
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia,
LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA-0003525.

Kokkos: Hierarchical Parallelism

Christian Trott (crtrott@sandia.gov)
Center for Computing Research, Sandia National Laboratories, NM

SAND2017-4935 C

SAND2018-1490C

Parallelism on Summit

2

Warp

Streaming
Multiprocessor

NVIDIA V100

Node

Machine

32 CUDA threads

64 Warps

6 GPC x 2 TPC
x 7 SM = 84 SM
(80 Active in Product)

2x (3 GPU + Power 9)

~ 4600 Nodes

Concurrently Executing
CUDA threads

32

2,048

163,840

983,040

~4,521,984,000

But logically active parallelism can be much larger:

Concurrent Kernels per GPU: 128
Maximum logical threads per Kernel: 2^31 x 1024
Total GPUs: ~27600

7.77 x 1018

Why expose this?

 The finer the level the better the collaboration
 __syncwarp() -> < 10 cycles

 __syncthreads() -> ~100 cycles

 Sync GPU -> O(us)

 Sync Node -> O(us)

 Sync Machine -> O(100us)??

 Algorithms are often inherently hierarchical
 Reduction over neighbors to compute a value per cell/particle/element

 Gather some data into a per-workset temporary buffer before computing

 Multiple subsequent nested loops

 Outer Loops may not have enough parallelism
 You may not have billions of particles, but maybe you got billions of

interactions

3

Kokkos Approach

4

Warp

Streaming
Multiprocessor

NVIDIA V100

Node

Machine

Kokkos::ThreadVectorRange

Kokkos::TeamThreadRange
Kokkos::task_spawn

Kokkos::RangePolicy
Kokkos::TeamPolicy
Kokkos::MDRangePolicy
Kokkos::WorkGraphPolicy

Kokkos::partition_master

MPI / Remote Memory Spaces

MPI / Remote Memory Spaces

Tightly Nested Loops

5

 Many people perform structured grid calculations
 Sandia’s codes are predominantly unstructured though

 MDRangePolicy introduced for tightly nested loops

 Iteration Space is divided into tiles

 Tiles are assigned to SMs, inner loops to warps

 Corresponds to OpenMP collapse clause

 Optionally set iteration order and tiling:

5

void launch (int N0, int N1, [ARGS]) {
parallel_for(MDRangePolicy<Rank<3>>({0,0,0},{N0,N1,N2}),

KOKKOS_LAMBDA (int i0, int i1, int i2)
{/*...*/});

}

MDRangePolicy<Rank<3,Iterate::Right,Iterate::Left>>
({0,0,0},{N0,N1,N2},{T0,T1,T2})

0

100

200

300

400

500

600

KNL P100

G
flo

p
/s

Albany Kernel

Naïve Best Raw MDRange

Non-Tightly Nested Loops
 Often Loops are not tightly nested

 Exploit that parallelism through nested parallel_for/reduce/scan

 Exposed through Kokkos::TeamPolicy and Kokkos::host_spawn
 Provides “team” handle to functor, which allows nested parallel patterns

 Kokkos::TeamPolicy now very commonly used, and often
responsible for the dominant kernels

6

0.00

20.00

40.00

60.00

80.00

100.00

Of Kernels Of Time

HPCG TeamPolicy
Fraction

Other TeamPolicy

void launch (int N, int M, [ARGS]) {
parallel_for(TeamPolicy<>(N,AUTO,8),

KOKKOS_LAMBDA (const team_t& team) {
...
parallel_reduce(TeamThreadRange(team,M),

[&] (const j) {
},val);
...
parallel_for(TeamThreadRange(team,M),

[&] (const j) {
});

});
}

Experimental: Process Partitioning

 Subdividing a process into multiple workers common pattern
 Uintah Task Framework runs multiple schedulers per process

 QMCPack runs multiple workers per process, which share a big table

 Kokkos allows symetric resource splits via
Kokkos::partition_master
 Currently only implemented for OpenMP

 Plan to support CUDA by summer 2018

 With each master thread: normal use of Kokkos parallel_for etc,
which will use subset of resources.

 One possible approach to support multiple GPUs per process and
exploit NVLink coherency between GPUs.

7

Under Development:
Remote Memory Spaces
 Node level interconnects are becoming more powerful

 System level interconnects become more memory bus like
 Support higher message rate

 Remote Atomics

 Expose this through Remote Memory Spaces
 Goal: easy to use one sided communication through Kokkos Views

 Use Cases:
 Implicit Halo exchange (think MPI one-sided)

 Switch between MPI-only phase and MPI+threads (current LANL
production runs)

 PGAS programming model

 Now: Initial Development Phase, big R&D component

8

http://www.github.com/kokkos

