability. 

523 The performance of the proposed method is demonstrated using a synthetic GCS 

524 model. In evaluation, we use the conventional MC sampling without surrogate 

525 modeling as a reference. Results indicate that the cumulative density function 

526 estimated by our method is very close to the reference and the surrogate uncertainty 

527 bound calculated by our method can enclose the reference. However, in achievement 

528 of this accurate UQ results, our method used only 10% of the GCS model runs 

529 required by the conventional MC. These results suggest that our method greatly 

530 improves the computational efficiency in UQ and provides reliable UQ results with 

531 accurately estimated surrogate uncertainty. The GCS model considered in this work is 

532 relatively fast in order to quickly test the proposed method in a reasonable time. When 

533 applying our method to computationally more expensive models, larger computational 
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534 savings can be expected. As our method is general purpose, the application to other 

535 environmental and geological models should be straightforward. 
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