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Novel idea: using the Schwarz alternating as a discretization method
for solving multi-scale partial differential equations (PDEs).
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Schwarz Altern ating Method for Multiscale Coupllng * |In literature, Schwarz method is applied to dynamics by using space-time discretizations — elative errors
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7 nentl Clamped Beam  Neohookean material model: steel bolts
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Advantages: | . . o s A * Lateral displacement load applied at top:
= Conceptually very simple. o I I I I Time integrator for <2, I S - S - IR - B applies compression to 2 bolts, tension to
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= Allows the coupling of regions with different non-conforming meshes, different + Linear elastic clamped beam with Gaussian
i i Nodal
element types, and different levels of refinement. initial condition for the z-displacement. - projection Acknowledgement: ).
= |nformation is exchanged among two or more regions, making coupling concurrent. Im plementation within Alba ny Finite Element Code * Coupling introduces no dynamic artifacts & of 5th LFObU')kf(Sa”dia NationaL
. dabs) 1or creatlng mes
= Different solvers can be used for the different regions. _ . . M energy is conserved throughout the & C Cauchy of this geometry.
= Component-based design for rapid development of capabilities. simulation. N stress

= Different material models can be coupled provided that they are compatible in the
overlap region.

https://github.com/gahansen/Albany

= Extensive use of libraries from the open-source Trilinos project.

= Use of the Phalanx package to decompose complex problem into M Torsion
simpler problems with managed dependencies. https://github.com/trilinos/trilinos

Relative errors are O(1%) w.r.t. reference
solution for composite tet 10 - hex coupling.

= Simplifies the task of meshing complex geometries for the different scales.

* Nonlinear elastic bar subjected to high degree of torsion.
! Mechanics of Materials Department, Sandia National Laboratories, Livermore, CA USA. = Use of the Sacado package for automatic differentiation. * Dynamic Schwarz method is used to couple two regions

2 Extreme Scale Data Science & Analytics, Sandia National Laboratories, Livermore, CA USA. = Use of Teko package for block preconditioning. - | of the bar using different mesh resolutions, different
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