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•Beam geometry that is clamped on both sides and has a Gaussian initial condition for the z-displacement.
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Motivation for Concurrent Multiscale Coupling

Schwarz Alternating Method for Domain Decomposition

Schwarz Alternating Method for Multiscale Coupling

Four Variants of Schwarz Alternating Method for Quasistatics

Schwarz Alternating Method for Dynamics

Implementation within Albany Finite Element Code

Proof of Convergence for Finite-Deformation Solid Mechanics
• Large scale structural failure frequently originates from small 

scale phenomena such as defects, microcracks, 
inhomogeneities and more, which grow quickly in unstable 
manner.

• Failure occurs due to tightly coupled interaction between 
small scale (stress concentrations, material instabilities, 
cracks, etc.) and large scale (vibration, impact, high loads and 
other perturbations).

Roof failure of Boeing 737 aircraft due 
to fatigue cracks. From imechanica.org
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Concurrent multiscale methods are essential for 
understanding and prediction of behavior of 

engineering systems when a small scale failure 
determines the performance of the entire system.

Simple idea: if the solution is known in regularly shaped domains, use 
those as pieces to iteratively build a solution for the more complex domain.

Initialize:

▪ Solve PDE by any method on W1 w/ initial guess for Dirichlet BCs on G1.

Iterate until convergence:

▪ Solve PDE by any method (can be different than for W1) on W2 w/ Dirichlet
BCs on G2 that are the values just obtained for W1.

▪ Solve PDE by any method (can be different than for W2) on W1 w/ Dirichlet
BCs on G1 that are the values just obtained for W2.

Requirement for convergence: Ω1⋂ Ω2≠ ∅

Basic Schwarz Algorithm

▪ Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

H. Schwarz (1843 – 1921)

▪ Schwarz alternating method most commonly used as a preconditioner for Krylov iterative 
methods to solve linear algebraic equations.

Novel idea: using the Schwarz alternating as a discretization method 
for solving multi-scale partial differential equations (PDEs).

▪ Conceptually very simple.

▪ Allows the coupling of regions with different non-conforming meshes, different 
element types, and different levels of refinement.

▪ Information is exchanged among two or more regions, making coupling concurrent.

▪ Different solvers can be used for the different regions.

▪ Different material models can be coupled provided that they are compatible in the 
overlap region.

▪ Simplifies the task of meshing complex geometries for the different scales.

Advantages:

Pseudo-code for Quasistatics:

▪ S. L. Sobolev (1936): posed Schwarz method for linear elasticity in variational form and 
proved method’s convergence by proposing a convergent sequence of energy functionals.

▪ S. G. Mikhlin (1951): proved convergence of Schwarz method for general linear elliptic PDEs.

▪ A. Mota, I. Tezaur, C. Alleman (2017)*: derived a proof of convergence of the alternating 
Schwarz method for the finite deformation quasistatic nonlinear PDEs (with quasi-convex
energy functional 𝜱[𝝋] defined below), and determined a geometric convergence rate for 
the finite deformation quasistatic problem.

𝜱 𝝋 = 𝐵׬ 𝑊 𝑭,𝒁, 𝑇 𝑑𝑉 𝐵׬− 𝑩 ∙ 𝝋 𝑑𝑉-׬𝜕𝑇𝐵
ഥ𝑻 ∙ 𝝋 𝑑𝑆

𝛻 ∙ 𝑷 + 𝑩 = 𝟎

Using the Schwarz alternating as a discretization method for 
PDEs is natural idea with a sound theoretical foundation.

* A. Mota, I. Tezaur, C. Alleman. "The Schwarz Alternating Method in Solid Mechanics", Comput. Meth. 
Appl. Mech. Engng.  319 (2017), 19-51.

Full Schwarz

Least-intrusive variant: by-passes Schwarz iteration, 
no need for block solver.

Inexact Schwarz

Modified Schwarz Monolithic Schwarz

▪ In literature, Schwarz method is applied to dynamics by using space-time discretizations –
unfeasible given design of our current codes and size of simulations.

▪ Our extension of Schwarz coupling to dynamics uses a governing time stepping algorithm that 
controls time integrators within each domain. 

▪ Can use different integrators (e.g., implicit, explicit) with different time steps in each domain.

Controller time stepper

Time integrator for W1

Time integrator for W2

▪ Component-based design for rapid development of capabilities.

▪ Extensive use of libraries from the open-source Trilinos project.

▪ Use of the Phalanx package to decompose complex problem into 
simpler problems with managed dependencies.

▪ Use of the Sacado package for automatic differentiation.

▪ Use of Teko package for block preconditioning.

▪ Performance portability to GPUs and KNLs via Kokkos.

▪ Parallel implementation of  Schwarz uses the Data Transfer Kit (DTK).

https://github.com/trilinos/trilinos

https://github.com/gahansen/Albany

https://github.com/ORNL-
CEES/DataTransferKit

Numerical Results: Quasistatics

Numerical Results: Dynamics

 1D bar with area proportional to square root of 
length with strong singularity on left end of bar and 
simple hyperelestic material model with no damage.

 Test case goals: explore viability of four variants of 
Schwarz alternating method, test convergence 
(expect faster convergence in fewer iterations with 
increased overlap). 

Foulk’s Singular Bar

Cuboid

• Coupling of two cuboids with square base w/ 
Neohookean-type material model.

• Schwarz alternating method converges 
linearly.

• There is faster linear convergence with 
increasing overlap volume fraction.

∆𝑦(𝑚+1) ≤ 𝜇∆𝑦(𝑚)

Notched Cylinder

• Notched cylinder stretched along its axial 
direction, Neohookean-type material model.

• Coupling of fine tetrahedral mesh (near 
notch) with coarse hexahedral mesh. 

Relative errors

Rubik’s Cube
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• Isotropic elasticity & J2 plasticity 
with linear isotropic hardening.

• 3 subdomains.
• 50% reduction in problem size.
• Near perfect strong scaling.

• Linear elastic clamped beam with Gaussian 
initial condition for the z-displacement.

• Coupling introduces no dynamic artifacts &
energy is conserved throughout the 
simulation.

• Nonlinear elastic bar subjected to high degree of torsion. 
• Dynamic Schwarz method is used to couple two regions 

of the bar using different mesh resolutions, different 
element types, and different time integration schemes, 
once more without introducing any dynamic artifacts.

Ω0 Ω1

Relative errors are O(1%) w.r.t. reference 
solution for composite tet 10 - hex coupling.
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• Multi-scale problem of practical scale: coupling 
85K composite tet 10 element mesh (bolts, Ω1) 
with 56K hex element mesh (parts, Ω2).

• Neohookean material model: steel bolts,
aluminum/steel parts.

• Lateral displacement load applied at top: 
applies compression to 2 bolts, tension to 
remaining 2.

(a) Ω1 (b) Ω2
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